File size: 22,908 Bytes
1b317da
 
 
 
 
afcdcc7
1b317da
 
 
afcdcc7
3eae3a6
1b317da
 
 
 
 
 
 
da10afc
1b317da
 
d297875
1b317da
 
 
 
20571dc
 
f45b3ca
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0d2a2
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0d2a2
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0d2a2
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
20571dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f12f57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc0d2a2
 
 
5f12f57
 
1b317da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f45b3ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- ar
- en
- zh
license:
- cc-by-nc-nd-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
- part-of-speech
- coreference-resolution
- parsing
- lemmatization
- word-sense-disambiguation
paperswithcode_id: ontonotes-5-0
pretty_name: CoNLL2012 shared task data based on OntoNotes 5.0
tags:
- semantic-role-labeling
dataset_info:
- config_name: english_v4
  features:
  - name: document_id
    dtype: string
  - name: sentences
    list:
    - name: part_id
      dtype: int32
    - name: words
      sequence: string
    - name: pos_tags
      sequence:
        class_label:
          names:
            '0': XX
            '1': '``'
            '2': $
            '3': ''''''
            '4': ','
            '5': -LRB-
            '6': -RRB-
            '7': .
            '8': ':'
            '9': ADD
            '10': AFX
            '11': CC
            '12': CD
            '13': DT
            '14': EX
            '15': FW
            '16': HYPH
            '17': IN
            '18': JJ
            '19': JJR
            '20': JJS
            '21': LS
            '22': MD
            '23': NFP
            '24': NN
            '25': NNP
            '26': NNPS
            '27': NNS
            '28': PDT
            '29': POS
            '30': PRP
            '31': PRP$
            '32': RB
            '33': RBR
            '34': RBS
            '35': RP
            '36': SYM
            '37': TO
            '38': UH
            '39': VB
            '40': VBD
            '41': VBG
            '42': VBN
            '43': VBP
            '44': VBZ
            '45': WDT
            '46': WP
            '47': WP$
            '48': WRB
    - name: parse_tree
      dtype: string
    - name: predicate_lemmas
      sequence: string
    - name: predicate_framenet_ids
      sequence: string
    - name: word_senses
      sequence: float32
    - name: speaker
      dtype: string
    - name: named_entities
      sequence:
        class_label:
          names:
            '0': O
            '1': B-PERSON
            '2': I-PERSON
            '3': B-NORP
            '4': I-NORP
            '5': B-FAC
            '6': I-FAC
            '7': B-ORG
            '8': I-ORG
            '9': B-GPE
            '10': I-GPE
            '11': B-LOC
            '12': I-LOC
            '13': B-PRODUCT
            '14': I-PRODUCT
            '15': B-DATE
            '16': I-DATE
            '17': B-TIME
            '18': I-TIME
            '19': B-PERCENT
            '20': I-PERCENT
            '21': B-MONEY
            '22': I-MONEY
            '23': B-QUANTITY
            '24': I-QUANTITY
            '25': B-ORDINAL
            '26': I-ORDINAL
            '27': B-CARDINAL
            '28': I-CARDINAL
            '29': B-EVENT
            '30': I-EVENT
            '31': B-WORK_OF_ART
            '32': I-WORK_OF_ART
            '33': B-LAW
            '34': I-LAW
            '35': B-LANGUAGE
            '36': I-LANGUAGE
    - name: srl_frames
      list:
      - name: verb
        dtype: string
      - name: frames
        sequence: string
    - name: coref_spans
      sequence:
        sequence: int32
        length: 3
  splits:
  - name: train
    num_bytes: 112246121
    num_examples: 1940
  - name: validation
    num_bytes: 14116925
    num_examples: 222
  - name: test
    num_bytes: 14709044
