parquet-converter commited on
Commit
1c6ba6e
1 Parent(s): 358bc66

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,27 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bin.* filter=lfs diff=lfs merge=lfs -text
5
- *.bz2 filter=lfs diff=lfs merge=lfs -text
6
- *.ftz filter=lfs diff=lfs merge=lfs -text
7
- *.gz filter=lfs diff=lfs merge=lfs -text
8
- *.h5 filter=lfs diff=lfs merge=lfs -text
9
- *.joblib filter=lfs diff=lfs merge=lfs -text
10
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.model filter=lfs diff=lfs merge=lfs -text
12
- *.msgpack filter=lfs diff=lfs merge=lfs -text
13
- *.onnx filter=lfs diff=lfs merge=lfs -text
14
- *.ot filter=lfs diff=lfs merge=lfs -text
15
- *.parquet filter=lfs diff=lfs merge=lfs -text
16
- *.pb filter=lfs diff=lfs merge=lfs -text
17
- *.pt filter=lfs diff=lfs merge=lfs -text
18
- *.pth filter=lfs diff=lfs merge=lfs -text
19
- *.rar filter=lfs diff=lfs merge=lfs -text
20
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
- *.tar.* filter=lfs diff=lfs merge=lfs -text
22
- *.tflite filter=lfs diff=lfs merge=lfs -text
23
- *.tgz filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,916 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - other
4
- language_creators:
5
- - other
6
- language:
7
- - en
8
- license:
9
- - cc-by-4.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 10K<n<100K
14
- source_datasets:
15
- - original
16
- task_categories:
17
- - text-classification
18
- task_ids:
19
- - acceptability-classification
20
- - natural-language-inference
21
- - semantic-similarity-scoring
22
- - sentiment-classification
23
- - text-scoring
24
- paperswithcode_id: glue
25
- pretty_name: GLUE (General Language Understanding Evaluation benchmark)
26
- train-eval-index:
27
- - config: cola
28
- task: text-classification
29
- task_id: binary_classification
30
- splits:
31
- train_split: train
32
- eval_split: validation
33
- col_mapping:
34
- sentence: text
35
- label: target
36
- - config: sst2
37
- task: text-classification
38
- task_id: binary_classification
39
- splits:
40
- train_split: train
41
- eval_split: validation
42
- col_mapping:
43
- sentence: text
44
- label: target
45
- - config: mrpc
46
- task: text-classification
47
- task_id: natural_language_inference
48
- splits:
49
- train_split: train
50
- eval_split: validation
51
- col_mapping:
52
- sentence1: text1
53
- sentence2: text2
54
- label: target
55
- - config: qqp
56
- task: text-classification
57
- task_id: natural_language_inference
58
- splits:
59
- train_split: train
60
- eval_split: validation
61
- col_mapping:
62
- question1: text1
63
- question2: text2
64
- label: target
65
- - config: stsb
66
- task: text-classification
67
- task_id: natural_language_inference
68
- splits:
69
- train_split: train
70
- eval_split: validation
71
- col_mapping:
72
- sentence1: text1
73
- sentence2: text2
74
- label: target
75
- - config: mnli
76
- task: text-classification
77
- task_id: natural_language_inference
78
- splits:
79
- train_split: train
80
- eval_split: validation_matched
81
- col_mapping:
82
- premise: text1
83
- hypothesis: text2
84
- label: target
85
- - config: mnli_mismatched
86
- task: text-classification
87
- task_id: natural_language_inference
88
- splits:
89
- train_split: train
90
- eval_split: validation
91
- col_mapping:
92
- premise: text1
93
- hypothesis: text2
94
- label: target
95
- - config: mnli_matched
96
- task: text-classification
97
- task_id: natural_language_inference
98
- splits:
99
- train_split: train
100
- eval_split: validation
101
- col_mapping:
102
- premise: text1
103
- hypothesis: text2
104
- label: target
105
- - config: qnli
106
- task: text-classification
107
- task_id: natural_language_inference
108
- splits:
109
- train_split: train
110
- eval_split: validation
111
- col_mapping:
112
- question: text1
113
- sentence: text2
114
- label: target
115
- - config: rte
116
- task: text-classification
117
- task_id: natural_language_inference
118
- splits:
119
- train_split: train
120
- eval_split: validation
121
- col_mapping:
122
- sentence1: text1
123
- sentence2: text2
124
- label: target
125
- - config: wnli
126
- task: text-classification
127
- task_id: natural_language_inference
128
- splits:
129
- train_split: train
130
- eval_split: validation
131
- col_mapping:
132
- sentence1: text1
133
- sentence2: text2
134
- label: target
135
- configs:
136
- - ax
137
- - cola
138
- - mnli
139
- - mnli_matched
140
- - mnli_mismatched
141
- - mrpc
142
- - qnli
143
- - qqp
144
- - rte
145
- - sst2
146
- - stsb
147
- - wnli
148
- tags:
149
- - qa-nli
150
- - coreference-nli
151
- - paraphrase-identification
152
- dataset_info:
153
- - config_name: cola
154
- features:
155
- - name: sentence
156
- dtype: string
157
- - name: label
158
- dtype:
159
- class_label:
160
- names:
161
- 0: unacceptable
162
- 1: acceptable
163
- - name: idx
164
- dtype: int32
165
- splits:
166
- - name: test
167
- num_bytes: 61049
168
- num_examples: 1063
169
- - name: train
170
- num_bytes: 489149
171
- num_examples: 8551
172
- - name: validation
173
- num_bytes: 60850
174
- num_examples: 1043
175
- download_size: 376971
176
- dataset_size: 611048
177
- - config_name: sst2
178
- features:
179
- - name: sentence
180
- dtype: string
181
- - name: label
182
- dtype:
183
- class_label:
184
- names:
185
- 0: negative
186
- 1: positive
187
- - name: idx
188
- dtype: int32
189
- splits:
190
- - name: test
191
- num_bytes: 217556
192
- num_examples: 1821
193
- - name: train
194
- num_bytes: 4715283
195
- num_examples: 67349
196
- - name: validation
197
- num_bytes: 106692
198
- num_examples: 872
199
- download_size: 7439277
200
- dataset_size: 5039531
201
- - config_name: mrpc
202
- features:
203
- - name: sentence1
204
- dtype: string
205
- - name: sentence2
206
- dtype: string
207
- - name: label
208
- dtype:
209
- class_label:
210
- names:
211
- 0: not_equivalent
212
- 1: equivalent
213
- - name: idx
214
- dtype: int32
215
- splits:
216
- - name: test
217
- num_bytes: 443498
218
- num_examples: 1725
219
- - name: train
220
- num_bytes: 946146
221
- num_examples: 3668
222
- - name: validation
223
- num_bytes: 106142
224
- num_examples: 408
225
- download_size: 1494541
226
- dataset_size: 1495786
227
- - config_name: qqp
228
- features:
229
- - name: question1
230
- dtype: string
231
- - name: question2
232
- dtype: string
233
- - name: label
234
- dtype:
235
- class_label:
236
- names:
237
- 0: not_duplicate
238
- 1: duplicate
239
- - name: idx
240
- dtype: int32
241
- splits:
242
- - name: train
243
- num_bytes: 50901116
244
- num_examples: 363846
245
- - name: validation
246
- num_bytes: 5653794
247
- num_examples: 40430
248
- - name: test
249
- num_bytes: 55171431
250
- num_examples: 390965
251
- download_size: 41696084
252
- dataset_size: 111726341
253
- - config_name: stsb
254
- features:
255
- - name: sentence1
256
- dtype: string
257
- - name: sentence2
258
- dtype: string
259
- - name: label
260
- dtype: float32
261
- - name: idx
262
- dtype: int32
263
- splits:
264
- - name: test
265
- num_bytes: 170847
266
- num_examples: 1379
267
- - name: train
268
- num_bytes: 758394
269
- num_examples: 5749
270
- - name: validation
271
- num_bytes: 217012
272
- num_examples: 1500
273
- download_size: 802872
274
- dataset_size: 1146253
275
- - config_name: mnli
276
- features:
277
