import torch import random from tqdm.rich import tqdm # ---------------------------------------------------------------------- import torch import random from typing import Optional import PIL from transformers import CLIPTokenizer from diffusers.loaders import ( StableDiffusionXLLoraLoaderMixin, TextualInversionLoaderMixin, ) from diffusers.models.lora import adjust_lora_scale_text_encoder from diffusers.utils import ( USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers, ) from diffusers.pipelines import StableDiffusionXLPipeline logger = logging.get_logger(__name__) # pylint: disable=invalid-name def parse_prompt_attention(text): """ Parses a string with attention tokens and returns a list of pairs: text and its associated weight. Accepted tokens are: (abc) - increases attention to abc by a multiplier of 1.1 (abc:3.12) - increases attention to abc by a multiplier of 3.12 [abc] - decreases attention to abc by a multiplier of 1.1 \\( - literal character '(' \\[ - literal character '[' \\) - literal character ')' \\] - literal character ']' \\ - literal character '\' anything else - just text >>> parse_prompt_attention('normal text') [['normal text', 1.0]] >>> parse_prompt_attention('an (important) word') [['an ', 1.0], ['important', 1.1], [' word', 1.0]] >>> parse_prompt_attention('(unbalanced') [['unbalanced', 1.1]] >>> parse_prompt_attention('\\(literal\\]') [['(literal]', 1.0]] >>> parse_prompt_attention('(unnecessary)(parens)') [['unnecessaryparens', 1.1]] >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).') [['a ', 1.0], ['house', 1.5730000000000004], [' ', 1.1], ['on', 1.0], [' a ', 1.1], ['hill', 0.55], [', sun, ', 1.1], ['sky', 1.4641000000000006], ['.', 1.1]] """ import re re_attention = re.compile( r""" \{|\}|\\\(|\\\)|\\\[|\\]|\\\\|\\|\(|\[|:([+-]?[.\d]+)\)| \)|]|[^\\()\[\]:]+|: """, re.X, ) re_break = re.compile(r"\s*\bBREAK\b\s*", re.S) res = [] round_brackets = [] square_brackets = [] curly_brackets = [] round_bracket_multiplier = 1.05 curly_bracket_multiplier = 1.05 square_bracket_multiplier = 1 / 1.05 def multiply_range(start_position, multiplier): for p in range(start_position, len(res)): res[p][1] *= multiplier for m in re_attention.finditer(text): text = m.group(0) weight = m.group(1) if text.startswith("\\"): res.append([text[1:], 1.0]) elif text == "(": round_brackets.append(len(res)) elif text == "{": curly_brackets.append(len(res)) elif text == "[": square_brackets.append(len(res)) elif weight is not None and len(round_brackets) > 0: multiply_range(round_brackets.pop(), float(weight)) elif text == ")" and len(round_brackets) > 0: multiply_range(round_brackets.pop(), round_bracket_multiplier) elif text == "}" and len(round_brackets) > 0: multiply_range(curly_brackets.pop(), curly_bracket_multiplier) elif text == "]" and len(square_brackets) > 0: multiply_range(square_brackets.pop(), square_bracket_multiplier) else: parts = re.split(re_break, text) for i, part in enumerate(parts): if i > 0: res.append(["BREAK", -1]) res.append([part, 1.0]) for pos in round_brackets: multiply_range(pos, round_bracket_multiplier) for pos in square_brackets: multiply_range(pos, square_bracket_multiplier) if len(res) == 0: res = [["", 1.0]] # merge runs of identical weights i = 0 while i + 1 < len(res): if res[i][1] == res[i + 1][1]: res[i][0] += res[i + 1][0] res.pop(i + 1) else: i += 1 return res def get_prompts_tokens_with_weights(clip_tokenizer: CLIPTokenizer, prompt: str): """ Get prompt token ids and weights, this function works for both prompt and negative prompt Args: pipe (CLIPTokenizer) A CLIPTokenizer prompt (str) A prompt string with weights Returns: text_tokens (list) A list contains token ids text_weight (list) A list contains the correspondent weight of token ids Example: import torch from transformers import CLIPTokenizer clip_tokenizer = CLIPTokenizer.from_pretrained( "stablediffusionapi/deliberate-v2" , subfolder = "tokenizer" , dtype = torch.float16 ) token_id_list, token_weight_list = get_prompts_tokens_with_weights( clip_tokenizer = clip_tokenizer ,prompt = "a (red:1.5) cat"*70 ) """ texts_and_weights = parse_prompt_attention(prompt) text_tokens, text_weights = [], [] for word, weight in texts_and_weights: # tokenize and discard the starting and the ending token token = clip_tokenizer(word, truncation=False).input_ids[1:-1] # so that tokenize whatever length prompt # the returned token is a 1d list: [320, 1125, 539, 320] # merge the new tokens to the all tokens holder: text_tokens text_tokens = [*text_tokens, *token] # each token chunk will come with one weight, like ['red cat', 2.0] # need to expand weight for each token. chunk_weights = [weight] * len(token) # append the weight back to the weight holder: text_weights text_weights = [*text_weights, *chunk_weights] return text_tokens, text_weights def group_tokens_and_weights(token_ids: list, weights: list, pad_last_block=False): """ Produce tokens and weights in groups and pad the missing tokens Args: token_ids (list) The token ids from tokenizer weights (list) The weights list from function get_prompts_tokens_with_weights pad_last_block (bool) Control if fill the last token list to 75 tokens with eos Returns: new_token_ids (2d list) new_weights (2d list) Example: token_groups,weight_groups = group_tokens_and_weights( token_ids = token_id_list , weights = token_weight_list ) """ bos, eos = 49406, 49407 # this will be a 2d list new_token_ids = [] new_weights = [] while len(token_ids) >= 75: # get the first 75 tokens head_75_tokens = [token_ids.pop(0) for _ in range(75)] head_75_weights = [weights.pop(0) for _ in range(75)] # extract token ids and weights temp_77_token_ids = [bos] + head_75_tokens + [eos] temp_77_weights = [1.0] + head_75_weights + [1.0] # add 77 token and weights chunk to the holder list new_token_ids.append(temp_77_token_ids) new_weights.append(temp_77_weights) # padding the left if len(token_ids) > 0: padding_len = 75 - len(token_ids) if pad_last_block else 0 temp_77_token_ids = [bos] + token_ids + [eos] * padding_len + [eos] new_token_ids.append(temp_77_token_ids) temp_77_weights = [1.0] + weights + [1.0] * padding_len + [1.0] new_weights.append(temp_77_weights) return new_token_ids, new_weights def get_weighted_text_embeddings_sdxl( pipe, prompt: str = "", prompt_2: str = None, neg_prompt: str = "", neg_prompt_2: str = None, num_images_per_prompt: int = 1, device: Optional[torch.device] = None, clip_skip: Optional[int] = None, lora_scale: Optional[int] = None, ): """ This function can process long prompt with weights, no length limitation for Stable Diffusion XL Args: pipe (StableDiffusionPipeline) prompt (str) prompt_2 (str) neg_prompt (str) neg_prompt_2 (str) num_images_per_prompt (int) device (torch.device) clip_skip (int) Returns: prompt_embeds (torch.Tensor) neg_prompt_embeds (torch.Tensor) """ device = device or pipe._execution_device # set lora scale so that monkey patched LoRA # function of text encoder can correctly access it if lora_scale is not None and isinstance(pipe, StableDiffusionXLLoraLoaderMixin): pipe._lora_scale = lora_scale # dynamically adjust the LoRA scale if pipe.text_encoder is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale) else: scale_lora_layers(pipe.text_encoder, lora_scale) if pipe.text_encoder_2 is not None: if not USE_PEFT_BACKEND: adjust_lora_scale_text_encoder(pipe.text_encoder_2, lora_scale) else: scale_lora_layers(pipe.text_encoder_2, lora_scale) if prompt_2: prompt = f"{prompt} {prompt_2}" if neg_prompt_2: neg_prompt = f"{neg_prompt} {neg_prompt_2}" prompt_t1 = prompt_t2 = prompt neg_prompt_t1 = neg_prompt_t2 = neg_prompt if isinstance(pipe, TextualInversionLoaderMixin): prompt_t1 = pipe.maybe_convert_prompt(prompt_t1, pipe.tokenizer) neg_prompt_t1 = pipe.maybe_convert_prompt(neg_prompt_t1, pipe.tokenizer) prompt_t2 = pipe.maybe_convert_prompt(prompt_t2, pipe.tokenizer_2) neg_prompt_t2 = pipe.maybe_convert_prompt(neg_prompt_t2, pipe.tokenizer_2) eos = pipe.tokenizer.eos_token_id # tokenizer 1 prompt_tokens, prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, prompt_t1) neg_prompt_tokens, neg_prompt_weights = get_prompts_tokens_with_weights(pipe.tokenizer, neg_prompt_t1) # tokenizer 2 prompt_tokens_2, prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, prompt_t2) neg_prompt_tokens_2, neg_prompt_weights_2 = get_prompts_tokens_with_weights(pipe.tokenizer_2, neg_prompt_t2) # padding the shorter one for prompt set 1 prompt_token_len = len(prompt_tokens) neg_prompt_token_len = len(neg_prompt_tokens) if prompt_token_len > neg_prompt_token_len: # padding the neg_prompt with eos token neg_prompt_tokens = neg_prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) neg_prompt_weights = neg_prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) else: # padding the prompt prompt_tokens = prompt_tokens + [eos] * abs(prompt_token_len - neg_prompt_token_len) prompt_weights = prompt_weights + [1.0] * abs(prompt_token_len - neg_prompt_token_len) # padding the shorter one for token set 2 prompt_token_len_2 = len(prompt_tokens_2) neg_prompt_token_len_2 = len(neg_prompt_tokens_2) if prompt_token_len_2 > neg_prompt_token_len_2: # padding the neg_prompt with eos token neg_prompt_tokens_2 = neg_prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) neg_prompt_weights_2 = neg_prompt_weights_2 + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) else: # padding the prompt prompt_tokens_2 = prompt_tokens_2 + [eos] * abs(prompt_token_len_2 - neg_prompt_token_len_2) prompt_weights_2 = prompt_weights + [1.0] * abs(prompt_token_len_2 - neg_prompt_token_len_2) embeds = [] neg_embeds = [] prompt_token_groups, prompt_weight_groups = group_tokens_and_weights(prompt_tokens.copy(), prompt_weights.copy()) neg_prompt_token_groups, neg_prompt_weight_groups = group_tokens_and_weights( neg_prompt_tokens.copy(), neg_prompt_weights.copy() ) prompt_token_groups_2, prompt_weight_groups_2 = group_tokens_and_weights( prompt_tokens_2.copy(), prompt_weights_2.copy() ) neg_prompt_token_groups_2, neg_prompt_weight_groups_2 = group_tokens_and_weights( neg_prompt_tokens_2.copy(), neg_prompt_weights_2.copy() ) # get prompt embeddings one by one is not working. for i in range(len(prompt_token_groups)): # get positive prompt embeddings with weights token_tensor = torch.tensor([prompt_token_groups[i]], dtype=torch.long, device=device) weight_tensor = torch.tensor(prompt_weight_groups[i], dtype=torch.float16, device=device) token_tensor_2 = torch.tensor([prompt_token_groups_2[i]], dtype=torch.long, device=device) # use first text encoder prompt_embeds_1 = pipe.text_encoder(token_tensor.to(device), output_hidden_states=True) # use second text encoder prompt_embeds_2 = pipe.text_encoder_2(token_tensor_2.to(device), output_hidden_states=True) pooled_prompt_embeds = prompt_embeds_2[0] if clip_skip is None: prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-2] prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-2] else: # "2" because SDXL always indexes from the penultimate layer. prompt_embeds_1_hidden_states = prompt_embeds_1.hidden_states[-(clip_skip + 2)] prompt_embeds_2_hidden_states = prompt_embeds_2.hidden_states[-(clip_skip + 2)] prompt_embeds_list = [prompt_embeds_1_hidden_states, prompt_embeds_2_hidden_states] token_embedding = torch.concat(prompt_embeds_list, dim=-1).squeeze(0) for j in range(len(weight_tensor)): if weight_tensor[j] != 1.0: token_embedding[j] = ( token_embedding[-1] + (token_embedding[j] - token_embedding[-1]) * weight_tensor[j] ) token_embedding = token_embedding.unsqueeze(0) embeds.append(token_embedding) # get negative prompt embeddings with weights neg_token_tensor = torch.tensor([neg_prompt_token_groups[i]], dtype=torch.long, device=device) neg_token_tensor_2 = torch.tensor([neg_prompt_token_groups_2[i]], dtype=torch.long, device=device) neg_weight_tensor = torch.tensor(neg_prompt_weight_groups[i], dtype=torch.float16, device=device) # use first text encoder