    num_examples: 222
  download_size: 193644139
  dataset_size: 141072090
- config_name: chinese_v4
  features:
  - name: document_id
    dtype: string
  - name: sentences
    list:
    - name: part_id
      dtype: int32
    - name: words
      sequence: string
    - name: pos_tags
      sequence:
        class_label:
          names:
            '0': X
            '1': AD
            '2': AS
            '3': BA
            '4': CC
            '5': CD
            '6': CS
            '7': DEC
            '8': DEG
            '9': DER
            '10': DEV
            '11': DT
            '12': ETC
            '13': FW
            '14': IJ
            '15': INF
            '16': JJ
            '17': LB
            '18': LC
            '19': M
            '20': MSP
            '21': NN
            '22': NR
            '23': NT
            '24': OD
            '25': 'ON'
            '26': P
            '27': PN
            '28': PU
            '29': SB
            '30': SP
            '31': URL
            '32': VA
            '33': VC
            '34': VE
            '35': VV
    - name: parse_tree
      dtype: string
    - name: predicate_lemmas
      sequence: string
    - name: predicate_framenet_ids
      sequence: string
    - name: word_senses
      sequence: float32
    - name: speaker
      dtype: string
    - name: named_entities
      sequence:
        class_label:
          names:
            '0': O
            '1': B-PERSON
            '2': I-PERSON
            '3': B-NORP
            '4': I-NORP
            '5': B-FAC
            '6': I-FAC
            '7': B-ORG
            '8': I-ORG
            '9': B-GPE
            '10': I-GPE
            '11': B-LOC
            '12': I-LOC
            '13': B-PRODUCT
            '14': I-PRODUCT
            '15': B-DATE
            '16': I-DATE
            '17': B-TIME
            '18': I-TIME
            '19': B-PERCENT
            '20': I-PERCENT
            '21': B-MONEY
            '22': I-MONEY
            '23': B-QUANTITY
            '24': I-QUANTITY
            '25': B-ORDINAL
            '26': I-ORDINAL
            '27': B-CARDINAL
            '28': I-CARDINAL
            '29': B-EVENT
            '30': I-EVENT
            '31': B-WORK_OF_ART
            '32': I-WORK_OF_ART
            '33': B-LAW
            '34': I-LAW
            '35': B-LANGUAGE
            '36': I-LANGUAGE
    - name: srl_frames
      list:
      - name: verb
        dtype: string
      - name: frames
        sequence: string
    - name: coref_spans
      sequence:
        sequence: int32
        length: 3
  splits:
  - name: train
    num_bytes: 77195698
    num_examples: 1391
  - name: validation
    num_bytes: 10828169
    num_examples: 172
  - name: test
    num_bytes: 9585138
    num_examples: 166
  download_size: 193644139
  dataset_size: 97609005
- config_name: arabic_v4
  features:
  - name: document_id
    dtype: string
  - name: sentences
    list:
    - name: part_id
      dtype: int32
    - name: words
      sequence: string
    - name: pos_tags
      sequence: string
    - name: parse_tree
      dtype: string
    - name: predicate_lemmas
      sequence: string
    - name: predicate_framenet_ids
      sequence: string
    - name: word_senses
      sequence: float32
    - name: speaker
      dtype: string
    - name: named_entities
      sequence:
        class_label:
          names:
            '0': O
            '1': B-PERSON
            '2': I-PERSON
            '3': B-NORP
            '4': I-NORP
            '5': B-FAC
            '6': I-FAC
            '7': B-ORG
            '8': I-ORG
            '9': B-GPE
            '10': I-GPE
            '11': B-LOC
            '12': I-LOC
            '13': B-PRODUCT
            '14': I-PRODUCT
            '15': B-DATE
            '16': I-DATE
            '17': B-TIME
            '18': I-TIME
            '19': B-PERCENT
            '20': I-PERCENT
            '21': B-MONEY
            '22': I-MONEY