- - name: premise
278
- dtype: string
279
- - name: hypothesis
280
- dtype: string
281
- - name: label
282
- dtype:
283
- class_label:
284
- names:
285
- 0: entailment
286
- 1: neutral
287
- 2: contradiction
288
- - name: idx
289
- dtype: int32
290
- splits:
291
- - name: test_matched
292
- num_bytes: 1854787
293
- num_examples: 9796
294
- - name: test_mismatched
295
- num_bytes: 1956866
296
- num_examples: 9847
297
- - name: train
298
- num_bytes: 74865118
299
- num_examples: 392702
300
- - name: validation_matched
301
- num_bytes: 1839926
302
- num_examples: 9815
303
- - name: validation_mismatched
304
- num_bytes: 1955384
305
- num_examples: 9832
306
- download_size: 312783507
307
- dataset_size: 82472081
308
- - config_name: mnli_mismatched
309
- features:
310
- - name: premise
311
- dtype: string
312
- - name: hypothesis
313
- dtype: string
314
- - name: label
315
- dtype:
316
- class_label:
317
- names:
318
- 0: entailment
319
- 1: neutral
320
- 2: contradiction
321
- - name: idx
322
- dtype: int32
323
- splits:
324
- - name: test
325
- num_bytes: 1956866
326
- num_examples: 9847
327
- - name: validation
328
- num_bytes: 1955384
329
- num_examples: 9832
330
- download_size: 312783507
331
- dataset_size: 3912250
332
- - config_name: mnli_matched
333
- features:
334
- - name: premise
335
- dtype: string
336
- - name: hypothesis
337
- dtype: string
338
- - name: label
339
- dtype:
340
- class_label:
341
- names:
342
- 0: entailment
343
- 1: neutral
344
- 2: contradiction
345
- - name: idx
346
- dtype: int32
347
- splits:
348
- - name: test
349
- num_bytes: 1854787
350
- num_examples: 9796
351
- - name: validation
352
- num_bytes: 1839926
353
- num_examples: 9815
354
- download_size: 312783507
355
- dataset_size: 3694713
356
- - config_name: qnli
357
- features:
358
- - name: question
359
- dtype: string
360
- - name: sentence
361
- dtype: string
362
- - name: label
363
- dtype:
364
- class_label:
365
- names:
366
- 0: entailment
367
- 1: not_entailment
368
- - name: idx
369
- dtype: int32
370
- splits:
371
- - name: test
372
- num_bytes: 1376516
373
- num_examples: 5463
374
- - name: train
375
- num_bytes: 25677924
376
- num_examples: 104743
377
- - name: validation
378
- num_bytes: 1371727
379
- num_examples: 5463
380
- download_size: 10627589
381
- dataset_size: 28426167
382
- - config_name: rte
383
- features:
384
- - name: sentence1
385
- dtype: string
386
- - name: sentence2
387
- dtype: string
388
- - name: label
389
- dtype:
390
- class_label:
391
- names:
392
- 0: entailment
393
- 1: not_entailment
394
- - name: idx
395
- dtype: int32
396
- splits:
397
- - name: test
398
- num_bytes: 975936
399
- num_examples: 3000
400
- - name: train
401
- num_bytes: 848888
402
- num_examples: 2490
403
- - name: validation
404
- num_bytes: 90911
405
- num_examples: 277
406
- download_size: 697150
407
- dataset_size: 1915735
408
- - config_name: wnli
409
- features:
410
- - name: sentence1
411
- dtype: string
412
- - name: sentence2
413
- dtype: string
414
- - name: label
415
- dtype:
416
- class_label:
417
- names:
418
- 0: not_entailment
419
- 1: entailment
420
- - name: idx
421
- dtype: int32
422
- splits:
423
- - name: test
424
- num_bytes: 37992
425
- num_examples: 146
426
- - name: train
427
- num_bytes: 107517
428
- num_examples: 635
429
- - name: validation
430
- num_bytes: 12215
431
- num_examples: 71
432
- download_size: 28999
433
- dataset_size: 157724
434
- - config_name: ax
435
- features:
436
- - name: premise
437
- dtype: string
438
- - name: hypothesis
439
- dtype: string
440
- - name: label
441
- dtype:
442
- class_label:
443
- names:
444
- 0: entailment
445
- 1: neutral
446
- 2: contradiction
447
- - name: idx
448
- dtype: int32
449
- splits:
450
- - name: test
451
- num_bytes: 238392
452
- num_examples: 1104
453
- download_size: 222257
454
- dataset_size: 238392
455
- ---
456
-
457
- # Dataset Card for GLUE
458
-
459
- ## Table of Contents
460
- - [Dataset Card for GLUE](#dataset-card-for-glue)
461
- - [Table of Contents](#table-of-contents)
462
- - [Dataset Description](#dataset-description)
463
- - [Dataset Summary](#dataset-summary)
464
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
465
- - [ax](#ax)
466
- - [cola](#cola)
467
- - [mnli](#mnli)
468
- - [mnli_matched](#mnli_matched)
469
- - [mnli_mismatched](#mnli_mismatched)
470
- - [mrpc](#mrpc)
471
- - [qnli](#qnli)
472
- - [qqp](#qqp)
473
- - [rte](#rte)
474
- - [sst2](#sst2)
475
- - [stsb](#stsb)
476
- - [wnli](#wnli)
477
- - [Languages](#languages)
478
- - [Dataset Structure](#dataset-structure)
479
- - [Data Instances](#data-instances)
480
- - [ax](#ax-1)
481
- - [cola](#cola-1)
482
- - [mnli](#mnli-1)
483
- - [mnli_matched](#mnli_matched-1)
484
- - [mnli_mismatched](#mnli_mismatched-1)
485
- - [mrpc](#mrpc-1)
486
- - [qnli](#qnli-1)
487
- - [qqp](#qqp-1)
488
- - [rte](#rte-1)
489
- - [sst2](#sst2-1)
490
- - [stsb](#stsb-1)
491
- - [wnli](#wnli-1)
492
- - [Data Fields](#data-fields)
493
- - [ax](#ax-2)
494
- - [cola](#cola-2)
495
- - [mnli](#mnli-2)
496
- - [mnli_matched](#mnli_matched-2)
497
- - [mnli_mismatched](#mnli_mismatched-2)
498
- - [mrpc](#mrpc-2)
499
- - [qnli](#qnli-2)
500
- - [qqp](#qqp-2)
501
- - [rte](#rte-2)
502
- - [sst2](#sst2-2)
503
- - [stsb](#stsb-2)
504
- - [wnli](#wnli-2)
505
- - [Data Splits](#data-splits)
506
- - [ax](#ax-3)
507
- - [cola](#cola-3)
508
- - [mnli](#mnli-3)
509
- - [mnli_matched](#mnli_matched-3)
510
- - [mnli_mismatched](#mnli_mismatched-3)
511
- - [mrpc](#mrpc-3)
512
- - [qnli](#qnli-3)
513
- - [qqp](#qqp-3)
514
- - [rte](#rte-3)
515
- - [sst2](#sst2-3)
516
- - [stsb](#stsb-3)
517
- - [wnli](#wnli-3)
518
- - [Dataset Creation](#dataset-creation)
519
- - [Curation Rationale](#curation-rationale)
520
- - [Source Data](#source-data)
521
- - [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
522
- - [Who are the source language producers?](#who-are-the-source-language-producers)
523
- - [Annotations](#annotations)
524
- - [Annotation process](#annotation-process)
525
- - [Who are the annotators?](#who-are-the-annotators)
526
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
527
- - [Considerations for Using the Data](#considerations-for-using-the-data)
528
- - [Social Impact of Dataset](#social-impact-of-dataset)
529
- - [Discussion of Biases](#discussion-of-biases)
530
- - [Other Known Limitations](#other-known-limitations)
531
- - [Additional Information](#additional-information)
532
- - [Dataset Curators](#dataset-curators)
533
- - [Licensing Information](#licensing-information)
534
- - [Citation Information](#citation-information)
535
- - [Contributions](#contributions)
536
-
537
- ## Dataset Description
538
-
539
- - **Homepage:** [https://nyu-mll.github.io/CoLA/](https://nyu-mll.github.io/CoLA/)
540
- - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
541
- - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
542
- - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
543
- - **Size of downloaded dataset files:** 955.33 MB
544
- - **Size of the generated dataset:** 229.68 MB
545
- - **Total amount of disk used:** 1185.01 MB
546
-
547
- ### Dataset Summary
548
-
549
- GLUE, the General Language Understanding Evaluation benchmark (https://gluebenchmark.com/) is a collection of resources for training, evaluating, and analyzing natural language understanding systems.
