Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
acceptability-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 7,140 Bytes
d1591fc b6b76b7 d1591fc b6b76b7 d1591fc 7f908d2 d1591fc b6b76b7 d1591fc b6b76b7 d1591fc b6b76b7 d1591fc b6b76b7 d1591fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""BLiMP dataset with minimal pairs of grammatical phenomena in English."""
import json
import datasets
_CITATION = """
@article{warstadt2019blimp,
title={BLiMP: A Benchmark of Linguistic Minimal Pairs for English},
author={Warstadt, Alex and Parrish, Alicia and Liu, Haokun and Mohananey, Anhad and Peng, Wei, and Wang, Sheng-Fu and Bowman, Samuel R},
journal={arXiv preprint arXiv:1912.00582},
year={2019}
}
"""
_DESCRIPTION = """
BLiMP is a challenge set for evaluating what language models (LMs) know about
major grammatical phenomena in English. BLiMP consists of 67 sub-datasets, each
containing 1000 minimal pairs isolating specific contrasts in syntax,
morphology, or semantics. The data is automatically generated according to
expert-crafted grammars.
"""
_PROJECT_URL = "https://github.com/alexwarstadt/blimp/tree/master/"
_DOWNLOAD_URL = "https://raw.githubusercontent.com/alexwarstadt/blimp/master/"
class BlimpConfig(datasets.BuilderConfig):
"""BuilderConfig for Blimp."""
def __init__(self, name, version=datasets.Version("0.1.0"), **kwargs):
"""BuilderConfig for Blimp.
Args:
name (str): UID of the linguistic paradigm
**kwargs: keyword arguments forwarded to super.
"""
description = _DESCRIPTION
description += f"This configuration includes the paradigm {name}."
super().__init__(name=name, description=description, version=version, **kwargs)
class Blimp(datasets.GeneratorBasedBuilder):
"""Minimal grammatical and ungrammatical pairs of 67 linguistic paradigms."""
all_paradigms = [
"adjunct_island",
"anaphor_gender_agreement",
"anaphor_number_agreement",
"animate_subject_passive",
"animate_subject_trans",
"causative",
"complex_NP_island",
"coordinate_structure_constraint_complex_left_branch",
"coordinate_structure_constraint_object_extraction",
"determiner_noun_agreement_1",
"determiner_noun_agreement_2",
"determiner_noun_agreement_irregular_1",
"determiner_noun_agreement_irregular_2",
"determiner_noun_agreement_with_adj_2",
"determiner_noun_agreement_with_adj_irregular_1",
"determiner_noun_agreement_with_adj_irregular_2",
"determiner_noun_agreement_with_adjective_1",
"distractor_agreement_relational_noun",
"distractor_agreement_relative_clause",
"drop_argument",
"ellipsis_n_bar_1",
"ellipsis_n_bar_2",
"existential_there_object_raising",
"existential_there_quantifiers_1",
"existential_there_quantifiers_2",
"existential_there_subject_raising",
"expletive_it_object_raising",
"inchoative",
"intransitive",
"irregular_past_participle_adjectives",
"irregular_past_participle_verbs",
"irregular_plural_subject_verb_agreement_1",
"irregular_plural_subject_verb_agreement_2",
"left_branch_island_echo_question",
"left_branch_island_simple_question",
"matrix_question_npi_licensor_present",
"npi_present_1",
"npi_present_2",
"only_npi_licensor_present",
"only_npi_scope",
"passive_1",
"passive_2",
"principle_A_c_command",
"principle_A_case_1",
"principle_A_case_2",
"principle_A_domain_1",
"principle_A_domain_2",
"principle_A_domain_3",
"principle_A_reconstruction",
"regular_plural_subject_verb_agreement_1",
"regular_plural_subject_verb_agreement_2",
"sentential_negation_npi_licensor_present",
"sentential_negation_npi_scope",
"sentential_subject_island",
"superlative_quantifiers_1",
"superlative_quantifiers_2",
"tough_vs_raising_1",
"tough_vs_raising_2",
"transitive",
"wh_island",
"wh_questions_object_gap",
"wh_questions_subject_gap",
"wh_questions_subject_gap_long_distance",
"wh_vs_that_no_gap",
"wh_vs_that_no_gap_long_distance",
"wh_vs_that_with_gap",
"wh_vs_that_with_gap_long_distance",
]
BUILDER_CONFIGS = [BlimpConfig(paradigm) for paradigm in all_paradigms]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"sentence_good": datasets.Value("string"),
"sentence_bad": datasets.Value("string"),
"field": datasets.Value("string"),
"linguistics_term": datasets.Value("string"),
"UID": datasets.Value("string"),
"simple_LM_method": datasets.Value("bool"),
"one_prefix_method": datasets.Value("bool"),
"two_prefix_method": datasets.Value("bool"),
"lexically_identical": datasets.Value("bool"),
"pair_id": datasets.Value("int32"),
}
),
homepage=_PROJECT_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
download_urls = _DOWNLOAD_URL + f"data/{self.config.name}.jsonl"
downloaded_file = dl_manager.download_and_extract(download_urls)
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_file})]
def _generate_examples(self, filepath):
"""Yields examples."""
with open(filepath, "r", encoding="utf-8") as f:
for line in f:
line_dict = json.loads(line)
id_ = line_dict["UID"] + "_" + line_dict["pairID"]
feats = {
"sentence_good": line_dict["sentence_good"],
"sentence_bad": line_dict["sentence_bad"],
"field": line_dict["field"],
"linguistics_term": line_dict["linguistics_term"],
"UID": line_dict["UID"],
"simple_LM_method": line_dict["simple_LM_method"],
"one_prefix_method": line_dict["one_prefix_method"],
"two_prefix_method": line_dict["two_prefix_method"],
"lexically_identical": line_dict["lexically_identical"],
"pair_id": int(line_dict["pairID"]),
}
yield id_, feats
|