            '23': B-QUANTITY
            '24': I-QUANTITY
            '25': B-ORDINAL
            '26': I-ORDINAL
            '27': B-CARDINAL
            '28': I-CARDINAL
            '29': B-EVENT
            '30': I-EVENT
            '31': B-WORK_OF_ART
            '32': I-WORK_OF_ART
            '33': B-LAW
            '34': I-LAW
            '35': B-LANGUAGE
            '36': I-LANGUAGE
    - name: srl_frames
      list:
      - name: verb
        dtype: string
      - name: frames
        sequence: string
    - name: coref_spans
      sequence:
        sequence: int32
        length: 3
  splits:
  - name: train
    num_bytes: 42017761
    num_examples: 359
  - name: validation
    num_bytes: 4859292
    num_examples: 44
  - name: test
    num_bytes: 4900664
    num_examples: 44
  download_size: 193644139
  dataset_size: 51777717
- config_name: english_v12
  features:
  - name: document_id
    dtype: string
  - name: sentences
    list:
    - name: part_id
      dtype: int32
    - name: words
      sequence: string
    - name: pos_tags
      sequence:
        class_label:
          names:
            '0': XX
            '1': '``'
            '2': $
            '3': ''''''
            '4': '*'
            '5': ','
            '6': -LRB-
            '7': -RRB-
            '8': .
            '9': ':'
            '10': ADD
            '11': AFX
            '12': CC
            '13': CD
            '14': DT
            '15': EX
            '16': FW
            '17': HYPH
            '18': IN
            '19': JJ
            '20': JJR
            '21': JJS
            '22': LS
            '23': MD
            '24': NFP
            '25': NN
            '26': NNP
            '27': NNPS
            '28': NNS
            '29': PDT
            '30': POS
            '31': PRP
            '32': PRP$
            '33': RB
            '34': RBR
            '35': RBS
            '36': RP
            '37': SYM
            '38': TO
            '39': UH
            '40': VB
            '41': VBD
            '42': VBG
            '43': VBN
            '44': VBP
            '45': VBZ
            '46': VERB
            '47': WDT
            '48': WP
            '49': WP$
            '50': WRB
    - name: parse_tree
      dtype: string
    - name: predicate_lemmas
      sequence: string
    - name: predicate_framenet_ids
      sequence: string
    - name: word_senses
      sequence: float32
    - name: speaker
      dtype: string
    - name: named_entities
      sequence:
        class_label:
          names:
            '0': O
            '1': B-PERSON
            '2': I-PERSON
            '3': B-NORP
            '4': I-NORP
            '5': B-FAC
            '6': I-FAC
            '7': B-ORG
            '8': I-ORG
            '9': B-GPE
            '10': I-GPE
            '11': B-LOC
            '12': I-LOC
            '13': B-PRODUCT
            '14': I-PRODUCT
            '15': B-DATE
            '16': I-DATE
            '17': B-TIME
            '18': I-TIME
            '19': B-PERCENT
            '20': I-PERCENT
            '21': B-MONEY
            '22': I-MONEY
            '23': B-QUANTITY
            '24': I-QUANTITY
            '25': B-ORDINAL
            '26': I-ORDINAL
            '27': B-CARDINAL
            '28': I-CARDINAL
            '29': B-EVENT
            '30': I-EVENT
            '31': B-WORK_OF_ART
            '32': I-WORK_OF_ART
            '33': B-LAW
            '34': I-LAW
            '35': B-LANGUAGE
            '36': I-LANGUAGE
    - name: srl_frames
      list:
      - name: verb
        dtype: string
      - name: frames
        sequence: string
    - name: coref_spans
      sequence:
        sequence: int32
        length: 3
  splits:
  - name: train
    num_bytes: 174173192
    num_examples: 10539
  - name: validation
    num_bytes: 24264804
    num_examples: 1370
  - name: test
    num_bytes: 18254144
    num_examples: 1200
  download_size: 193644139
  dataset_size: 216692140
---

