|
import collections |
|
import json |
|
import os |
|
import datasets |
|
|
|
ANNOTATION_FILENAME = "_annotations.coco.json" |
|
|
|
class AHv3Config(datasets.BuilderConfig): |
|
def __init__(self, data_urls, **kwargs): |
|
super(AHv3Config, self).__init__(**kwargs) |
|
self.data_urls = data_urls |
|
|
|
class AHv3(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
AHv3Config(name="With-augmentation", data_urls={"train": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-AUG/train.zip", "validation": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-AUG/valid.zip", "test": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-AUG/test.zip"}), |
|
AHv3Config(name="Without-augmentation", data_urls={"train": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-NA/train.zip", "validation": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-NA/valid.zip", "test": "https://huggingface.co/datasets/nyuuzyou/AnimeHeadsv3/resolve/main/AHv3-NA/test.zip"}), |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({"image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "objects": datasets.Sequence({"id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence(datasets.Value("float32"), length=4), "category": datasets.Value("string")})}) |
|
return datasets.DatasetInfo(features=features) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_files = dl_manager.download_and_extract(self.config.data_urls) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"folder_dir": data_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"folder_dir": data_files["validation"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"folder_dir": data_files["test"]})] |
|
|
|
def _generate_examples(self, folder_dir): |
|
def process_annot(annot, category_id_to_category): |
|
return {"id": annot["id"], "area": annot["area"], "bbox": annot["bbox"], "category": category_id_to_category[annot["category_id"]]} |
|
|
|
image_id_to_image = {} |
|
idx = 0 |
|
|
|
annotation_filepath = os.path.join(folder_dir, ANNOTATION_FILENAME) |
|
with open(annotation_filepath, "r") as f: |
|
annotations = json.load(f) |
|
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]} |
|
image_id_to_annotations = collections.defaultdict(list) |
|
for annot in annotations["annotations"]: |
|
image_id_to_annotations[annot["image_id"]].append(annot) |
|
filename_to_image = {image["file_name"]: image for image in annotations["images"]} |
|
|
|
for filename in os.listdir(folder_dir): |
|
filepath = os.path.join(folder_dir, filename) |
|
if filename in filename_to_image: |
|
image = filename_to_image[filename] |
|
with open(filepath, "rb") as f: |
|
image_bytes = f.read() |
|
objects = [process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]] |
|
yield idx, {"image_id": image["id"], "image": {"path": filepath, "bytes": image_bytes}, "height": image["height"], "width": image["width"], "objects": objects} |
|
idx += 1 |
|
|