550
-
551
- ### Supported Tasks and Leaderboards
552
-
553
- The leaderboard for the GLUE benchmark can be found [at this address](https://gluebenchmark.com/). It comprises the following tasks:
554
-
555
- #### ax
556
-
557
- A manually-curated evaluation dataset for fine-grained analysis of system performance on a broad range of linguistic phenomena. This dataset evaluates sentence understanding through Natural Language Inference (NLI) problems. Use a model trained on MulitNLI to produce predictions for this dataset.
558
-
559
- #### cola
560
-
561
- The Corpus of Linguistic Acceptability consists of English acceptability judgments drawn from books and journal articles on linguistic theory. Each example is a sequence of words annotated with whether it is a grammatical English sentence.
562
-
563
- #### mnli
564
-
565
- The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.
566
-
567
- #### mnli_matched
568
-
569
- The matched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.
570
-
571
- #### mnli_mismatched
572
-
573
- The mismatched validation and test splits from MNLI. See the "mnli" BuilderConfig for additional information.
574
-
575
- #### mrpc
576
-
577
- The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of sentence pairs automatically extracted from online news sources, with human annotations for whether the sentences in the pair are semantically equivalent.
578
-
579
- #### qnli
580
-
581
- The Stanford Question Answering Dataset is a question-answering dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn from Wikipedia) contains the answer to the corresponding question (written by an annotator). The authors of the benchmark convert the task into sentence pair classification by forming a pair between each question and each sentence in the corresponding context, and filtering out pairs with low lexical overlap between the question and the context sentence. The task is to determine whether the context sentence contains the answer to the question. This modified version of the original task removes the requirement that the model select the exact answer, but also removes the simplifying assumptions that the answer is always present in the input and that lexical overlap is a reliable cue.
582
-
583
- #### qqp
584
-
585
- The Quora Question Pairs2 dataset is a collection of question pairs from the community question-answering website Quora. The task is to determine whether a pair of questions are semantically equivalent.
586
-
587
- #### rte
588
-
589
- The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual entailment challenges. The authors of the benchmark combined the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009). Examples are constructed based on news and Wikipedia text. The authors of the benchmark convert all datasets to a two-class split, where for three-class datasets they collapse neutral and contradiction into not entailment, for consistency.
590
-
591
- #### sst2
592
-
593
- The Stanford Sentiment Treebank consists of sentences from movie reviews and human annotations of their sentiment. The task is to predict the sentiment of a given sentence. It uses the two-way (positive/negative) class split, with only sentence-level labels.
594
-
595
- #### stsb
596
-
597
- The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of sentence pairs drawn from news headlines, video and image captions, and natural language inference data. Each pair is human-annotated with a similarity score from 1 to 5.
598
-
599
- #### wnli
600
-
601
- The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task in which a system must read a sentence with a pronoun and select the referent of that pronoun from a list of choices. The examples are manually constructed to foil simple statistical methods: Each one is contingent on contextual information provided by a single word or phrase in the sentence. To convert the problem into sentence pair classification, the authors of the benchmark construct sentence pairs by replacing the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the pronoun substituted is entailed by the original sentence. They use a small evaluation set consisting of new examples derived from fiction books that was shared privately by the authors of the original corpus. While the included training set is balanced between two classes, the test set is imbalanced between them (65% not entailment). Also, due to a data quirk, the development set is adversarial: hypotheses are sometimes shared between training and development examples, so if a model memorizes the training examples, they will predict the wrong label on corresponding development set example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence between a model's score on this task and its score on the unconverted original task. The authors of the benchmark call converted dataset WNLI (Winograd NLI).
602
-
603
- ### Languages
604
-
605
- The language data in GLUE is in English (BCP-47 `en`)
606
-
607
- ## Dataset Structure
608
-
609
- ### Data Instances
610
-
611
- #### ax
612
-
613
- - **Size of downloaded dataset files:** 0.21 MB
614
- - **Size of the generated dataset:** 0.23 MB
615
- - **Total amount of disk used:** 0.44 MB
616
-
617
- An example of 'test' looks as follows.
618
- ```
619
- {
620
- "premise": "The cat sat on the mat.",
621
- "hypothesis": "The cat did not sit on the mat.",
622
- "label": -1,
623
- "idx: 0
624
- }
625
- ```
626
-
627
- #### cola
628
-
629
- - **Size of downloaded dataset files:** 0.36 MB
630
- - **Size of the generated dataset:** 0.58 MB
631
- - **Total amount of disk used:** 0.94 MB
632
-
633
- An example of 'train' looks as follows.
634
- ```
635
- {
636
- "sentence": "Our friends won't buy this analysis, let alone the next one we propose.",
637
- "label": 1,
638
- "id": 0
639
- }
640
- ```
641
-
642
- #### mnli
643
-
644
- - **Size of downloaded dataset files:** 298.29 MB
645
- - **Size of the generated dataset:** 78.65 MB
646
- - **Total amount of disk used:** 376.95 MB
647
-
648
- An example of 'train' looks as follows.
649
- ```
650
- {
651
- "premise": "Conceptually cream skimming has two basic dimensions - product and geography.",
652
- "hypothesis": "Product and geography are what make cream skimming work.",
653
- "label": 1,
654
- "idx": 0
655
- }
656
- ```
657
-
658
- #### mnli_matched
659
-
660
- - **Size of downloaded dataset files:** 298.29 MB
661
- - **Size of the generated dataset:** 3.52 MB
662
- - **Total amount of disk used:** 301.82 MB
663
-
664
- An example of 'test' looks as follows.
665
- ```
666
- {
667
- "premise": "Hierbas, ans seco, ans dulce, and frigola are just a few names worth keeping a look-out for.",
668
- "hypothesis": "Hierbas is a name worth looking out for.",
669
- "label": -1,
670
- "idx": 0
671
- }
672
- ```
673
-
674
- #### mnli_mismatched
675
-
676
- - **Size of downloaded dataset files:** 298.29 MB
677
- - **Size of the generated dataset:** 3.73 MB
678
- - **Total amount of disk used:** 302.02 MB
679
-
680
- An example of 'test' looks as follows.
681
- ```
682
- {
683
- "premise": "What have you decided, what are you going to do?",
684
- "hypothesis": "So what's your decision?,
685
- "label": -1,
686
- "idx": 0
687
- }
688
- ```
689
-
690
- #### mrpc
691
-
692
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
693
-
694
- #### qnli
695
-
696
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
697
-
698
- #### qqp
699
-
700
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
701
-
702
- #### rte
703
-
704
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
705
-
706
- #### sst2
707
-
708
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
709
-
710
- #### stsb
711
-
712
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
713
-
714
- #### wnli
715
-
716
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
717
-
718
- ### Data Fields
719
-
720
- The data fields are the same among all splits.
721
-
722
- #### ax
723
- - `premise`: a `string` feature.
724
- - `hypothesis`: a `string` feature.
725
- - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
726
- - `idx`: a `int32` feature.
727
-
728
- #### cola
729
- - `sentence`: a `string` feature.
730
- - `label`: a classification label, with possible values including `unacceptable` (0), `acceptable` (1).
731
- - `idx`: a `int32` feature.
732
-
733
- #### mnli
734
- - `premise`: a `string` feature.
735
- - `hypothesis`: a `string` feature.
736
- - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
737
- - `idx`: a `int32` feature.
738
-
739
- #### mnli_matched
740
- - `premise`: a `string` feature.
741
- - `hypothesis`: a `string` feature.
742
- - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
743
- - `idx`: a `int32` feature.
744
-
745
- #### mnli_mismatched
746
- - `premise`: a `string` feature.
747
- - `hypothesis`: a `string` feature.
748
- - `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
749
- - `idx`: a `int32` feature.