# Dataset Card for CoNLL2012 shared task data based on OntoNotes 5.0

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [CoNLL-2012 Shared Task](https://conll.cemantix.org/2012/data.html), [Author's page](https://cemantix.org/data/ontonotes.html)
- **Repository:** [Mendeley](https://data.mendeley.com/datasets/zmycy7t9h9)
- **Paper:** [Towards Robust Linguistic Analysis using OntoNotes](https://aclanthology.org/W13-3516/)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.

This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).

The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.

See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)

For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above. 

### Supported Tasks and Leaderboards

- [Named Entity Recognition on Ontonotes v5 (English)](https://paperswithcode.com/sota/named-entity-recognition-ner-on-ontonotes-v5)
- [Coreference Resolution on OntoNotes](https://paperswithcode.com/sota/coreference-resolution-on-ontonotes)
- [Semantic Role Labeling on OntoNotes](https://paperswithcode.com/sota/semantic-role-labeling-on-ontonotes)
- ...

### Languages

V4 data for Arabic, Chinese, English, and V12 data for English

## Dataset Structure

### Data Instances

```
{
  {'document_id': 'nw/wsj/23/wsj_2311',
 'sentences': [{'part_id': 0,
                'words': ['CONCORDE', 'trans-Atlantic', 'flights', 'are', '$', '2, 'to', 'Paris', 'and', '$', '3, 'to', 'London', '.']},
                'pos_tags': [25, 18, 27, 43, 2, 12, 17, 25, 11, 2, 12, 17, 25, 7],
                'parse_tree': '(TOP(S(NP (NNP CONCORDE)  (JJ trans-Atlantic)  (NNS flights) )(VP (VBP are) (NP(NP(NP ($ $)  (CD 2,400) )(PP (IN to) (NP (NNP Paris) ))) (CC and) (NP(NP ($ $)  (CD 3,200) )(PP (IN to) (NP (NNP London) ))))) (. .) ))',
                'predicate_lemmas': [None, None, None, 'be', None, None, None, None, None, None, None, None, None, None],
                'predicate_framenet_ids': [None, None, None, '01', None, None, None, None, None, None, None, None, None, None],
                'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None, None],
                'speaker': None,
                'named_entities': [7, 6, 0, 0, 0, 15, 0, 5, 0, 0, 15, 0, 5, 0],
                'srl_frames': [{'frames': ['B-ARG1', 'I-ARG1', 'I-ARG1', 'B-V', 'B-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'I-ARG2', 'O'],
                                'verb': 'are'}],
                'coref_spans': [],
               {'part_id': 0,
                'words': ['In', 'a', 'Centennial', 'Journal', 'article', 'Oct.', '5', ',', 'the', 'fares', 'were', 'reversed', '.']}]}
                'pos_tags': [17, 13, 25, 25, 24, 25, 12, 4, 13, 27, 40, 42, 7],
                'parse_tree': '(TOP(S(PP (IN In) (NP (DT a) (NML (NNP Centennial)  (NNP Journal) ) (NN article) ))(NP (NNP Oct.)  (CD 5) ) (, ,) (NP (DT the)  (NNS fares) )(VP (VBD were) (VP (VBN reversed) )) (. .) ))',
                'predicate_lemmas': [None, None, None, None, None, None, None, None, None, None, None, 'reverse', None],
                'predicate_framenet_ids': [None, None, None, None, None, None, None, None, None, None, None, '01', None],
                'word_senses': [None, None, None, None, None, None, None, None, None, None, None, None, None],
                'speaker': None,
                'named_entities': [0, 0, 4, 22, 0, 12, 30, 0, 0, 0, 0, 0, 0],
                'srl_frames': [{'frames': ['B-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'I-ARGM-LOC', 'B-ARGM-TMP', 'I-ARGM-TMP', 'O', 'B-ARG1', 'I-ARG1', 'O', 'B-V', 'O'],
                                'verb': 'reversed'}],
                'coref_spans': [],
}
```

### Data Fields

- **`document_id`** (*`str`*): This is a variation on the document filename
- **`sentences`** (*`List[Dict]`*): All sentences of the same document are in a single example for the convenience of concatenating sentences.

