Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
File size: 3,560 Bytes
c4f4109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
{
    "default": {
        "description": "The Multi-Genre Natural Language Inference (MultiNLI) corpus is a\ncrowd-sourced collection of 433k sentence pairs annotated with textual\nentailment information. The corpus is modeled on the SNLI corpus, but differs in\nthat covers a range of genres of spoken and written text, and supports a\ndistinctive cross-genre generalization evaluation. The corpus served as the\nbasis for the shared task of the RepEval 2017 Workshop at EMNLP in Copenhagen.\n",
        "citation": "@InProceedings{N18-1101,\n  author = {Williams, Adina\n            and Nangia, Nikita\n            and Bowman, Samuel},\n  title = {A Broad-Coverage Challenge Corpus for\n           Sentence Understanding through Inference},\n  booktitle = {Proceedings of the 2018 Conference of\n               the North American Chapter of the\n               Association for Computational Linguistics:\n               Human Language Technologies, Volume 1 (Long\n               Papers)},\n  year = {2018},\n  publisher = {Association for Computational Linguistics},\n  pages = {1112--1122},\n  location = {New Orleans, Louisiana},\n  url = {http://aclweb.org/anthology/N18-1101}\n}\n",
        "homepage": "https://www.nyu.edu/projects/bowman/multinli/",
        "license": "",
        "features": {
            "promptID": {
                "dtype": "int32",
                "_type": "Value"
            },
            "pairID": {
                "dtype": "string",
                "_type": "Value"
            },
            "premise": {
                "dtype": "string",
                "_type": "Value"
            },
            "premise_binary_parse": {
                "dtype": "string",
                "_type": "Value"
            },
            "premise_parse": {
                "dtype": "string",
                "_type": "Value"
            },
            "hypothesis": {
                "dtype": "string",
                "_type": "Value"
            },
            "hypothesis_binary_parse": {
                "dtype": "string",
                "_type": "Value"
            },
            "hypothesis_parse": {
                "dtype": "string",
                "_type": "Value"
            },
            "genre": {
                "dtype": "string",
                "_type": "Value"
            },
            "label": {
                "names": [
                    "entailment",
                    "neutral",
                    "contradiction"
                ],
                "_type": "ClassLabel"
            }
        },
        "builder_name": "multi_nli",
        "dataset_name": "multi_nli",
        "config_name": "default",
        "version": {
            "version_str": "0.0.0",
            "major": 0,
            "minor": 0,
            "patch": 0
        },
        "splits": {
            "train": {
                "name": "train",
                "num_bytes": 410210306,
                "num_examples": 392702,
                "dataset_name": null
            },
            "validation_matched": {
                "name": "validation_matched",
                "num_bytes": 10063907,
                "num_examples": 9815,
                "dataset_name": null
            },
            "validation_mismatched": {
                "name": "validation_mismatched",
                "num_bytes": 10610189,
                "num_examples": 9832,
                "dataset_name": null
            }
        },
        "download_size": 224005223,
        "dataset_size": 430884402,
        "size_in_bytes": 654889625
    }
}