|
import torch |
|
import random |
|
from tqdm.rich import tqdm |
|
|
|
|
|
|
|
|
|
import torch |
|
import random |
|
from typing import Optional |
|
import PIL |
|
|
|
from transformers import CLIPTokenizer |
|
from diffusers.loaders import ( |
|
StableDiffusionXLLoraLoaderMixin, |
|
TextualInversionLoaderMixin, |
|
) |
|
from diffusers.models.lora import adjust_lora_scale_text_encoder |
|
from diffusers.utils import ( |
|
USE_PEFT_BACKEND, |
|
logging, |
|
scale_lora_layers, |
|
unscale_lora_layers, |
|
) |
|
from diffusers.pipelines import StableDiffusionXLPipeline |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
def parse_prompt_attention(text): |
|
""" |
|
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. |
|
Accepted tokens are: |
|
(abc) - increases attention to abc by a multiplier of 1.1 |
|
(abc:3.12) - increases attention to abc by a multiplier of 3.12 |
|
[abc] - decreases attention to abc by a multiplier of 1.1 |
|
\\( - literal character '(' |
|
\\[ - literal character '[' |
|
\\) - literal character ')' |
|
\\] - literal character ']' |
|
\\ - literal character '\' |
|
anything else - just text |
|
|
|
>>> parse_prompt_attention('normal text') |
|
[['normal text', 1.0]] |
|
>>> parse_prompt_attention('an (important) word') |
|
[['an ', 1.0], ['important', 1.1], [' word', 1.0]] |
|
>>> parse_prompt_attention('(unbalanced') |
|
[['unbalanced', 1.1]] |
|
>>> parse_prompt_attention('\\(literal\\]') |
|
[['(literal]', 1.0]] |
|
>>> parse_prompt_attention('(unnecessary)(parens)') |
|
[['unnecessaryparens', 1.1]] |
|
>>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') |
|
[['a ', 1.0], |
|
['house', 1.5730000000000004], |
|
[' ', 1.1], |
|
['on', 1.0], |
|
[' a ', 1.1], |
|
['hill', 0.55], |
|
[', sun, ', 1.1], |
|
['sky', 1.4641000000000006], |
|
['.', 1.1]] |
|
""" |
|
import re |
|
|
|
re_attention = re.compile( |
|
r""" |
|
\{|\}|\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| |
|
\)|]|[^\\()\[\]:]+|: |
|
""", |
|
re.X, |
|
) |
|
|
|
re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) |
|
|
|
res = [] |
|
round_brackets = [] |
|
square_brackets = [] |
|
curly_brackets = [] |
|
round_bracket_multiplier = 1.05 |
|
curly_bracket_multiplier = 1.05 |
|
square_bracket_multiplier = 1 / 1.05 |
|
|
|
def multiply_range(start_position, multiplier): |
|
for p in range(start_position, len(res)): |
|
res[p][1] *= multiplier |
|
|
|
for m in re_attention.finditer(text): |
|
text = m.group(0) |
|
weight = m.group(1) |
|
|
|
if text.startswith("\\"): |
|
res.append([text[1:], 1.0]) |
|
elif text == "(": |
|
round_brackets.append(len(res)) |
|
elif text == "{": |
|
curly_brackets.append(len(res)) |
|
elif text == "[": |
|
square_brackets.append(len(res)) |
|
elif weight is not None and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), float(weight)) |
|
elif text == ")" and len(round_brackets) > 0: |
|
multiply_range(round_brackets.pop(), round_bracket_multiplier) |
|
elif text == "}" and len(round_brackets) > 0: |
|
multiply_range(curly_brackets.pop(), curly_bracket_multiplier) |
|
elif text == "]" and len(square_brackets) > 0: |
|
multiply_range(square_brackets.pop(), square_bracket_multiplier) |
|
else: |
|
parts = re.split(re_break, text) |
|
for i, part in enumerate(parts): |
|
if i > 0: |
|
res.append(["BREAK", -1]) |
|
res.append([part, 1.0]) |
|
|
|
for pos in round_brackets: |
|
multiply_range(pos, round_bracket_multiplier) |
|
|
|
for pos in square_brackets: |
|
multiply_range(pos, square_bracket_multiplier) |
|
|
|
if len(res) == 0: |
|
res = [["", 1.0]] |
|
|
|
|
|
i = 0 |
|
while i + 1 < len(res): |
|
if res[i][1] == res[i + 1][1]: |
|
res[i][0] += res[i + 1][0] |
|
res.pop(i + 1) |
|
else: |
|
i += 1 |
|
|
|
return res |
|
|
|
|
|
def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): |
|
""" |
|
Get prompt token ids and weights, this function works for both prompt and negative prompt |
|
|
|
Args: |
|
pipe (CLIPTokenizer) |
|
A CLIPTokenizer |
|
prompt (str) |
|
A prompt string with weights |
|
|
|
Returns: |
|
text_tokens (list) |
|
A list contains token ids |
|
text_weight (list) |
|
A list contains the correspondent weight of token ids |
|
|
|
Example: |
|
import torch |
|
from transformers import CLIPTokenizer |
|
|
|
clip_tokenizer = CLIPTokenizer.from_pretrained( |
|
"stablediffusionapi/deliberate-v2" |
|
, subfolder = "tokenizer" |
|
, dtype = torch.float16 |
|
) |
|
|
|
token_id_list, token_weight_list = get_prompts_tokens_with_weights( |
|
clip_tokenizer = clip_tokenizer |
|
,prompt = "a (red:1.5) cat"*70 |
|
) |
|
""" |
|
texts_and_weights = parse_prompt_attention(prompt) |
|
text_tokens, text_weights = [], [] |
|
for word, weight in texts_and_weights: |
|
|
|
token = clip_tokenizer(word, truncation=False).input_ids[1:-1] |
|
|
|
|
|
|
|
