Update README.md
Browse files
README.md
CHANGED
@@ -40,18 +40,88 @@ dataset_info:
|
|
40 |
dataset_size: 17635199.0
|
41 |
---
|
42 |
|
|
|
43 |
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
dataset_size: 17635199.0
|
41 |
---
|
42 |
|
43 |
+
# Line Graphics (LG) dataset
|
44 |
|
45 |
+
This is the official page for the LG dataset for our paper [Line Graphics Digitization: A Step Towards Full Automation](https://link.springer.com/chapter/10.1007/978-3-031-41734-4_27).
|
46 |
|
47 |
+
By [Omar Moured](https://www.linkedin.com/in/omar-moured/) et al.
|
48 |
+
|
49 |
+
## Dataset Summary
|
50 |
+
|
51 |
+
The dataset features instance segmentation masks for **400 real line chart images manually labeled 11 categories** by professionals. Images are collected from 5 different prfessions to increase the richfullness.
|
52 |
+
In our paper we studedi two level of segmentations, **coarse-level** where we segment (spines, axis-labels, legend, lines, titles),
|
53 |
+
and **fine-level** where we have for each category an x and y subclasses (except legend and lines) and also each line is segmented seperatly.
|
54 |
+
|
55 |
+
## Category ID Reference
|
56 |
+
```python
|
57 |
+
class_id_mapping = {
|
58 |
+
"Label": 0,
|
59 |
+
"Legend": 1,
|
60 |
+
"Line": 2,
|
61 |
+
"Spine": 3,
|
62 |
+
"Title": 4,
|
63 |
+
"ptitle": 5,
|
64 |
+
"xlabel": 6,
|
65 |
+
"xspine": 7,
|
66 |
+
"xtitle": 8,
|
67 |
+
"ylabel": 9,
|
68 |
+
"yspine": 10,
|
69 |
+
"ytitle": 11
|
70 |
+
}
|
71 |
+
```
|
72 |
+
|
73 |
+
## Dataset structure (train,validation,test)
|
74 |
+
- **images** - contains the PIL image of the chart
|
75 |
+
- **image_name** - image name with PNG extension
|
76 |
+
- **width** - original image width
|
77 |
+
- **height** - original image height
|
78 |
+
- **instances** - contains **n** number of labeled instances, each instance dictionary has {category_id, annotations}. **The annotations are in COCO format**.
|
79 |
+
|
80 |
+
## Sample Usage
|
81 |
+
|
82 |
+
```python
|
83 |
+
from datasets import load_dataset
|
84 |
+
|
85 |
+
# Load the dataset
|
86 |
+
dataset = load_dataset("omoured/line-graphics-dataset")
|
87 |
+
|
88 |
+
# Access the training split
|
89 |
+
train_dataset = dataset["train"]
|
90 |
+
|
91 |
+
# Print sample data
|
92 |
+
print(dataset["train"][0])
|
93 |
+
```
|
94 |
+
|
95 |
+
You can render the masks using `pycocotools` library as follows:
|
96 |
+
```python
|
97 |
+
from pycocotools import mask
|
98 |
+
|
99 |
+
polygon_coords = dataset['train'][0]['instances'][1]['mask']
|
100 |
+
image_width = dataset['validation'][0]['width']
|
101 |
+
image_height = dataset['validation'][0]['height']
|
102 |
+
|
103 |
+
mask_binary = mask.frPyObjects(polygon_coords, image_height, image_width)
|
104 |
+
|
105 |
+
segmentation_mask = mask.decode(mask_binary)
|
106 |
+
```
|
107 |
+
|
108 |
+
## Copyrights
|
109 |
+
This dataset is published under the CC-BY 4.0 license, which allows for unrestricted usage, but it should be cited when used.
|
110 |
+
|
111 |
+
## Citation
|
112 |
+
```bibtex
|
113 |
+
@inproceedings{moured2023line,
|
114 |
+
title={Line Graphics Digitization: A Step Towards Full Automation},
|
115 |
+
author={Moured, Omar and Zhang, Jiaming and Roitberg, Alina and Schwarz, Thorsten and Stiefelhagen, Rainer},
|
116 |
+
booktitle={International Conference on Document Analysis and Recognition},
|
117 |
+
pages={438--453},
|
118 |
+
year={2023},
|
119 |
+
organization={Springer}
|
120 |
+
}
|
121 |
+
```
|
122 |
+
|
123 |
+
## Contact
|
124 |
+
|
125 |
+
If you have any questions or need further assistance with this dataset, please feel free to contact us:
|
126 |
+
|
127 |
+
- **Omar Moured**, omar.moured@kit.edu
|