zihanliu commited on
Commit
91d97d5
·
verified ·
1 Parent(s): af6c7d4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -27
README.md CHANGED
@@ -64,44 +64,44 @@ configs:
64
  ---
65
 
66
  ## ChatRAG Bench
67
- ChatRAG Bench is a benchmark for evaluating a model's conversational QA capability over documents or retrieved context. ChatRAG Bench are built on and derived from 10 existing datasets: Doc2Dial, QuAC, QReCC, TopioCQA, INSCIT, CoQA, HybriDialogue, DoQA, SQA, ConvFinQA. ChatRAG Bench covers a wide range of documents and question types, which require models to generate responses from long context, comprehend and reason over tables, conduct arithmetic calculations, and indicate when questions cannot be found within the context. The details of this benchmark are described in [here](https://arxiv.org/abs/2401.10225). **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
68
 
69
  ## Other Resources
70
- [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B)   [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B)   [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data)   [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder)   [Website](https://chatqa-project.github.io/)   [Paper](https://arxiv.org/abs/2401.10225)
71
 
72
  ## Benchmark Results
73
 
74
  ### Main Results
75
- | | ChatQA-1.0-7B | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
76
- | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
77
- | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 38.9 | 39.33 | 41.26 |
78
- | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 41.82 | 39.73 | 38.82 |
79
- | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 48.05 | 49.03 | 51.40 |
80
- | CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 78.57 | 76.46 | 78.44 |
81
- | DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 51.94 | 49.6 | 50.67 |
82
- | ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 73.69 | 78.46 | 81.88 |
83
- | SQA | 61.87 | 74.07 | 69.61 | 79.21 | 69.14 | 73.28 | 83.82 |
84
- | TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 50.98 | 49.96 | 55.63 |
85
- | HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 56.44 | 65.76 | 68.27 |
86
- | INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 31.9 | 30.1 | 32.31 |
87
- | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.14 | 55.17 | 58.25 |
88
- | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 53.89 | 53.99 | 57.14 |
89
 
90
- Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 used some samples from the HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial.
91
 
92
  ### Evaluation of Unanswerable Scenario
93
 
94
  ChatRAG Bench also includes evaluations for the unanswerable scenario, where we evaluate models' capability to determine whether the answer to the question can be found within the given context. Equipping models with such capability can substantially decrease the likelihood of hallucination.
95
 
96
- | | GPT-3.5-turbo-0613 | Command-R-Plus | Llama-3-instruct-70b | GPT-4-0613 | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
97
- | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|
98
- | Avg-Both | 73.27 | 68.11 | 76.42 | 80.73 | 77.25 | 75.57 | 71.86 |
99
- | Avg-QuAC | 78.335 | 69.605 | 81.285 | 87.415 | 80.755 | 79.3 | 72.59 |
100
- | QuAC (no*) | 61.91 | 41.79 | 66.89 | 83.45 | 77.66 | 63.39 | 48.25 |
101
- | QuAC (yes*) | 94.76 | 97.42 | 95.68 | 91.38 | 83.85 | 95.21 | 96.93 |
102
- | Avg-DoQA | 68.21 | 66.62 | 71.555 | 74.05 | 73.74 | 71.84 | 71.125 |
103
- | DoQA (no*) | 51.99 | 46.37 | 60.78 | 74.28 | 68.81 | 62.76 | 52.24 |
104
- | DoQA (yes*) | 84.43 | 86.87 | 82.33 | 73.82 | 78.67 | 80.92 | 90.01 |
105
 
106
  We use QuAC and DoQA datasets which have such unanswerable cases to evaluate such capability. We use both answerable and unanswerable samples for this evaluation. Specifically, for unanswerable case, we consider the model indicating that the question cannot be answered as correct, and as for answerable cases, we consider the model not indicating the question is unanswerable as correct (i.e., the model giving an answer). In the end, we calculate the average accuracy score of unanswerable and answerable cases as the final metric.
107
 
@@ -117,7 +117,7 @@ Zihan Liu (zihanl@nvidia.com), Wei Ping (wping@nvidia.com)
117
  ## Citation
118
  <pre>
119
  @article{liu2024chatqa,
120
- title={ChatQA: Building GPT-4 Level Conversational QA Models},
121
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
122
  journal={arXiv preprint arXiv:2401.10225},
123
  year={2024}}
 
64
  ---
65
 
66
  ## ChatRAG Bench
67
+ ChatRAG Bench is a benchmark for evaluating a model's conversational QA capability over documents or retrieved context. ChatRAG Bench are built on and derived from 10 existing datasets: Doc2Dial, QuAC, QReCC, TopioCQA, INSCIT, CoQA, HybriDialogue, DoQA, SQA, ConvFinQA. ChatRAG Bench covers a wide range of documents and question types, which require models to generate responses from long context, comprehend and reason over tables, conduct arithmetic calculations, and indicate when questions cannot be found within the context. The details of this benchmark are described in [here](https://arxiv.org/pdf/2401.10225v3). **For more information about ChatQA, check the [website](https://chatqa-project.github.io/)!**
68
 