Every element in `sentences` is a *`Dict`* composed of the following data fields:
- **`part_id`** (*`int`*) : Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
- **`words`** (*`List[str]`*) :
- **`pos_tags`** (*`List[ClassLabel]` or `List[str]`*) : This is the Penn-Treebank-style part of speech. When parse information is missing, all parts of speech except the one for which there is some sense or proposition annotation are marked with a XX tag. The verb is marked with just a VERB tag.
  - tag set : Note tag sets below are founded by scanning all the data, and I found it seems to be a little bit different from officially stated tag sets. See official documents in the [Mendeley repo](https://data.mendeley.com/datasets/zmycy7t9h9) 
    - arabic : str. Because pos tag in Arabic is compounded and complex, hard to represent it by `ClassLabel`
    - chinese v4 : `datasets.ClassLabel(num_classes=36, names=["X", "AD", "AS", "BA", "CC", "CD", "CS", "DEC", "DEG", "DER", "DEV", "DT", "ETC", "FW", "IJ", "INF", "JJ", "LB", "LC", "M", "MSP", "NN", "NR", "NT", "OD", "ON", "P", "PN", "PU", "SB", "SP", "URL", "VA", "VC", "VE", "VV",])`, where `X` is for pos tag missing
    - english v4 : `datasets.ClassLabel(num_classes=49, names=["XX", "``", "$", "''", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`".
    - english v12 : `datasets.ClassLabel(num_classes=51, names="english_v12": ["XX", "``", "$", "''", "*", ",", "-LRB-", "-RRB-", ".", ":", "ADD", "AFX", "CC", "CD", "DT", "EX", "FW", "HYPH", "IN", "JJ", "JJR", "JJS", "LS", "MD", "NFP", "NN", "NNP", "NNPS", "NNS", "PDT", "POS", "PRP", "PRP$", "RB", "RBR", "RBS", "RP", "SYM", "TO", "UH", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ", "VERB", "WDT", "WP", "WP$", "WRB",])`, where `XX` is for pos tag missing, and `-LRB-`/`-RRB-` is "`(`" / "`)`".
- **`parse_tree`** (*`Optional[str]`*) : An serialized NLTK Tree representing the parse. It includes POS tags as pre-terminal nodes. When the parse information is missing, the parse will be `None`.
- **`predicate_lemmas`** (*`List[Optional[str]]`*) : The predicate lemma of the words for which we have semantic role information or word sense information. All other indices are `None`.
- **`predicate_framenet_ids`** (*`List[Optional[int]]`*) : The PropBank frameset ID of the lemmas in predicate_lemmas, or `None`.
- **`word_senses`** (*`List[Optional[float]]`*) : The word senses for the words in the sentence, or None. These are floats because the word sense can have values after the decimal, like 1.1.
- **`speaker`** (*`Optional[str]`*) : This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. When it is not available, it will be `None`.
- **`named_entities`** (*`List[ClassLabel]`*) : The BIO tags for named entities in the sentence. 
  - tag set : `datasets.ClassLabel(num_classes=37, names=["O", "B-PERSON", "I-PERSON", "B-NORP", "I-NORP", "B-FAC", "I-FAC", "B-ORG", "I-ORG", "B-GPE", "I-GPE", "B-LOC", "I-LOC", "B-PRODUCT", "I-PRODUCT", "B-DATE", "I-DATE", "B-TIME", "I-TIME", "B-PERCENT", "I-PERCENT", "B-MONEY", "I-MONEY", "B-QUANTITY", "I-QUANTITY", "B-ORDINAL", "I-ORDINAL", "B-CARDINAL", "I-CARDINAL", "B-EVENT", "I-EVENT", "B-WORK_OF_ART", "I-WORK_OF_ART", "B-LAW", "I-LAW", "B-LANGUAGE", "I-LANGUAGE",])`
- **`srl_frames`** (*`List[{"word":str, "frames":List[str]}]`*) : A dictionary keyed by the verb in the sentence for the given Propbank frame labels, in a BIO format.
- **`coref spans`** (*`List[List[int]]`*) : The spans for entity mentions involved in coreference resolution within the sentence. Each element is a tuple composed of (cluster_id, start_index, end_index). Indices are inclusive.

### Data Splits

Each dataset (arabic_v4, chinese_v4, english_v4, english_v12) has 3 splits: _train_, _validation_, and _test_

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{pradhan-etal-2013-towards,
    title = "Towards Robust Linguistic Analysis using {O}nto{N}otes",
    author = {Pradhan, Sameer  and
      Moschitti, Alessandro  and
      Xue, Nianwen  and
      Ng, Hwee Tou  and
      Bj{\"o}rkelund, Anders  and
      Uryupina, Olga  and
      Zhang, Yuchen  and
      Zhong, Zhi},
    booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
    month = aug,
    year = "2013",
    address = "Sofia, Bulgaria",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W13-3516",
    pages = "143--152",
}
```

### Contributions

Thanks to [@richarddwang](https://github.com/richarddwang) for adding this dataset.