Martin2203
commited on
Commit
•
4822696
1
Parent(s):
2fe41a6
Add dataset
Browse files- HumanEval.csv +0 -0
- HumanEval.jsonl +0 -0
- convert.ipynb +76 -0
- convert.py +5 -0
HumanEval.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
HumanEval.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
convert.ipynb
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 2,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import json\n",
|
10 |
+
"import os\n",
|
11 |
+
"import pandas as pd\n",
|
12 |
+
"\n",
|
13 |
+
"x = open(\"./HumanEval.jsonl\")\n",
|
14 |
+
"entries = []\n",
|
15 |
+
"for line in x:\n",
|
16 |
+
" contents = json.loads(line)\n",
|
17 |
+
" entries.append(contents)\n",
|
18 |
+
"x.close()"
|
19 |
+
]
|
20 |
+
},
|
21 |
+
{
|
22 |
+
"cell_type": "code",
|
23 |
+
"execution_count": 3,
|
24 |
+
"metadata": {},
|
25 |
+
"outputs": [
|
26 |
+
{
|
27 |
+
"name": "stdout",
|
28 |
+
"output_type": "stream",
|
29 |
+
"text": [
|
30 |
+
"{'task_id': 'HumanEval/0', 'prompt': 'from typing import List\\n\\n\\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\\n given threshold.\\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\\n False\\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\\n True\\n \"\"\"\\n', 'entry_point': 'has_close_elements', 'canonical_solution': ' for idx, elem in enumerate(numbers):\\n for idx2, elem2 in enumerate(numbers):\\n if idx != idx2:\\n distance = abs(elem - elem2)\\n if distance < threshold:\\n return True\\n\\n return False\\n', 'test': \"\\n\\nMETADATA = {\\n 'author': 'jt',\\n 'dataset': 'test'\\n}\\n\\n\\ndef check(candidate):\\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\\n assert candidate([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\\n assert candidate([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\\n assert candidate([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\\n assert candidate([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\\n\\n\"}\n"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"source": [
|
35 |
+
"print(entries[0])"
|
36 |
+
]
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"data = {\"source\": [], \"target\": [], \"program_id\": []}\n",
|
45 |
+
"\n",
|
46 |
+
"for entry in entries:\n",
|
47 |
+
" data[\"source\"].append(entry[\"source\"])\n",
|
48 |
+
" data[\"target\"].append(entry[\"target\"])\n",
|
49 |
+
" data[\"program_id\"].append(entry[\"program_id\"])\n",
|
50 |
+
"\n",
|
51 |
+
"pd.DataFrame(data=data).to_csv(\"./HumanEval.csv\")"
|
52 |
+
]
|
53 |
+
}
|
54 |
+
],
|
55 |
+
"metadata": {
|
56 |
+
"kernelspec": {
|
57 |
+
"display_name": "Python 3",
|
58 |
+
"language": "python",
|
59 |
+
"name": "python3"
|
60 |
+
},
|
61 |
+
"language_info": {
|
62 |
+
"codemirror_mode": {
|
63 |
+
"name": "ipython",
|
64 |
+
"version": 3
|
65 |
+
},
|
66 |
+
"file_extension": ".py",
|
67 |
+
"mimetype": "text/x-python",
|
68 |
+
"name": "python",
|
69 |
+
"nbconvert_exporter": "python",
|
70 |
+
"pygments_lexer": "ipython3",
|
71 |
+
"version": "3.11.6"
|
72 |
+
}
|
73 |
+
},
|
74 |
+
"nbformat": 4,
|
75 |
+
"nbformat_minor": 2
|
76 |
+
}
|
convert.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
with open("HumanEval.jsonl") as f:
|
4 |
+
for line in f:
|
5 |
+
contents = json.loads(line)
|