Datasets:

License:
File size: 18,814 Bytes
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d29632
 
 
 
3e17de3
 
 
d2635d1
 
 
71cf6cc
 
 
732d683
 
 
b4a76e4
 
 
646d44f
 
 
b6eafbc
 
 
df4eaeb
 
 
c2e2caf
 
 
4ad24da
 
 
52974d4
 
 
eb40eea
 
 
d755d1c
 
 
e026d9b
 
 
df5527b
 
 
b188f00
 
 
7127605
 
 
c9570d9
 
 
8ae9ef2
 
 
4c156ff
 
 
4e6c9d8
 
 
0436e29
 
 
abbbc7e
 
 
f4f5efb
 
 
75fb012
 
 
a9a5108
 
 
6a0612c
 
 
8ec0393
 
 
f02da63
 
 
ccd8e8e
 
 
f41ffcc
 
 
6eb6168
 
 
ab1f5a9
 
 
46d4d65
 
 
8de4ce6
 
 
91a6a97
 
 
3768c07
 
 
1e69254
 
 
dbabdc7
 
 
3560b42
 
 
4980345
 
 
2b47f95
 
 
1830ca4
 
 
c10f941
 
 
57d1da1
 
 
52cd770
 
 
ff79bed
 
 
0b5f126
 
 
03f9572
 
 
cd3ab53
 
 
af0ebac
 
 
188bba3
 
 
fffef3a
 
 
a0c3015
 
 
0980505
 
 
83c314d
 
 
9c3e953
 
 
69c4120
 
 
c3e6d7e
 
 
36ca13d
 
 
1afec7a
 
 
f41ffcc
 
 
b1f56f8
 
 
8d64994
 
 
8ae9ef2
 
 
c9570d9
 
 
a492105
 
 
 
 
faa4dea
 
 
443ddf1
8a83f7a
2d29632
 
3e17de3
 
5d0e777
 
d2635d1
 
8ab7be2
 
972c8ce
 
f3b6b53
 
a213fb8
 
71cf6cc
 
4aaa225
 
89b24c2
 
732d683
 
36336ef
 
c1c5b74
 
bcbdf69
 
646d44f
 
28aee33
 
ce7ec2a
 
aecfa6c
 
99f19fb
 
52974d4
 
eb40eea
 
d755d1c
 
92fcac4
 
7127605
 
0d19ecd
 
4c156ff
 
aca10ec
 
0436e29
 
abbbc7e
 
f4f5efb
 
75fb012
 
a9a5108
 
9aadb65
 
6a0612c
 
8ec0393
 
f02da63
 
ccd8e8e
 
6eb6168
 
ab1f5a9
 
46d4d65
 
91a6a97
 
3768c07
 
763867f
 
028adf3
 
dbabdc7
 
3560b42
 
4980345
 
2b47f95
 
b2534bc
 
1830ca4
 
c10f941
 
57d1da1
 
52cd770
 
ff79bed
 
0b5f126
 
dca2d9c
 
41a1871
 
d8ab4ac
 
af0ebac
 
188bba3
 
fffef3a
 
a0c3015
 
36ca13d
 
1afec7a
 
8d64994
 
c9570d9
 
a492105
 
faa4dea
 
 
 
 
 
ed00af0
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed00af0
faa4dea
 
 
 
 
 
 
 
a41d02e
 
 
 
15fabab
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509425d
faa4dea
 
 
fd3d68e
faa4dea
 
 
 
 
 
 
 