text_tokens = [*text_tokens, *token] |
|
|
|
|
|
|
|
chunk_weights = [weight] * len(token) |
|
|
|
|
|
text_weights = [*text_weights, *chunk_weights] |
|
return text_tokens, text_weights |
|
|
|
|
|
def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): |
|
""" |
|
Produce tokens and weights in groups and pad the missing tokens |
|
|
|
Args: |
|
token_ids (list) |
|
The token ids from tokenizer |
|
weights (list) |
|
The weights list from function get_prompts_tokens_with_weights |
|
pad_last_block (bool) |
|
Control if fill the last token list to 75 tokens with eos |
|
Returns: |
|
new_token_ids (2d list) |
|
new_weights (2d list) |
|
|
|
Example: |
|
token_groups,weight_groups = group_tokens_and_weights( |
|
token_ids = token_id_list |
|
, weights = token_weight_list |
|
) |
|
""" |
|
bos, eos = 49406, 49407 |
|
|
|
|
|
new_token_ids = [] |
|
new_weights = [] |
|
while len(token_ids) >= 75: |
|
|
|
head_75_tokens = [token_ids.pop(0) for _ in range(75)] |
|
head_75_weights = [weights.pop(0) for _ in range(75)] |
|
|
|
|
|
temp_77_token_ids = [bos] + head_75_tokens + [eos] |
|
temp_77_weights = [1.0] + head_75_weights + [1.0] |
|
|
|
|
|
new_token_ids.append(temp_77_token_ids) |
|
new_weights.append(temp_77_weights) |
|
|
|
|
|
if len(token_ids) > 0: |
|
padding_len = 75 - len(token_ids) if pad_last_block else 0 |
|
|
|
temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] |
|
new_token_ids.append(temp_77_token_ids) |
|
|
|
temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] |
|
new_weights.append(temp_77_weights) |
|
|
|
return new_token_ids, new_weights |
|
|
|
|
|
def get_weighted_text_embeddings_sdxl( |
|
pipe, |
|
prompt: str = "", |
|
prompt_2: str = None, |
|
neg_prompt: str = "", |
|
neg_prompt_2: str = None, |
|
num_images_per_prompt: int = 1, |
|
device: Optional[torch.device] = None, |
|
clip_skip: Optional[int] = None, |
|
lora_scale: Optional[int] = None, |
|
): |
|
""" |
|
This function can process long prompt with weights, no length limitation |
|
for Stable Diffusion XL |
|
|
|
Args: |
|
pipe (StableDiffusionPipeline) |
|
prompt (str) |
|
prompt_2 (str) |
|
neg_prompt (str) |
|
neg_prompt_2 (str) |
|
num_images_per_prompt (int) |
|
device (torch.device) |
|
clip_skip (int) |
|
Returns: |
|
prompt_embeds (torch.Tensor) |
|
neg_prompt_embeds (torch.Tensor) |
|
""" |
|
device = device or pipe._execution_device |
|
|
|
|
|
|
|
if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin): |
|
pipe._lora_scale = lora_scale |
|
|
|
|
|
if pipe.text_encoder is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale) |
|
else: |
|
scale_lora_layers(pipe.text_encoder, lora_scale) |
|
|
|
if pipe.text_encoder_2 is not None: |
|
if not USE_PEFT_BACKEND: |
|
adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale) |
|
else: |
|
scale_lora_layers(pipe.text_encoder_2, lora_scale) |
|
|
|
if prompt_2: |
|
prompt = f"{prompt} {prompt_2}" |
|
|
|
if neg_prompt_2: |
|
neg_prompt = f"{neg_prompt} {neg_prompt_2}" |
|
|
|
prompt_t1 = prompt_t2 = prompt |
|
neg_prompt_t1 = neg_prompt_t2 = neg_prompt |
|
|
|
if isinstance(pipe, TextualInversionLoaderMixin): |
|
prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer) |
|
neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer) |
|
prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2) |
|
neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2) |
|
|
|
eos = pipe.tokenizer.eos_token_id |
|
|
|
|
|
prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1) |
|
neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1) |
|
|
|
|
|
prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2) |
|
neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2) |
|
|
|
|
|
prompt_token_len = len(prompt_tokens) |
|
neg_prompt_token_len = len(neg_prompt_tokens) |
|
|
|
if prompt_token_len > neg_prompt_token_len: |
|
|
|
neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
else: |
|
|
|
prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) |
|
prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) |
|
|
|
|
|
prompt_token_len_2 = len(prompt_tokens_2) |
|
neg_prompt_token_len_2 = len(neg_prompt_tokens_2) |
|
|
|
if prompt_token_len_2 > neg_prompt_token_len_2: |
|
|
|
neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
else: |
|
|
|
prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) |
|
|
|
embeds = [] |
|
neg_embeds = [] |
|
|
|
prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) |
|
|
|
neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( |
|
neg_prompt_tokens.copy(), neg_prompt_weights.copy() |
|
) |
|
|
|
prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( |
|
prompt_tokens_2.copy(), prompt_weights_2.copy() |
|
) |
|
|
|
neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( |
|
neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() |