neg_prompt_embeds_1 = pipe.text_encoder(neg_token_tensor.to(device), output_hidden_states=True) neg_prompt_embeds_1_hidden_states = neg_prompt_embeds_1.hidden_states[-2] # use second text encoder neg_prompt_embeds_2 = pipe.text_encoder_2(neg_token_tensor_2.to(device), output_hidden_states=True) neg_prompt_embeds_2_hidden_states = neg_prompt_embeds_2.hidden_states[-2] negative_pooled_prompt_embeds = neg_prompt_embeds_2[0] neg_prompt_embeds_list = [neg_prompt_embeds_1_hidden_states, neg_prompt_embeds_2_hidden_states] neg_token_embedding = torch.concat(neg_prompt_embeds_list, dim=-1).squeeze(0) for z in range(len(neg_weight_tensor)): if neg_weight_tensor[z] != 1.0: neg_token_embedding[z] = ( neg_token_embedding[-1] + (neg_token_embedding[z] - neg_token_embedding[-1]) * neg_weight_tensor[z] ) neg_token_embedding = neg_token_embedding.unsqueeze(0) neg_embeds.append(neg_token_embedding) prompt_embeds = torch.cat(embeds, dim=1) negative_prompt_embeds = torch.cat(neg_embeds, dim=1) bs_embed, seq_len, _ = prompt_embeds.shape # duplicate text embeddings for each generation per prompt, using mps friendly method prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) seq_len = negative_prompt_embeds.shape[1] negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( bs_embed * num_images_per_prompt, -1 ) negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1).view( bs_embed * num_images_per_prompt, -1 ) if pipe.text_encoder is not None: if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(pipe.text_encoder, lora_scale) if pipe.text_encoder_2 is not None: if isinstance(pipe, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: # Retrieve the original scale by scaling back the LoRA layers unscale_lora_layers(pipe.text_encoder_2, lora_scale) return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds class ModText2ImgPipeline(StableDiffusionXLPipeline): def encode_prompt(self, prompt, num_images_per_prompt, negative_prompt, lora_scale, clip_skip, **kwags): return get_weighted_text_embeddings_sdxl( pipe=self, prompt=prompt, neg_prompt=negative_prompt, num_images_per_prompt=num_images_per_prompt, clip_skip=clip_skip, lora_scale=lora_scale, ) # ---------------------------------------------------------------------- pipe = ModText2ImgPipeline.from_pretrained("KBlueLeaf/Kohaku-XL-Zeta", torch_dtype=torch.float16) pipe.fuse_qkv_projections() pipe.set_progress_bar_config(leave=False) pipe.unet.to(memory_format=torch.channels_last) pipe.vae.to(memory_format=torch.channels_last) pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) device="cuda" pipe = pipe.to(device) PRESET_Q = "masterpiece, best quality, great quality, good quality, newest" NEGATIVE_PROMPT = "lowres, worst quality, low quality, displeasing, bad anatomy, text, error, extra digit, cropped, error, fewer, extra, missing, worst quality, jpeg artifacts, censored, worst quality displeasing, bad quality" @torch.inference_mode def generate(prompt, preset=PRESET_Q, h=1216, w=832, negative_prompt=NEGATIVE_PROMPT, guidance_scale=7.0, randomize_seed=True, seed=42): prompt = prompt.strip() + ", " + preset.strip() negative_prompt = negative_prompt.strip() if negative_prompt and negative_prompt.strip() else None print(f"Initial seed for prompt `{prompt}`", seed) if(randomize_seed): seed = random.randint(0, 9007199254740991) if not prompt and not negative_prompt: guidance_scale = 0.0 generator = torch.Generator(device="cuda").manual_seed(seed) image = pipe(prompt, height=h, width=w, negative_prompt=negative_prompt, guidance_scale=guidance_scale, generator=generator, num_inference_steps=28).images return image # read prompts for testing with open("prompts.csv") as f: prompts = f.readlines() # warmup generate("") # generate images for i, prompt in tqdm(enumerate(prompts), total=len(prompts)): try: image = generate(prompt.strip())[0] fn = f"kohakuzeta/{i+1}.webp" image.save(fn, "webp", quality=95) except Exception as e: print(f"Error at prompt {i+1}: {e}") continue