 
cfbf644
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
---
license: cc-by-sa-4.0
dataset_info:
  features:
  - name: video_id
    dtype: string
  - name: chunk_idx
    dtype: int64
  - name: chunk_text
    dtype: string
  - name: video_metadata
    dtype: string
  - name: video_language
    dtype: string
  - name: chunk_media
    dtype: string
  splits:
  - name: shard_10339
    num_bytes: 1997009
    num_examples: 631
  - name: shard_10400
    num_bytes: 2638827
    num_examples: 722
  - name: shard_10324
    num_bytes: 1700655
    num_examples: 515
  - name: shard_10418
    num_bytes: 3034319
    num_examples: 947
  - name: shard_1045
    num_bytes: 2042334
    num_examples: 648
  - name: shard_10428
    num_bytes: 2314345
    num_examples: 706
  - name: shard_10435
    num_bytes: 2300183
    num_examples: 677
  - name: shard_10424
    num_bytes: 1839226
    num_examples: 552
  - name: shard_10442
    num_bytes: 1543285
    num_examples: 419
  - name: shard_10411
    num_bytes: 2005599
    num_examples: 604
  - name: shard_10344
    num_bytes: 1796239
    num_examples: 589
  - name: shard_10439
    num_bytes: 1780546
    num_examples: 567
  - name: shard_10351
    num_bytes: 2156111
    num_examples: 677
  - name: shard_10446
    num_bytes: 2117151
    num_examples: 525
  - name: shard_10457
    num_bytes: 1851306
    num_examples: 555
  - name: shard_10464
    num_bytes: 1316832
    num_examples: 440
  - name: shard_10405
    num_bytes: 1820556
    num_examples: 613
  - name: shard_10471
    num_bytes: 2397197
    num_examples: 682
  - name: shard_10298
    num_bytes: 2823620
    num_examples: 791
  - name: shard_10311
    num_bytes: 4072154
    num_examples: 1148
  - name: shard_10456
    num_bytes: 1279577
    num_examples: 430
  - name: shard_1035
    num_bytes: 2102014
    num_examples: 687
  - name: shard_10430
    num_bytes: 2293697
    num_examples: 686
  - name: shard_10469
    num_bytes: 2521584
    num_examples: 743
  - name: shard_10360
    num_bytes: 2329044
    num_examples: 680
  - name: shard_10443
    num_bytes: 2222280
    num_examples: 641
  - name: shard_10453
    num_bytes: 3277011
    num_examples: 931
  - name: shard_10481
    num_bytes: 2163505
    num_examples: 709
  - name: shard_10482
    num_bytes: 1885620
    num_examples: 503
  - name: shard_10365
    num_bytes: 1789825
    num_examples: 453
  - name: shard_10475
    num_bytes: 2290432
    num_examples: 635
  - name: shard_10315
    num_bytes: 2911312
    num_examples: 743
  - name: shard_10444
    num_bytes: 1915386
    num_examples: 550
  - name: shard_10493
    num_bytes: 2240928
    num_examples: 752
  - name: shard_10433
    num_bytes: 1728758
    num_examples: 554
  - name: shard_10486
    num_bytes: 1946726
    num_examples: 564
  - name: shard_1037
    num_bytes: 1622214
    num_examples: 464
  - name: shard_1049
    num_bytes: 2142677
    num_examples: 691
  - name: shard_10507
    num_bytes: 1404701
    num_examples: 444
  - name: shard_10479
    num_bytes: 2668644
    num_examples: 706
  - name: shard_10543
    num_bytes: 1567113
    num_examples: 498
  - name: shard_10494
    num_bytes: 2572169
    num_examples: 834
  - name: shard_10565
    num_bytes: 1569669
    num_examples: 522
  - name: shard_10506
    num_bytes: 2352799
    num_examples: 689
  - name: shard_10497
    num_bytes: 2130672
    num_examples: 640
  - name: shard_10503
    num_bytes: 2821589
    num_examples: 657
  - name: shard_10488
    num_bytes: 2610372
    num_examples: 824
  - name: shard_1050
    num_bytes: 2380295
    num_examples: 610
  - name: shard_10379
    num_bytes: 2121338
    num_examples: 596
  - name: shard_10258
    num_bytes: 2899614
    num_examples: 881
  - name: shard_10521
    num_bytes: 1751228
    num_examples: 578
  - name: shard_10477
    num_bytes: 1987455
    num_examples: 610
  - name: shard_10510
    num_bytes: 1809438
    num_examples: 536
  - name: shard_10518
    num_bytes: 1554268
    num_examples: 534
  - name: shard_10514
    num_bytes: 2398872
    num_examples: 659
  - name: shard_10366
    num_bytes: 2686341
    num_examples: 715
  - name: shard_10206
    num_bytes: 3714862
    num_examples: 891
  - name: shard_10462
    num_bytes: 3202984
    num_examples: 912
  - name: shard_10512
    num_bytes: 2058849
    num_examples: 697
  - name: shard_10558
    num_bytes: 2065125
    num_examples: 572
  - name: shard_10383
    num_bytes: 2580580
    num_examples: 859
  - name: shard_10550
    num_bytes: 2617491
    num_examples: 643
  - name: shard_10529
    num_bytes: 1970611
    num_examples: 633
  - name: shard_10396
    num_bytes: 3458836
    num_examples: 956
  - name: shard_10525
    num_bytes: 3210740
    num_examples: 892
  - name: shard_10289
    num_bytes: 3470407
    num_examples: 963
  - name: shard_10536
    num_bytes: 2352902
    num_examples: 649
  - name: shard_10531
    num_bytes: 2125990
    num_examples: 618
  download_size: 81866931
  dataset_size: 154326038
configs:
- config_name: default
  data_files:
  - split: train
    path: data/*.parquet
  - split: shard_10339
    path: data/shard_10339-*
  - split: shard_10400
    path: data/shard_10400-*
  - split: shard_10424
    path: data/shard_10424-*
  - split: shard_10324
    path: data/shard_10324-*
  - split: shard_10428
    path: data/shard_10428-*
  - split: shard_10258
    path: data/shard_10258-*
  - split: shard_10396
    path: data/shard_10396-*
  - split: shard_10411
    path: data/shard_10411-*
  - split: shard_10418
    path: data/shard_10418-*
  - split: shard_10206
    path: data/shard_10206-*
  - split: shard_10442
    path: data/shard_10442-*
  - split: shard_1045
    path: data/shard_1045-*
  - split: shard_10289
    path: data/shard_10289-*
  - split: shard_10298
    path: data/shard_10298-*
  - split: shard_10344
    path: data/shard_10344-*
  - split: shard_10435
    path: data/shard_10435-*
  - split: shard_10311
    path: data/shard_10311-*
  - split: shard_10405
    path: data/shard_10405-*
  - split: shard_10464
    path: data/shard_10464-*
  - split: shard_10457
    path: data/shard_10457-*
  - split: shard_10439
    path: data/shard_10439-*
  - split: shard_10351
    path: data/shard_10351-*
  - split: shard_10446
    path: data/shard_10446-*
  - split: shard_10315
    path: data/shard_10315-*
  - split: shard_10471
    path: data/shard_10471-*
  - split: shard_1035
    path: data/shard_1035-*
  - split: shard_10456
    path: data/shard_10456-*
  - split: shard_10486
    path: data/shard_10486-*
  - split: shard_10430
    path: data/shard_10430-*
  - split: shard_10469
    path: data/shard_10469-*
  - split: shard_10360
    path: data/shard_10360-*
  - split: shard_10443
    path: data/shard_10443-*
  - split: shard_10453
    path: data/shard_10453-*
  - split: shard_10462
    path: data/shard_10462-*
  - split: shard_10481
    path: data/shard_10481-*
  - split: shard_10482
    path: data/shard_10482-*
  - split: shard_10365
    path: data/shard_10365-*
  - split: shard_10475
    path: data/shard_10475-*
  - split: shard_10444
    path: data/shard_10444-*
  - split: shard_10493
    path: data/shard_10493-*
  - split: shard_10433
    path: data/shard_10433-*
  - split: shard_1037
    path: data/shard_1037-*
  - split: shard_1049
    path: data/shard_1049-*
  - split: shard_10507
    path: data/shard_10507-*
  - split: shard_10521
    path: data/shard_10521-*
  - split: shard_10479
    path: data/shard_10479-*
  - split: shard_10543
    path: data/shard_10543-*
  - split: shard_10494
    path: data/shard_10494-*
  - split: shard_10565
    path: data/shard_10565-*
  - split: shard_10558
    path: data/shard_10558-*
  - split: shard_10506
    path: data/shard_10506-*
  - split: shard_10497
    path: data/shard_10497-*
  - split: shard_10503
    path: data/shard_10503-*
  - split: shard_10488
    path: data/shard_10488-*
  - split: shard_1050
    path: data/shard_1050-*
  - split: shard_10379
    path: data/shard_10379-*
  - split: shard_10366
    path: data/shard_10366-*
  - split: shard_10512
    path: data/shard_10512-*
  - split: shard_10529
    path: data/shard_10529-*
  - split: shard_10477
    path: data/shard_10477-*
  - split: shard_10510
    path: data/shard_10510-*
  - split: shard_10518
    path: data/shard_10518-*
  - split: shard_10514
    path: data/shard_10514-*
  - split: shard_10383
    path: data/shard_10383-*
  - split: shard_10550
    path: data/shard_10550-*
  - split: shard_10525
    path: data/shard_10525-*
  - split: shard_10536
    path: data/shard_10536-*
  - split: shard_10531
    path: data/shard_10531-*
---

