Upload 2 files
Browse files- .gitattributes +1 -0
- ocr_vqa_200k_dataset.json +3 -0
- ocr_vqa_200k_loadDataset.py +100 -0
.gitattributes
CHANGED
@@ -73,3 +73,4 @@ imgs-6bcad3d.tar filter=lfs diff=lfs merge=lfs -text
|
|
73 |
upscaled.tar filter=lfs diff=lfs merge=lfs -text
|
74 |
fin-twref-images-7bca4c.tar filter=lfs diff=lfs merge=lfs -text
|
75 |
s5cmd filter=lfs diff=lfs merge=lfs -text
|
|
|
|
73 |
upscaled.tar filter=lfs diff=lfs merge=lfs -text
|
74 |
fin-twref-images-7bca4c.tar filter=lfs diff=lfs merge=lfs -text
|
75 |
s5cmd filter=lfs diff=lfs merge=lfs -text
|
76 |
+
ocr_vqa_200k_dataset.json filter=lfs diff=lfs merge=lfs -text
|
ocr_vqa_200k_dataset.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c9d2bb4c67462e2649be5099a3b790c95ad073fe46243310b79a1d4c8bee75ed
|
3 |
+
size 112962519
|
ocr_vqa_200k_loadDataset.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import urllib.request as ureq
|
5 |
+
import pdb
|
6 |
+
|
7 |
+
download=1 # 0 if images are already downloaded
|
8 |
+
|
9 |
+
###############################################################
|
10 |
+
######################### load dataset json file ###############
|
11 |
+
################################################################
|
12 |
+
with open('dataset.json', 'r') as fp:
|
13 |
+
data = json.load(fp)
|
14 |
+
|
15 |
+
## dictionary data contains image URL, questions and answers ##
|
16 |
+
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
################################################################
|
21 |
+
############### Script for downloading images ##################
|
22 |
+
################################################################
|
23 |
+
## Make a directory images to store all images there ##########
|
24 |
+
if download == 1:
|
25 |
+
os.mkdir('./images')
|
26 |
+
for k in data.keys():
|
27 |
+
ext=os.path.splitext(data[k]['imageURL'])[1]
|
28 |
+
outputFile='images/%s%s'%(k,ext)
|
29 |
+
pdb.set_trace()
|
30 |
+
ureq.urlretrieve(data[k]['imageURL'],outputFile)
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
#################################################################
|
35 |
+
################### Example of data access #####################
|
36 |
+
################################################################
|
37 |
+
for k in data.keys():
|
38 |
+
ext=os.path.splitext(data[k]['imageURL'])[1]
|
39 |
+
imageFile='images/%s%s'%(k,ext)
|
40 |
+
|
41 |
+
print('************************')
|
42 |
+
print('Image file: %s'%(imageFile))
|
43 |
+
print('List of questions:')
|
44 |
+
print(data[k]['questions'])
|
45 |
+
print('List of corresponding answers:')
|
46 |
+
print(data[k]['answers'])
|
47 |
+
print('Use this image as training (1), validation (2) or testing (3): %s'%(data[k]['split']))
|
48 |
+
print('*************************')
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
######################################################################
|
55 |
+
########################### Get dataset stats ########################
|
56 |
+
######################################################################
|
57 |
+
genSet=set()
|
58 |
+
for k in data.keys():
|
59 |
+
genSet.add(data[k]['genre'])
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
numImages=len(data.keys())
|
64 |
+
numQApairs=0
|
65 |
+
numWordsInQuestions=0
|
66 |
+
numWordsInAnswers=0
|
67 |
+
numQuestionsPerImage=0
|
68 |
+
ANS=set() # Set of unique answers
|
69 |
+
authorSet=set()
|
70 |
+
bookSet=set()
|
71 |
+
|
72 |
+
|
73 |
+
for imgId in data.keys():
|
74 |
+
numQApairs = numQApairs+len(data[imgId]['questions'])
|
75 |
+
numQuestionsPerImage = numQuestionsPerImage + len(data[imgId]['questions'])
|
76 |
+
authorSet.add(data[imgId]['authorName'])
|
77 |
+
bookSet.add(data[imgId]['title'])
|
78 |
+
|
79 |
+
for qno in range(len(data[imgId]['questions'])):
|
80 |
+
ques=data[imgId]['questions'][qno]
|
81 |
+
numWordsInQuestions = numWordsInQuestions+len(ques.split())
|
82 |
+
for ano in range(len(data[imgId]['answers'])):
|
83 |
+
ans=data[imgId]['answers'][ano]
|
84 |
+
ANS.add(ans)
|
85 |
+
numWordsInAnswers = numWordsInAnswers+len(str(ans).split())
|
86 |
+
|
87 |
+
|
88 |
+
|
89 |
+
print("--------------------------------")
|
90 |
+
print("Number of Images: %d" %(numImages))
|
91 |
+
print("Number of QA pairs: %d" %(numQApairs))
|
92 |
+
print("Number of unique author: %d" %(len(authorSet)))
|
93 |
+
print("Number of unique title: %d" %(len(bookSet)))
|
94 |
+
print("Number of unique answers: %d" %(len(ANS)))
|
95 |
+
print("Number of unique genre: %d" %(len(genSet)))
|
96 |
+
print("Average question length (in words): %.2f" %(float(numWordsInQuestions)/float(numQApairs)))
|
97 |
+
print("Average answer length (in words): %.2f" %(float(numWordsInAnswers)/float(numQApairs)))
|
98 |
+
print("Average number of questions per image: %.2f" %(float(numQuestionsPerImage)/float(numImages)))
|
99 |
+
print("--------------------------------")
|
100 |
+
|