750
-
751
- #### mrpc
752
-
753
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
754
-
755
- #### qnli
756
-
757
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
758
-
759
- #### qqp
760
-
761
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
762
-
763
- #### rte
764
-
765
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
766
-
767
- #### sst2
768
-
769
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
770
-
771
- #### stsb
772
-
773
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
774
-
775
- #### wnli
776
-
777
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
778
-
779
- ### Data Splits
780
-
781
- #### ax
782
-
783
- | |test|
784
- |---|---:|
785
- |ax |1104|
786
-
787
- #### cola
788
-
789
- | |train|validation|test|
790
- |----|----:|---------:|---:|
791
- |cola| 8551| 1043|1063|
792
-
793
- #### mnli
794
-
795
- | |train |validation_matched|validation_mismatched|test_matched|test_mismatched|
796
- |----|-----:|-----------------:|--------------------:|-----------:|--------------:|
797
- |mnli|392702| 9815| 9832| 9796| 9847|
798
-
799
- #### mnli_matched
800
-
801
- | |validation|test|
802
- |------------|---------:|---:|
803
- |mnli_matched| 9815|9796|
804
-
805
- #### mnli_mismatched
806
-
807
- | |validation|test|
808
- |---------------|---------:|---:|
809
- |mnli_mismatched| 9832|9847|
810
-
811
- #### mrpc
812
-
813
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
814
-
815
- #### qnli
816
-
817
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
818
-
819
- #### qqp
820
-
821
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
822
-
823
- #### rte
824
-
825
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
826
-
827
- #### sst2
828
-
829
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
830
-
831
- #### stsb
832
-
833
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
834
-
835
- #### wnli
836
-
837
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
838
-
839
- ## Dataset Creation
840
-
841
- ### Curation Rationale
842
-
843
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
844
-
845
- ### Source Data
846
-
847
- #### Initial Data Collection and Normalization
848
-
849
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
850
-
851
- #### Who are the source language producers?
852
-
853
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
854
-
855
- ### Annotations
856
-
857
- #### Annotation process
858
-
859
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
860
-
861
- #### Who are the annotators?
862
-
863
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
864
-
865
- ### Personal and Sensitive Information
866
-
867
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
868
-
869
- ## Considerations for Using the Data
870
-
871
- ### Social Impact of Dataset
872
-
873
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
874
-
875
- ### Discussion of Biases
876
-
877
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
878
-
879
- ### Other Known Limitations
880
-
881
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
882
-
883
- ## Additional Information
884
-
885
- ### Dataset Curators
886
-
887
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
888
-
889
- ### Licensing Information
890
-
891
- [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
892
-
893
- ### Citation Information
894
-
895
- ```
896
- @article{warstadt2018neural,
897
- title={Neural Network Acceptability Judgments},
898
- author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
899
- journal={arXiv preprint arXiv:1805.12471},
900
- year={2018}
901
- }
902
- @inproceedings{wang2019glue,
903
- title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
904
- author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
905
- note={In the Proceedings of ICLR.},
906
- year={2019}
907
- }
908
-
909
- Note that each GLUE dataset has its own citation. Please see the source to see
910
- the correct citation for each contained dataset.
911
- ```
912
-
913
-
914
- ### Contributions
915
-
916
- Thanks to [@patpizio](https://github.com/patpizio), [@jeswan](https://github.com/jeswan), [@thomwolf](https://github.com/thomwolf), [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham) for adding this dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ax/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca20729dc8d45790a7c1c65b29e938538781c607c2f9d0f415ff40f1493e791e
3
+ size 80766
cola/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3823714b3a07394d0dcc220fe2f532e42e859414e156572727f72b1b0303141
3
+ size 37718
cola/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85aa122deb88a6c490e6710621b3ceec50c75460b52cd99d97efc5e2951fd15a
3
+ size 251123
cola/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40e1a99ae3b25db491af027452ddcf1e0bbcc6de8ae632b3554d72cdcd389b84
3
+ size 37550
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"cola": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{warstadt2018neural,\n title={Neural Network Acceptability Judgments},\n author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1805.12471},\n year={2018}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nyu-mll.github.io/CoLA/", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["unacceptable", "acceptable"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "cola", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 61049, "num_examples": 1063, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 489149, "num_examples": 8551, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 60850, "num_examples": 1043, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/CoLA.zip": {"num_bytes": 376971, "checksum": "f212fcd832b8f7b435fb991f101abf89f96b933ab400603bf198960dfc32cbff"}}, "download_size": 376971, "post_processing_size": null, "dataset_size": 611048, "size_in_bytes": 988019}, "sst2": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://nlp.stanford.edu/sentiment/index.html", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "sst2", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 217556, "num_examples": 1821, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 4715283, "num_examples": 67349, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106692, "num_examples": 872, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5039531, "size_in_bytes": 12478808}, "mrpc": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dolan2005automatically,\n title={Automatically constructing a corpus of sentential paraphrases},\n author={Dolan, William B and Brockett, Chris},\n booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},\n year={2005}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://www.microsoft.com/en-us/download/details.aspx?id=52398", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_equivalent", "equivalent"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mrpc", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 443498, "num_examples": 1725, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 946146, "num_examples": 3668, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 106142, "num_examples": 408, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv": {"num_bytes": 6222, "checksum": "971d7767d81b997fd9060ade0ec23c4fc31cbb226a55d1bd4a1bac474eb81dc7"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt": {"num_bytes": 1047044, "checksum": "60a9b09084528f0673eedee2b69cb941920f0b8cd0eeccefc464a98768457f89"}, "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt": {"num_bytes": 441275, "checksum": "a04e271090879aaba6423d65b94950c089298587d9c084bf9cd7439bd785f784"}}, "download_size": 1494541, "post_processing_size": null, "dataset_size": 1495786, "size_in_bytes": 2990327}, "qqp": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@online{WinNT,\n author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},\n title = {First Quora Dataset Release: Question Pairs},\n year = {2017},\n url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},\n urldate = {2019-04-03}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n", "homepage": "https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs", "license": "", "features": {"question1": {"dtype": "string", "id": null, "_type": "Value"}, "question2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_duplicate", "duplicate"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "qqp", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 50901116, "num_examples": 363846, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 5653794, "num_examples": 40430, "dataset_name": "glue"}, "test": {"name": "test", "num_bytes": 55171431, "num_examples": 390965, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip": {"num_bytes": 41696084, "checksum": "40e7c862c04eb26ee04b67fd900e76c45c6ba8e6d8fab4f8f1f8072a1a3fbae0"}}, "download_size": 41696084, "post_processing_size": null, "dataset_size": 111726341, "size_in_bytes": 153422425}, "stsb": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{cer2017semeval,\n title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},\n author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},\n journal={arXiv preprint arXiv:1708.00055},\n year={2017}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "float32", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "stsb", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 170847, "num_examples": 1379, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 758394, "num_examples": 5749, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 217012, "num_examples": 1500, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/STS-B.zip": {"num_bytes": 802872, "checksum": "e60a6393de5a8b5b9bac5020a1554b54e3691f9d600b775bd131e613ac179c85"}}, "download_size": 802872, "post_processing_size": null, "dataset_size": 1146253, "size_in_bytes": 1949125}, "mnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test_matched": {"name": "test_matched", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "test_mismatched": {"name": "test_mismatched", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 74865118, "num_examples": 392702, "dataset_name": "glue"}, "validation_matched": {"name": "validation_matched", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}, "validation_mismatched": {"name": "validation_mismatched", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 82472081, "size_in_bytes": 395255588}, "mnli_mismatched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_mismatched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1956866, "num_examples": 9847, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1955384, "num_examples": 9832, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 