69
  ## Other Resources
70
+ [Llama3-ChatQA-1.5-8B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B) &ensp; [Llama3-ChatQA-1.5-70B](https://huggingface.co/nvidia/Llama3-ChatQA-1.5-70B) &ensp; [Training Data](https://huggingface.co/datasets/nvidia/ChatQA-Training-Data) &ensp; [Retriever](https://huggingface.co/nvidia/dragon-multiturn-query-encoder) &ensp; [Website](https://chatqa-project.github.io/) &ensp; [Paper](https://arxiv.org/pdf/2401.10225v3)
71
 
72
  ## Benchmark Results
73
 
74
  ### Main Results
75
+ | | ChatQA-1.0-7B | Command-R-Plus | Llama3-instruct-70b | GPT-4-0613 | GPT-4-Turbo | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
76
+ | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
77
+ | Doc2Dial | 37.88 | 33.51 | 37.88 | 34.16 | 35.35 | 38.90 | 39.33 | 41.26 |
78
+ | QuAC | 29.69 | 34.16 | 36.96 | 40.29 | 40.10 | 41.82 | 39.73 | 38.82 |
79
+ | QReCC | 46.97 | 49.77 | 51.34 | 52.01 | 51.46 | 48.05 | 49.03 | 51.40 |
80
+ | CoQA | 76.61 | 69.71 | 76.98 | 77.42 | 77.73 | 78.57 | 76.46 | 78.44 |
81
+ | DoQA | 41.57 | 40.67 | 41.24 | 43.39 | 41.60 | 51.94 | 49.60 | 50.67 |
82
+ | ConvFinQA | 51.61 | 71.21 | 76.6 | 81.28 | 84.16 | 73.69 | 78.46 | 81.88 |
83
+ | SQA | 61.87 | 74.07 | 69.61 | 79.21 | 79.98 | 69.14 | 73.28 | 83.82 |
84
+ | TopioCQA | 45.45 | 53.77 | 49.72 | 45.09 | 48.32 | 50.98 | 49.96 | 55.63 |
85
+ | HybriDial* | 54.51 | 46.7 | 48.59 | 49.81 | 47.86 | 56.44 | 65.76 | 68.27 |
86
+ | INSCIT | 30.96 | 35.76 | 36.23 | 36.34 | 33.75 | 31.90 | 30.10 | 32.31 |
87
+ | Average (all) | 47.71 | 50.93 | 52.52 | 53.90 | 54.03 | 54.14 | 55.17 | 58.25 |
88
+ | Average (exclude HybriDial) | 46.96 | 51.40 | 52.95 | 54.35 | 54.72 | 53.89 | 53.99 | 57.14 |
89
 
90
+ Note that ChatQA-1.5 is built based on Llama-3 base model, and ChatQA-1.0 is built based on Llama-2 base model. ChatQA-1.5 models use HybriDial training dataset. To ensure fair comparison, we also compare average scores excluding HybriDial.
91
 
92
  ### Evaluation of Unanswerable Scenario
93
 
94
  ChatRAG Bench also includes evaluations for the unanswerable scenario, where we evaluate models' capability to determine whether the answer to the question can be found within the given context. Equipping models with such capability can substantially decrease the likelihood of hallucination.
95
 
96
+ | | GPT-3.5-turbo-0613 | Command-R-Plus | Llama3-instruct-70b | GPT-4-0613 | GPT-4-Turbo | ChatQA-1.0-70B | ChatQA-1.5-8B | ChatQA-1.5-70B |
97
+ | -- |:--:|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
98
+ | Avg-Both | 73.27 | 68.11 | 76.42 | 80.73 | 80.47 | 77.25 | 75.57 | 71.86 |
99
+ | Avg-QuAC | 78.335 | 69.605 | 81.285 | 87.42 | 88.73 | 80.76 | 79.3 | 72.59 |
100
+ | QuAC (no*) | 61.91 | 41.79 | 66.89 | 83.45 | 80.42 | 77.66 | 63.39 | 48.25 |
101
+ | QuAC (yes*) | 94.76 | 97.42 | 95.68 | 91.38 | 97.03 | 83.85 | 95.21 | 96.93 |
102
+ | Avg-DoQA | 68.21 | 66.62 | 71.555 | 74.05 | 72.21 | 73.74 | 71.84 | 71.125 |
103
+ | DoQA (no*) | 51.99 | 46.37 | 60.78 | 74.28 | 72.28 | 68.81 | 62.76 | 52.24 |
104
+ | DoQA (yes*) | 84.43 | 86.87 | 82.33 | 73.82 | 72.13 | 78.67 | 80.92 | 90.01 |
105
 
106
  We use QuAC and DoQA datasets which have such unanswerable cases to evaluate such capability. We use both answerable and unanswerable samples for this evaluation. Specifically, for unanswerable case, we consider the model indicating that the question cannot be answered as correct, and as for answerable cases, we consider the model not indicating the question is unanswerable as correct (i.e., the model giving an answer). In the end, we calculate the average accuracy score of unanswerable and answerable cases as the final metric.
107
 
 
117
  ## Citation
118
  <pre>
119
  @article{liu2024chatqa,
120
+ title={ChatQA: Surpassing GPT-4 on Conversational QA and RAG},
121
  author={Liu, Zihan and Ping, Wei and Roy, Rajarshi and Xu, Peng and Lee, Chankyu and Shoeybi, Mohammad and Catanzaro, Bryan},
122
  journal={arXiv preprint arXiv:2401.10225},
123
  year={2024}}