obi77 commited on
Commit
99bcabb
·
verified ·
1 Parent(s): da5f41e

Create util.py

Browse files
Files changed (1) hide show
  1. util.py +105 -0
util.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, torch, nibabel as nib, numpy as np
2
+ from glob import glob
3
+ from torch.utils.data import DataLoader
4
+ import torch
5
+
6
+ # function that takes four slices from 4 modalities and stack them
7
+ def stack_slices(t1c, t2f, t1n, t2w):
8
+ stacked_slices = np.stack((t1c, t2f, t1n, t2w), axis=0)
9
+ return stacked_slices
10
+
11
+
12
+ # function that takes the segmentation mask and turn it into a 4 channel mask
13
+ def convert_to_multichannel(mask):
14
+ """
15
+ Convert labels to multi channels based on brats classes:
16
+ The provided segmentation labels have values of:
17
+
18
+ 1 for NCR (necrotic)
19
+ 2 for ED (edema)
20
+ 3 for ET (enhancing tumor)
21
+ 0 for background.
22
+ The possible classes are TC (Tumor core == NCR and ET), WT (Whole tumor)
23
+ , ET (Enhancing tumor) and background.
24
+
25
+ """
26
+ results = []
27
+ # merge label 1 and label 3 to construct TC
28
+ results.append( np.logical_or(mask == 1, mask == 3) )
29
+ # merge labels 1, 2 and 3 to construct WT
30
+ results.append( mask != 0 )
31
+ # merge label 3 to keep ET
32
+ results.append( mask == 3 )
33
+ # merge label 0 to keep background
34
+ results.append( mask == 0 )
35
+
36
+ return np.stack(results, axis=0).astype(np.uint8)
37
+ class MyIterableDataset(torch.utils.data.IterableDataset):
38
+ def __init__(self, images_t1c, images_t2f, images_t1n, images_t2w, segs):
39
+ self.images_t1c = images_t1c
40
+ self.images_t2f = images_t2f
41
+ self.images_t1n = images_t1n
42
+ self.images_t2w = images_t2w
43
+ self.segs = segs
44
+
45
+ def stream(self):
46
+ for i in range(self.start, self.end):
47
+ t1c = nib.load(self.images_t1c[i]).get_fdata()
48
+ t2f = nib.load(self.images_t2f[i]).get_fdata()
49
+ t1n = nib.load(self.images_t1n[i]).get_fdata()
50
+ t2w = nib.load(self.images_t2w[i]).get_fdata()
51
+ seg = nib.load(self.segs[i]).get_fdata()
52
+ for j in range(t1c.shape[2]):
53
+ if np.sum(t1c[:,:,j]) != 0:
54
+ yield stack_slices(t1c[:,:,j], t2f[:,:,j], t1n[:,:,j], t2w[:,:,j]), convert_to_multichannel(seg[:,:,j])
55
+ else:
56
+ continue
57
+
58
+ def __iter__(self):
59
+ worker_info = torch.utils.data.get_worker_info()
60
+ if worker_info is None:
61
+ self.start = 0
62
+ self.end = len(self.images_t1c)
63
+ else:
64
+ per_worker = int(np.ceil(len(self.images_t1c) / float(worker_info.num_workers)))
65
+ self.worker_id = worker_info.id
66
+ self.start = self.worker_id * per_worker
67
+ self.end = min(self.start + per_worker, len(self.images_t1c))
68
+ return self.stream()
69
+
70
+ def get_MyIterableDataset(folder_name):
71
+
72
+ # check if the folder exists
73
+ if not os.path.exists(folder_name):
74
+ raise FileNotFoundError(f"Folder {folder_name} not found,current working directory: {os.getcwd()}")
75
+
76
+ images_t1c = sorted(glob(os.path.join(folder_name, "*/*-t1c.nii.gz")))
77
+ images_t2f = sorted(glob(os.path.join(folder_name, "*/*-t2f.nii.gz")))
78
+ images_t1n = sorted(glob(os.path.join(folder_name, "*/*-t1n.nii.gz")))
79
+ images_t2w = sorted(glob(os.path.join(folder_name, "*/*-t2w.nii.gz")))
80
+
81
+ segs = sorted(glob(os.path.join(folder_name, "*/*seg.nii.gz")))
82
+
83
+
84
+ number_of_scans = len(images_t1c)
85
+ print(f"Number of scans: {number_of_scans}")
86
+ number_of_slices = nib.load(images_t1c[0]).get_fdata().shape[2]
87
+
88
+ # do a train test split
89
+ train_size = int(0.8 * number_of_scans)
90
+ train_images_t1c = images_t1c[:train_size]
91
+ train_images_t2f = images_t2f[:train_size]
92
+ train_images_t1n = images_t1n[:train_size]
93
+ train_images_t2w = images_t2w[:train_size]
94
+ train_segs = segs[:train_size]
95
+
96
+ test_images_t1c = images_t1c[train_size:]
97
+ test_images_t2f = images_t2f[train_size:]
98
+ test_images_t1n = images_t1n[train_size:]
99
+ test_images_t2w = images_t2w[train_size:]
100
+ test_segs = segs[train_size:]
101
+
102
+ train_dataset = MyIterableDataset(train_images_t1c, train_images_t2f, train_images_t1n, train_images_t2w, train_segs)
103
+ test_dataset = MyIterableDataset(test_images_t1c, test_images_t2f, test_images_t1n, test_images_t2w, test_segs)
104
+
105
+ return train_dataset, test_dataset