3912250, "size_in_bytes": 316695757}, "mnli_matched": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@InProceedings{N18-1101,\n author = \"Williams, Adina\n and Nangia, Nikita\n and Bowman, Samuel\",\n title = \"A Broad-Coverage Challenge Corpus for\n Sentence Understanding through Inference\",\n booktitle = \"Proceedings of the 2018 Conference of\n the North American Chapter of the\n Association for Computational Linguistics:\n Human Language Technologies, Volume 1 (Long\n Papers)\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n pages = \"1112--1122\",\n location = \"New Orleans, Louisiana\",\n url = \"http://aclweb.org/anthology/N18-1101\"\n}\n@article{bowman2015large,\n title={A large annotated corpus for learning natural language inference},\n author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},\n journal={arXiv preprint arXiv:1508.05326},\n year={2015}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "http://www.nyu.edu/projects/bowman/multinli/", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "mnli_matched", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1854787, "num_examples": 9796, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1839926, "num_examples": 9815, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/MNLI.zip": {"num_bytes": 312783507, "checksum": "e7c1d896d26ed6caf700110645df426cc2d8ebf02a5ab743d5a5c68ac1c83633"}}, "download_size": 312783507, "post_processing_size": null, "dataset_size": 3694713, "size_in_bytes": 316478220}, "qnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@article{rajpurkar2016squad,\n title={Squad: 100,000+ questions for machine comprehension of text},\n author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},\n journal={arXiv preprint arXiv:1606.05250},\n year={2016}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://rajpurkar.github.io/SQuAD-explorer/", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "qnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 1376516, "num_examples": 5463, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 25677924, "num_examples": 104743, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 1371727, "num_examples": 5463, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip": {"num_bytes": 10627589, "checksum": "e634e78627a29adaecd4f955359b22bf5e70f2cbd93b493f2d624138a0c0e5f5"}}, "download_size": 10627589, "post_processing_size": null, "dataset_size": 28426167, "size_in_bytes": 39053756}, "rte": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{dagan2005pascal,\n title={The PASCAL recognising textual entailment challenge},\n author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},\n booktitle={Machine Learning Challenges Workshop},\n pages={177--190},\n year={2005},\n organization={Springer}\n}\n@inproceedings{bar2006second,\n title={The second pascal recognising textual entailment challenge},\n author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},\n booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},\n volume={6},\n number={1},\n pages={6--4},\n year={2006},\n organization={Venice}\n}\n@inproceedings{giampiccolo2007third,\n title={The third pascal recognizing textual entailment challenge},\n author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},\n booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},\n pages={1--9},\n year={2007},\n organization={Association for Computational Linguistics}\n}\n@inproceedings{bentivogli2009fifth,\n title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},\n author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},\n booktitle={TAC},\n year={2009}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://aclweb.org/aclwiki/Recognizing_Textual_Entailment", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "rte", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 975936, "num_examples": 3000, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 848888, "num_examples": 2490, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 90911, "num_examples": 277, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/RTE.zip": {"num_bytes": 697150, "checksum": "6bf86de103ecd335f3441bd43574d23fef87ecc695977a63b82d5efb206556ee"}}, "download_size": 697150, "post_processing_size": null, "dataset_size": 1915735, "size_in_bytes": 2612885}, "wnli": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "@inproceedings{levesque2012winograd,\n title={The winograd schema challenge},\n author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},\n booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},\n year={2012}\n}\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["not_entailment", "entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "wnli", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 37992, "num_examples": 146, "dataset_name": "glue"}, "train": {"name": "train", "num_bytes": 107517, "num_examples": 635, "dataset_name": "glue"}, "validation": {"name": "validation", "num_bytes": 12215, "num_examples": 71, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/WNLI.zip": {"num_bytes": 28999, "checksum": "ae0e8e4d16f4d46d4a0a566ec7ecceccfd3fbfaa4a7a4b4e02848c0f2561ac46"}}, "download_size": 28999, "post_processing_size": null, "dataset_size": 157724, "size_in_bytes": 186723}, "ax": {"description": "GLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n\n", "citation": "\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n\nNote that each GLUE dataset has its own citation. Please see the source to see\nthe correct citation for each contained dataset.", "homepage": "https://gluebenchmark.com/diagnostics", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "glue", "config_name": "ax", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 238392, "num_examples": 1104, "dataset_name": "glue"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/AX.tsv": {"num_bytes": 222257, "checksum": "0e13510b1bb14436ff7e2ee82338f0efb0133ecf2e73507a697dc210db3f05fd"}}, "download_size": 222257, "post_processing_size": null, "dataset_size": 238392, "size_in_bytes": 460649}}
 
 
glue.py DELETED
@@ -1,628 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- # Lint as: python3
17
- """The General Language Understanding Evaluation (GLUE) benchmark."""
18
-
19
-
20
- import csv
21
- import os
22
- import textwrap
23
-
24
- import numpy as np
25
-
26
- import datasets
27
-
28
-
29
- _GLUE_CITATION = """\
30
- @inproceedings{wang2019glue,
31
- title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},
32
- author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},
33
- note={In the Proceedings of ICLR.},
34
- year={2019}
35
- }
36
- """
37
-
38
- _GLUE_DESCRIPTION = """\
39
- GLUE, the General Language Understanding Evaluation benchmark
40
- (https://gluebenchmark.com/) is a collection of resources for training,
41
- evaluating, and analyzing natural language understanding systems.
42
-
43
- """
44
-
45
- _MRPC_DEV_IDS = "https://dl.fbaipublicfiles.com/glue/data/mrpc_dev_ids.tsv"
46
- _MRPC_TRAIN = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_train.txt"
47
- _MRPC_TEST = "https://dl.fbaipublicfiles.com/senteval/senteval_data/msr_paraphrase_test.txt"
48
-
49
- _MNLI_BASE_KWARGS = dict(
50
- text_features={
51
- "premise": "sentence1",
52
- "hypothesis": "sentence2",
53
- },
54
- label_classes=["entailment", "neutral", "contradiction"],
55
- label_column="gold_label",
56
- data_url="https://dl.fbaipublicfiles.com/glue/data/MNLI.zip",
57
- data_dir="MNLI",
58
- citation=textwrap.dedent(
59
- """\
60
- @InProceedings{N18-1101,
61
- author = "Williams, Adina
62
- and Nangia, Nikita
63
- and Bowman, Samuel",
64
- title = "A Broad-Coverage Challenge Corpus for
65
- Sentence Understanding through Inference",
66
- booktitle = "Proceedings of the 2018 Conference of
67
- the North American Chapter of the
68
- Association for Computational Linguistics:
69
- Human Language Technologies, Volume 1 (Long
70
- Papers)",
71
- year = "2018",
72
- publisher = "Association for Computational Linguistics",
73
- pages = "1112--1122",
74
- location = "New Orleans, Louisiana",
75
- url = "http://aclweb.org/anthology/N18-1101"
76
- }
77
- @article{bowman2015large,
78
- title={A large annotated corpus for learning natural language inference},
79
- author={Bowman, Samuel R and Angeli, Gabor and Potts, Christopher and Manning, Christopher D},
80
- journal={arXiv preprint arXiv:1508.05326},
81
- year={2015}
82
- }"""
83
- ),
84
- url="http://www.nyu.edu/projects/bowman/multinli/",
85
- )
86
-
87
-
88
- class GlueConfig(datasets.BuilderConfig):
89
- """BuilderConfig for GLUE."""
90
-
91
- def __init__(
92
- self,
93
- text_features,
94
- label_column,
95
- data_url,
96
- data_dir,
97
- citation,
98
- url,
99
- label_classes=None,
100
- process_label=lambda x: x,
101
- **kwargs,
102
- ):
103
- """BuilderConfig for GLUE.
104
-
105
- Args:
106
- text_features: `dict[string, string]`, map from the name of the feature
107
- dict for each text field to the name of the column in the tsv file
108
- label_column: `string`, name of the column in the tsv file corresponding
109
- to the label
110
- data_url: `string`, url to download the zip file from
111
- data_dir: `string`, the path to the folder containing the tsv files in the
112
- downloaded zip
113
- citation: `string`, citation for the data set
114
- url: `string`, url for information about the data set
115
- label_classes: `list[string]`, the list of classes if the label is
116
- categorical. If not provided, then the label will be of type
117
- `datasets.Value('float32')`.
118
- process_label: `Function[string, any]`, function taking in the raw value
119
- of the label and processing it to the form required by the label feature
120
- **kwargs: keyword arguments forwarded to super.
121
- """
122
- super(GlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
123
- self.text_features = text_features
124
- self.label_column = label_column
125
- self.label_classes = label_classes
126
- self.data_url = data_url
127
- self.data_dir = data_dir
128
- self.citation = citation
129
- self.url = url
130
- self.process_label = process_label
131
-
132
-
133
- class Glue(datasets.GeneratorBasedBuilder):
134
- """The General Language Understanding Evaluation (GLUE) benchmark."""
135
-
136
- BUILDER_CONFIGS = [
137
- GlueConfig(
138
- name="cola",
139
- description=textwrap.dedent(
140
- """\
141
- The Corpus of Linguistic Acceptability consists of English
142
- acceptability judgments drawn from books and journal articles on
143
- linguistic theory. Each example is a sequence of words annotated
144
- with whether it is a grammatical English sentence."""
