File size: 2,439 Bytes
3c44231 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import os\n",
"import pandas as pd\n",
"\n",
"x = open(\"./mbpp.jsonl\")\n",
"entries = []\n",
"for line in x:\n",
" contents = json.loads(line)\n",
" entries.append(contents)\n",
"x.close()"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'text': 'Write a function to find the minimum cost path to reach (m, n) from (0, 0) for the given cost matrix cost[][] and a position (m, n) in cost[][].', 'code': 'R = 3\\r\\nC = 3\\r\\ndef min_cost(cost, m, n): \\r\\n\\ttc = [[0 for x in range(C)] for x in range(R)] \\r\\n\\ttc[0][0] = cost[0][0] \\r\\n\\tfor i in range(1, m+1): \\r\\n\\t\\ttc[i][0] = tc[i-1][0] + cost[i][0] \\r\\n\\tfor j in range(1, n+1): \\r\\n\\t\\ttc[0][j] = tc[0][j-1] + cost[0][j] \\r\\n\\tfor i in range(1, m+1): \\r\\n\\t\\tfor j in range(1, n+1): \\r\\n\\t\\t\\ttc[i][j] = min(tc[i-1][j-1], tc[i-1][j], tc[i][j-1]) + cost[i][j] \\r\\n\\treturn tc[m][n]', 'task_id': 1, 'test_setup_code': '', 'test_list': ['assert min_cost([[1, 2, 3], [4, 8, 2], [1, 5, 3]], 2, 2) == 8', 'assert min_cost([[2, 3, 4], [5, 9, 3], [2, 6, 4]], 2, 2) == 12', 'assert min_cost([[3, 4, 5], [6, 10, 4], [3, 7, 5]], 2, 2) == 16'], 'challenge_test_list': []}\n"
]
}
],
"source": [
"print(entries[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"data = {\"source\": [], \"target\": [], \"program_id\": []}\n",
"\n",
"for i,entry in enumerate(entries):\n",
" data[\"source\"].append(entry[\"text\"])\n",
" data[\"target\"].append(entry[\"code\"])\n",
" data[\"program_id\"].append(\"MBPP_\"+str(i))\n",
"\n",
"pd.DataFrame(data=data).to_csv(\"./mbpp.csv\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|