|
) |
|
|
|
|
|
for i in range(len(prompt_token_groups)): |
|
|
|
token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device) |
|
weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device) |
|
|
|
token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device) |
|
|
|
|
|
prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True) |
|
|
|
|
|
prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True) |
|
pooled_prompt_embeds = prompt_embeds_2[0] |
|
|
|
if clip_skip is None: |
|
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] |
|
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] |
|
else: |
|
|
|
prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)] |
|
prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)] |
|
|
|
prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] |
|
token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for j in range(len(weight_tensor)): |
|
if weight_tensor[j] != 1.0: |
|
token_embedding[j] = ( |
|
token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] |
|
) |
|
|
|
token_embedding = token_embedding.unsqueeze(0) |
|
embeds.append(token_embedding) |
|
|
|
|
|
neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device) |
|
neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device) |
|
neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device) |
|
|
|
|
|
neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True) |
|
neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] |
|
|
|
|
|
neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True) |
|
neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] |
|
negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] |
|
|
|
neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] |
|
neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) |
|
|
|
for z in range(len(neg_weight_tensor)): |
|
if neg_weight_tensor[z] != 1.0: |
|
neg_token_embedding[z] = ( |
|
neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] |
|
) |
|
|
|
neg_token_embedding = neg_token_embedding.unsqueeze(0) |
|
neg_embeds.append(neg_token_embedding) |
|
|
|
prompt_embeds = torch.cat(embeds, dim=1) |
|
negative_prompt_embeds = torch.cat(neg_embeds, dim=1) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
seq_len = negative_prompt_embeds.shape[1] |
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
|
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
|
|
if pipe.text_encoder is not None: |
|
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(pipe.text_encoder, lora_scale) |
|
|
|
if pipe.text_encoder_2 is not None: |
|
if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: |
|
|
|
unscale_lora_layers(pipe.text_encoder_2, lora_scale) |
|
|
|
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds |
|
|
|
|
|
class ModText2ImgPipeline(StableDiffusionXLPipeline): |
|
|
|
def encode_prompt(self, prompt, num_images_per_prompt, negative_prompt, lora_scale, clip_skip, **kwags): |
|
return get_weighted_text_embeddings_sdxl( |
|
pipe=self, |
|
prompt=prompt, |
|
neg_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
clip_skip=clip_skip, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
|
|
pipe = ModText2ImgPipeline.from_pretrained("KBlueLeaf/Kohaku-XL-Zeta", torch_dtype=torch.float16) |
|
pipe.fuse_qkv_projections() |
|
pipe.set_progress_bar_config(leave=False) |
|
pipe.unet.to(memory_format=torch.channels_last) |
|
pipe.vae.to(memory_format=torch.channels_last) |
|
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) |
|
|
|
device="cuda" |
|
pipe = pipe.to(device) |
|
PRESET_Q = "masterpiece, best quality, great quality, good quality, newest" |
|
NEGATIVE_PROMPT = "lowres, worst quality, low quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, worst quality displeasing, bad quality" |
|
|
|
@torch.inference_mode |
|
def generate(prompt, preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=7.0, randomize_seed=True, seed=42): |
|
prompt = prompt.strip() + ", " + preset.strip() |
|
negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None |
|
|
|
print(f"Initial seed for prompt `{prompt}`", seed) |
|
if(randomize_seed): |
|
seed = random.randint(0, 9007199254740991) |
|
|
|
if not prompt and not negative_prompt: |
|
guidance_scale = 0.0 |
|
|
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
image = pipe(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=28).images |
|
return image |
|
|
|
|
|
with open("prompts.csv") as f: |
|
prompts = f.readlines() |
|
|
|
|
|
generate("") |
|
|
|
|
|
for i, prompt in tqdm(enumerate(prompts), total=len(prompts)): |
|
try: |
|
image = generate(prompt.strip())[0] |
|
fn = f"kohakuzeta/{i+1}.webp" |
|
image.save(fn, "webp", quality=95) |
|
except Exception as e: |
|
print(f"Error at prompt {i+1}: {e}") |
|
continue |