145
- ),
146
- text_features={"sentence": "sentence"},
147
- label_classes=["unacceptable", "acceptable"],
148
- label_column="is_acceptable",
149
- data_url="https://dl.fbaipublicfiles.com/glue/data/CoLA.zip",
150
- data_dir="CoLA",
151
- citation=textwrap.dedent(
152
- """\
153
- @article{warstadt2018neural,
154
- title={Neural Network Acceptability Judgments},
155
- author={Warstadt, Alex and Singh, Amanpreet and Bowman, Samuel R},
156
- journal={arXiv preprint arXiv:1805.12471},
157
- year={2018}
158
- }"""
159
- ),
160
- url="https://nyu-mll.github.io/CoLA/",
161
- ),
162
- GlueConfig(
163
- name="sst2",
164
- description=textwrap.dedent(
165
- """\
166
- The Stanford Sentiment Treebank consists of sentences from movie reviews and
167
- human annotations of their sentiment. The task is to predict the sentiment of a
168
- given sentence. We use the two-way (positive/negative) class split, and use only
169
- sentence-level labels."""
170
- ),
171
- text_features={"sentence": "sentence"},
172
- label_classes=["negative", "positive"],
173
- label_column="label",
174
- data_url="https://dl.fbaipublicfiles.com/glue/data/SST-2.zip",
175
- data_dir="SST-2",
176
- citation=textwrap.dedent(
177
- """\
178
- @inproceedings{socher2013recursive,
179
- title={Recursive deep models for semantic compositionality over a sentiment treebank},
180
- author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
181
- booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
182
- pages={1631--1642},
183
- year={2013}
184
- }"""
185
- ),
186
- url="https://datasets.stanford.edu/sentiment/index.html",
187
- ),
188
- GlueConfig(
189
- name="mrpc",
190
- description=textwrap.dedent(
191
- """\
192
- The Microsoft Research Paraphrase Corpus (Dolan & Brockett, 2005) is a corpus of
193
- sentence pairs automatically extracted from online news sources, with human annotations
194
- for whether the sentences in the pair are semantically equivalent."""
195
- ), # pylint: disable=line-too-long
196
- text_features={"sentence1": "", "sentence2": ""},
197
- label_classes=["not_equivalent", "equivalent"],
198
- label_column="Quality",
199
- data_url="", # MRPC isn't hosted by GLUE.
200
- data_dir="MRPC",
201
- citation=textwrap.dedent(
202
- """\
203
- @inproceedings{dolan2005automatically,
204
- title={Automatically constructing a corpus of sentential paraphrases},
205
- author={Dolan, William B and Brockett, Chris},
206
- booktitle={Proceedings of the Third International Workshop on Paraphrasing (IWP2005)},
207
- year={2005}
208
- }"""
209
- ),
210
- url="https://www.microsoft.com/en-us/download/details.aspx?id=52398",
211
- ),
212
- GlueConfig(
213
- name="qqp",
214
- description=textwrap.dedent(
215
- """\
216
- The Quora Question Pairs2 dataset is a collection of question pairs from the
217
- community question-answering website Quora. The task is to determine whether a
218
- pair of questions are semantically equivalent."""
219
- ),
220
- text_features={
221
- "question1": "question1",
222
- "question2": "question2",
223
- },
224
- label_classes=["not_duplicate", "duplicate"],
225
- label_column="is_duplicate",
226
- data_url="https://dl.fbaipublicfiles.com/glue/data/QQP-clean.zip",
227
- data_dir="QQP",
228
- citation=textwrap.dedent(
229
- """\
230
- @online{WinNT,
231
- author = {Iyer, Shankar and Dandekar, Nikhil and Csernai, Kornel},
232
- title = {First Quora Dataset Release: Question Pairs},
233
- year = {2017},
234
- url = {https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs},
235
- urldate = {2019-04-03}
236
- }"""
237
- ),
238
- url="https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs",
239
- ),
240
- GlueConfig(
241
- name="stsb",
242
- description=textwrap.dedent(
243
- """\
244
- The Semantic Textual Similarity Benchmark (Cer et al., 2017) is a collection of
245
- sentence pairs drawn from news headlines, video and image captions, and natural
246
- language inference data. Each pair is human-annotated with a similarity score
247
- from 1 to 5."""
248
- ),
249
- text_features={
250
- "sentence1": "sentence1",
251
- "sentence2": "sentence2",
252
- },
253
- label_column="score",
254
- data_url="https://dl.fbaipublicfiles.com/glue/data/STS-B.zip",
255
- data_dir="STS-B",
256
- citation=textwrap.dedent(
257
- """\
258
- @article{cer2017semeval,
259
- title={Semeval-2017 task 1: Semantic textual similarity-multilingual and cross-lingual focused evaluation},
260
- author={Cer, Daniel and Diab, Mona and Agirre, Eneko and Lopez-Gazpio, Inigo and Specia, Lucia},
261
- journal={arXiv preprint arXiv:1708.00055},
262
- year={2017}
263
- }"""
264
- ),
265
- url="http://ixa2.si.ehu.es/stswiki/index.php/STSbenchmark",
266
- process_label=np.float32,
267
- ),
268
- GlueConfig(
269
- name="mnli",
270
- description=textwrap.dedent(
271
- """\
272
- The Multi-Genre Natural Language Inference Corpus is a crowdsourced
273
- collection of sentence pairs with textual entailment annotations. Given a premise sentence
274
- and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis
275
- (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are
276
- gathered from ten different sources, including transcribed speech, fiction, and government reports.
277
- We use the standard test set, for which we obtained private labels from the authors, and evaluate
278
- on both the matched (in-domain) and mismatched (cross-domain) section. We also use and recommend
279
- the SNLI corpus as 550k examples of auxiliary training data."""
280
- ),
281
- **_MNLI_BASE_KWARGS,
282
- ),
283
- GlueConfig(
284
- name="mnli_mismatched",
285
- description=textwrap.dedent(
286
- """\
287
- The mismatched validation and test splits from MNLI.
288
- See the "mnli" BuilderConfig for additional information."""
289
- ),
290
- **_MNLI_BASE_KWARGS,
291
- ),
292
- GlueConfig(
293
- name="mnli_matched",
294
- description=textwrap.dedent(
295
- """\
296
- The matched validation and test splits from MNLI.
297
- See the "mnli" BuilderConfig for additional information."""
298
- ),
299
- **_MNLI_BASE_KWARGS,
300
- ),
301
- GlueConfig(
302
- name="qnli",
303
- description=textwrap.dedent(
304
- """\
305
- The Stanford Question Answering Dataset is a question-answering
306
- dataset consisting of question-paragraph pairs, where one of the sentences in the paragraph (drawn
307
- from Wikipedia) contains the answer to the corresponding question (written by an annotator). We
308
- convert the task into sentence pair classification by forming a pair between each question and each
309
- sentence in the corresponding context, and filtering out pairs with low lexical overlap between the
310
- question and the context sentence. The task is to determine whether the context sentence contains
311
- the answer to the question. This modified version of the original task removes the requirement that
312
- the model select the exact answer, but also removes the simplifying assumptions that the answer
313
- is always present in the input and that lexical overlap is a reliable cue."""
314
- ), # pylint: disable=line-too-long
315
- text_features={
316
- "question": "question",
317
- "sentence": "sentence",
318
- },
319
- label_classes=["entailment", "not_entailment"],
320
- label_column="label",
321
- data_url="https://dl.fbaipublicfiles.com/glue/data/QNLIv2.zip",
322
- data_dir="QNLI",
323
- citation=textwrap.dedent(
324
- """\
325
- @article{rajpurkar2016squad,
326
- title={Squad: 100,000+ questions for machine comprehension of text},
327
- author={Rajpurkar, Pranav and Zhang, Jian and Lopyrev, Konstantin and Liang, Percy},
328
- journal={arXiv preprint arXiv:1606.05250},
329
- year={2016}
330
- }"""
331
- ),
332
- url="https://rajpurkar.github.io/SQuAD-explorer/",
333
- ),
334
- GlueConfig(
335
- name="rte",
336
- description=textwrap.dedent(
337
- """\
338
- The Recognizing Textual Entailment (RTE) datasets come from a series of annual textual
339
- entailment challenges. We combine the data from RTE1 (Dagan et al., 2006), RTE2 (Bar Haim
340
- et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTE5 (Bentivogli et al., 2009).4 Examples are
341
- constructed based on news and Wikipedia text. We convert all datasets to a two-class split, where
342
- for three-class datasets we collapse neutral and contradiction into not entailment, for consistency."""