![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)

# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. **We are in the process of uploading so please be patient.** The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.

## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```

- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and  text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). 
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. 

- Data Components:
  - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. 
  - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. 
  - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.

- Dataset Size:
  - **About 7,000,000 records.**
  - **About 15,000,000 images, each captioned with FLorence-2.**
  - **About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.**
  - **Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.**
  - **About 14TB in total.**

## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes timestamps and alignment between modalities.

## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and contextual keywords, provide linguistic alignment.

## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns.

------

## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the snippets of these videos here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. 
This dataset has only been lightly filtered for safety by removing data records with high proportions of children related words AND high proportions of sexual or violence related words. Moreover, we disclaim all warranties, whether express or implied and all laibilities with respect to infringment, fitness for a particular puprpose, or otherwise.


## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP, CLAP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.

## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias. 


## Ethical Considerations
The dataset was built under the principles of fair use and CC-BY licensing. Its creation strives to align with the spirit of the  EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.

------

## Policy for Managing Video Deletion Requests

Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.

- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.

- **2. Deletion Request Process:**
  - Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en). 
  - Then verifying that it has been removed from YouTube and providing this feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
  - Requests must demonstrate that the video is no longer publicly available on YouTube.
  - We will remove the confirmed videos in the next release of this dataset.

- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
The rights and wishes of content owners, including their ability to remove their videos from public availability.
The community's need for robust datasets for training and research.
The spirit of the CC-BY license, which permits redistribution and use with proper attribution.

- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.

- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.

- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.

- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.

------
## Related Materials:

  - If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [https://huggingface.co/datasets/PleIAs/YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
  - Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [https://huggingface.co/datasets/HuggingFaceFV/finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)

## Acknowledgement and Thanks

This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of the EUHPC grant EUHPC_E03_068 for the Leonardo supercomputers resources in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank EuroHPC and Cineca, as well as Huggingface and the open source community for their support.

## About the Contributors:

- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io  
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.  
- [**Ontocord**](https://www.ontocord.ai/ ) is a technology company focused on legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.  
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives.  We believe everyone deserves to harness the power of personal intelligence. 
- And many others ...
  
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```