343
- ), # pylint: disable=line-too-long
344
- text_features={
345
- "sentence1": "sentence1",
346
- "sentence2": "sentence2",
347
- },
348
- label_classes=["entailment", "not_entailment"],
349
- label_column="label",
350
- data_url="https://dl.fbaipublicfiles.com/glue/data/RTE.zip",
351
- data_dir="RTE",
352
- citation=textwrap.dedent(
353
- """\
354
- @inproceedings{dagan2005pascal,
355
- title={The PASCAL recognising textual entailment challenge},
356
- author={Dagan, Ido and Glickman, Oren and Magnini, Bernardo},
357
- booktitle={Machine Learning Challenges Workshop},
358
- pages={177--190},
359
- year={2005},
360
- organization={Springer}
361
- }
362
- @inproceedings{bar2006second,
363
- title={The second pascal recognising textual entailment challenge},
364
- author={Bar-Haim, Roy and Dagan, Ido and Dolan, Bill and Ferro, Lisa and Giampiccolo, Danilo and Magnini, Bernardo and Szpektor, Idan},
365
- booktitle={Proceedings of the second PASCAL challenges workshop on recognising textual entailment},
366
- volume={6},
367
- number={1},
368
- pages={6--4},
369
- year={2006},
370
- organization={Venice}
371
- }
372
- @inproceedings{giampiccolo2007third,
373
- title={The third pascal recognizing textual entailment challenge},
374
- author={Giampiccolo, Danilo and Magnini, Bernardo and Dagan, Ido and Dolan, Bill},
375
- booktitle={Proceedings of the ACL-PASCAL workshop on textual entailment and paraphrasing},
376
- pages={1--9},
377
- year={2007},
378
- organization={Association for Computational Linguistics}
379
- }
380
- @inproceedings{bentivogli2009fifth,
381
- title={The Fifth PASCAL Recognizing Textual Entailment Challenge.},
382
- author={Bentivogli, Luisa and Clark, Peter and Dagan, Ido and Giampiccolo, Danilo},
383
- booktitle={TAC},
384
- year={2009}
385
- }"""
386
- ),
387
- url="https://aclweb.org/aclwiki/Recognizing_Textual_Entailment",
388
- ),
389
- GlueConfig(
390
- name="wnli",
391
- description=textwrap.dedent(
392
- """\
393
- The Winograd Schema Challenge (Levesque et al., 2011) is a reading comprehension task
394
- in which a system must read a sentence with a pronoun and select the referent of that pronoun from
395
- a list of choices. The examples are manually constructed to foil simple statistical methods: Each
396
- one is contingent on contextual information provided by a single word or phrase in the sentence.
397
- To convert the problem into sentence pair classification, we construct sentence pairs by replacing
398
- the ambiguous pronoun with each possible referent. The task is to predict if the sentence with the
399
- pronoun substituted is entailed by the original sentence. We use a small evaluation set consisting of
400
- new examples derived from fiction books that was shared privately by the authors of the original
401
- corpus. While the included training set is balanced between two classes, the test set is imbalanced
402
- between them (65% not entailment). Also, due to a data quirk, the development set is adversarial:
403
- hypotheses are sometimes shared between training and development examples, so if a model memorizes the
404
- training examples, they will predict the wrong label on corresponding development set
405
- example. As with QNLI, each example is evaluated separately, so there is not a systematic correspondence
406
- between a model's score on this task and its score on the unconverted original task. We
407
- call converted dataset WNLI (Winograd NLI)."""
408
- ),
409
- text_features={
410
- "sentence1": "sentence1",
411
- "sentence2": "sentence2",
412
- },
413
- label_classes=["not_entailment", "entailment"],
414
- label_column="label",
415
- data_url="https://dl.fbaipublicfiles.com/glue/data/WNLI.zip",
416
- data_dir="WNLI",
417
- citation=textwrap.dedent(
418
- """\
419
- @inproceedings{levesque2012winograd,
420
- title={The winograd schema challenge},
421
- author={Levesque, Hector and Davis, Ernest and Morgenstern, Leora},
422
- booktitle={Thirteenth International Conference on the Principles of Knowledge Representation and Reasoning},
423
- year={2012}
424
- }"""
425
- ),
426
- url="https://cs.nyu.edu/faculty/davise/papers/WinogradSchemas/WS.html",
427
- ),
428
- GlueConfig(
429
- name="ax",
430
- description=textwrap.dedent(
431
- """\
432
- A manually-curated evaluation dataset for fine-grained analysis of
433
- system performance on a broad range of linguistic phenomena. This
434
- dataset evaluates sentence understanding through Natural Language
435
- Inference (NLI) problems. Use a model trained on MulitNLI to produce
436
- predictions for this dataset."""
437
- ),
438
- text_features={
439
- "premise": "sentence1",
440
- "hypothesis": "sentence2",
441
- },
442
- label_classes=["entailment", "neutral", "contradiction"],
443
- label_column="", # No label since we only have test set.
444
- # We must use a URL shortener since the URL from GLUE is very long and
445
- # causes issues in TFDS.
446
- data_url="https://dl.fbaipublicfiles.com/glue/data/AX.tsv",
447
- data_dir="", # We are downloading a tsv.
448
- citation="", # The GLUE citation is sufficient.
449
- url="https://gluebenchmark.com/diagnostics",
450
- ),
451
- ]
452
-
453
- def _info(self):
454
- features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features.keys()}
455
- if self.config.label_classes:
456
- features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
457
- else:
458
- features["label"] = datasets.Value("float32")
459
- features["idx"] = datasets.Value("int32")
460
- return datasets.DatasetInfo(
461
- description=_GLUE_DESCRIPTION,
462
- features=datasets.Features(features),
463
- homepage=self.config.url,
464
- citation=self.config.citation + "\n" + _GLUE_CITATION,
465
- )
466
-
467
- def _split_generators(self, dl_manager):
468
- if self.config.name == "ax":
469
- data_file = dl_manager.download(self.config.data_url)
470
- return [
471
- datasets.SplitGenerator(
472
- name=datasets.Split.TEST,
473
- gen_kwargs={
474
- "data_file": data_file,
475
- "split": "test",
476
- },
477
- )
478
- ]
479
-
480
- if self.config.name == "mrpc":
481
- data_dir = None
482
- mrpc_files = dl_manager.download(
483
- {
484
- "dev_ids": _MRPC_DEV_IDS,
485
- "train": _MRPC_TRAIN,
486
- "test": _MRPC_TEST,
487
- }
488
- )
489
- else:
490
- dl_dir = dl_manager.download_and_extract(self.config.data_url)
491
- data_dir = os.path.join(dl_dir, self.config.data_dir)
492
- mrpc_files = None
493
- train_split = datasets.SplitGenerator(
494
- name=datasets.Split.TRAIN,
495
- gen_kwargs={
496
- "data_file": os.path.join(data_dir or "", "train.tsv"),
497
- "split": "train",
498
- "mrpc_files": mrpc_files,
499
- },
500
- )
501
- if self.config.name == "mnli":
502
- return [
503
- train_split,
504
- _mnli_split_generator("validation_matched", data_dir, "dev", matched=True),
505
- _mnli_split_generator("validation_mismatched", data_dir, "dev", matched=False),
506
- _mnli_split_generator("test_matched", data_dir, "test", matched=True),
507
- _mnli_split_generator("test_mismatched", data_dir, "test", matched=False),
508
- ]
509
- elif self.config.name == "mnli_matched":
510
- return [
511
- _mnli_split_generator("validation", data_dir, "dev", matched=True),
512
- _mnli_split_generator("test", data_dir, "test", matched=True),
513
- ]
514
- elif self.config.name == "mnli_mismatched":
515
- return [
516
- _mnli_split_generator("validation", data_dir, "dev", matched=False),
517
- _mnli_split_generator("test", data_dir, "test", matched=False),
518
- ]
519
- else:
520
- return [
521
- train_split,
522
- datasets.SplitGenerator(
523
- name=datasets.Split.VALIDATION,
524
- gen_kwargs={
525
- "data_file": os.path.join(data_dir or "", "dev.tsv"),
526
- "split": "dev",
527
- "mrpc_files": mrpc_files,
528
- },
529
- ),
530
- datasets.SplitGenerator(
531
- name=datasets.Split.TEST,
532
- gen_kwargs={
533
- "data_file": os.path.join(data_dir or "", "test.tsv"),
534
- "split": "test",
535
- "mrpc_files": mrpc_files,
536
- },
537
- ),
538
- ]
539
-
540
- def _generate_examples(self, data_file, split, mrpc_files=None):
541
- if self.config.name == "mrpc":
542
- # We have to prepare the MRPC dataset from the original sources ourselves.
543
- examples = self._generate_example_mrpc_files(mrpc_files=mrpc_files, split=split)
544
- for example in examples:
545
- yield example["idx"], example
546
- else:
547
- process_label = self.config.process_label
548
- label_classes = self.config.label_classes
549
-
550
- # The train and dev files for CoLA are the only tsv files without a
551
- # header.
552
- is_cola_non_test = self.config.name == "cola" and split != "test"
553
-
554
- with open(data_file, encoding="utf8") as f:
555
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
556
- if is_cola_non_test:
557
- reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
558
-
559
- for n, row in enumerate(reader):
560
- if is_cola_non_test:
561
- row = {
562
- "sentence": row[3],
563
- "is_acceptable": row[1],
564
- }
565
-
566
- example = {feat: row[col] for feat, col in self.config.text_features.items()}
567
- example["idx"] = n
568
-
569
- if self.config.label_column in row:
570
- label = row[self.config.label_column]
571
- # For some tasks, the label is represented as 0 and 1 in the tsv
572
- # files and needs to be cast to integer to work with the feature.
573
- if label_classes and label not in label_classes:
574
- label = int(label) if label else None
575
- example["label"] = process_label(label)
576
- else:
577
- example["label"] = process_label(-1)
578
-
579
- # Filter out corrupted rows.
580
- for value in example.values():
581
- if value is None:
582
- break
583
- else:
584
- yield example["idx"], example
585
-
586
- def _generate_example_mrpc_files(self, mrpc_files, split):
587
- if split == "test":
588
- with open(mrpc_files["test"], encoding="utf8") as f:
589
- # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
590
- # the Quality key.
591
- f.seek(3)
592
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
593
- for n, row in enumerate(reader):
594
- yield {
595
- "sentence1": row["#1 String"],
596
- "sentence2": row["#2 String"],
597
- "label": int(row["Quality"]),
598
- "idx": n,
599
- }
600
- else:
601
- with open(mrpc_files["dev_ids"], encoding="utf8") as f:
602
- reader = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
603
- dev_ids = [[row[0], row[1]] for row in reader]
604
- with open(mrpc_files["train"], encoding="utf8") as f:
605
- # The first 3 bytes are the utf-8 BOM \xef\xbb\xbf, which messes with
606
- # the Quality key.
607
- f.seek(3)
608
- reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
609
- for n, row in enumerate(reader):
610
- is_row_in_dev = [row["#1 ID"], row["#2 ID"]] in dev_ids
611
- if is_row_in_dev == (split == "dev"):
612
- yield {
613
- "sentence1": row["#1 String"],
614
- "sentence2": row["#2 String"],
615
- "label": int(row["Quality"]),
616
- "idx": n,
617
- }
618
-
619
-
620
- def _mnli_split_generator(name, data_dir, split, matched):
621
- return datasets.SplitGenerator(
622
- name=name,
623
- gen_kwargs={
624
- "data_file": os.path.join(data_dir, "%s_%s.tsv" % (split, "matched" if matched else "mismatched")),
625
- "split": split,
626
- "mrpc_files": None,
627
- },
628
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mnli/glue-test_matched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02e8f77be2e100aa99b949e2f32734083d911ca2f6cef72deba49978d2b7e6f
3
+ size 1220118
mnli/glue-test_mismatched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5cdc528f2e6aa1662becb60ec82b2f50eb2fafd65ff8dd3deca5ebb4a58d0a
3
+ size 1257856
mnli/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5dd898378bfd8c1bde531a438ca6478b7535992466f5760ed295d1b8ba8b84b
3
+ size 52224360
mnli/glue-validation_matched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5315c7da7b527ab10b2f12f239607d7d1ad2cfa43e6ab4bf7de58da9c7dc00
3
+ size 1214935
mnli/glue-validation_mismatched.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6565fe7952629a95c047e2330b17db9363df4d85e4650606cf152aa29f8b36f4
3
+ size 1251151
mnli_matched/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f02e8f77be2e100aa99b949e2f32734083d911ca2f6cef72deba49978d2b7e6f
3
+ size 1220118
mnli_matched/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb5315c7da7b527ab10b2f12f239607d7d1ad2cfa43e6ab4bf7de58da9c7dc00
3
+ size 1214935
mnli_mismatched/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f5cdc528f2e6aa1662becb60ec82b2f50eb2fafd65ff8dd3deca5ebb4a58d0a
3
+ size 1257856
mnli_mismatched/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6565fe7952629a95c047e2330b17db9363df4d85e4650606cf152aa29f8b36f4
3
+ size 1251151
mrpc/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80a44733e303f3146c371b89bb6012299621a5d9ede618080daa31d461337aa2
3
+ size 308440
mrpc/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e006fd60c47b07b3669d54cd8329e923efe28e8532aa556b96fc5283ac92c9f3
3
+ size 649280
mrpc/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d71693262193d026c9ee8e7137f1ea99269137ca302464933390052237d28bbd
3
+ size 75677
qnli/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48d919303e4c17da414b5d11225306153e660d715b625e641fb9e5de9e6674c2
3
+ size 877344
qnli/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:030d75dabe68f0190ccbca3647a7d3e6d1376b17b64347b7e90609c1d073f5d1
3
+ size 17528916
qnli/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:560fa08b417f65b7b3f86c86ebc8160374f1ccdd88d06abb9da8c1fafc71a149
3
+ size 872061
qqp/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d60df29963de90ab997a32b34a3b521dbf85157999b9ec28f84e57e9e38c92a2
3
+ size 36694151
qqp/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f02ff8c97ed37152ab3287cf8e862b450b78c2a54ca8ee84823e64dc054c825
3
+ size 33558838
qqp/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:579dd2a2113ed74499773684474772a070effb12bc40b1e228a8476f06bdb68f
3
+ size 3729273
rte/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53646d917db730a0218c08012a35732051520108decaaea19e7dae2d9d961271
3
+ size 621412
rte/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:637d070ba9686b7b6e29c387d9bea263af2ed72caa32f8cdb2ab17cc94f0664c
3
+ size 583975
rte/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5a19048a66467d5f9f5bea2186696ba385723e9cf7dd5cec447352211a82065
3
+ size 69019
sst2/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:999ce539457918300b27d6e7eef2e87b4a8fec63a1d17487caf7be594b48dc96
3
+ size 147792
sst2/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6cb7b805529204a3f9cb51d0f49ff402e6a6b0d2a0cbbe1ab2eb4f447a19c7f3
3
+ size 3110467
sst2/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7585a00c95160c3a89290fa2b1892886a7648a26d171e0e123ab85d46afdd361
3
+ size 72818
stsb/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5869a54c6712f1d462dac833f0f5f5d5a79b923555c7eeebab1277bbb61b773b
3
+ size 114295
stsb/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7a518fb6c86849d1a08a8064e9010361ac064c2c9a01aaffd7044e99fabb35c
3
+ size 502064
stsb/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:596c02e573d549c66d6e5d776657859bc3435a396cca5e9943159e74acc9327e
3
+ size 150621
wnli/glue-test.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34276a56d4482e8f5daa82bbdbb4e156fb7c1512a66a3ce02f1f9d88dfce0005
3
+ size 13619
wnli/glue-train.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3e6cca7a8a270d4441ea272a7165bd5fa035cb19a5f5965bccbeebeef13214f
3
+ size 38834
wnli/glue-validation.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:589cc460b9c8ce3b77fc7a872b6cf65106e6ecd1cceba32a0dc038f7202a22fb
3
+ size 11066