Datasets:
File size: 32,027 Bytes
1b317da b98072b 1b317da b98072b 1b317da b98072b 1b317da b98072b 1b317da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""CoNLL2012 shared task data based on OntoNotes 5.0"""
import glob
import os
from collections import defaultdict
from typing import DefaultDict, Iterator, List, Optional, Tuple
import datasets
_CITATION = """\
@inproceedings{pradhan-etal-2013-towards,
title = "Towards Robust Linguistic Analysis using {O}nto{N}otes",
author = {Pradhan, Sameer and
Moschitti, Alessandro and
Xue, Nianwen and
Ng, Hwee Tou and
Bj{\"o}rkelund, Anders and
Uryupina, Olga and
Zhang, Yuchen and
Zhong, Zhi},
booktitle = "Proceedings of the Seventeenth Conference on Computational Natural Language Learning",
month = aug,
year = "2013",
address = "Sofia, Bulgaria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W13-3516",
pages = "143--152",
}
Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, \
Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, \
Mohammed El-Bachouti, Robert Belvin, Ann Houston. \
OntoNotes Release 5.0 LDC2013T19. \
Web Download. Philadelphia: Linguistic Data Consortium, 2013.
"""
_DESCRIPTION = """\
OntoNotes v5.0 is the final version of OntoNotes corpus, and is a large-scale, multi-genre,
multilingual corpus manually annotated with syntactic, semantic and discourse information.
This dataset is the version of OntoNotes v5.0 extended and is used in the CoNLL-2012 shared task.
It includes v4 train/dev and v9 test data for English/Chinese/Arabic and corrected version v12 train/dev/test data (English only).
The source of data is the Mendeley Data repo [ontonotes-conll2012](https://data.mendeley.com/datasets/zmycy7t9h9), which seems to be as the same as the official data, but users should use this dataset on their own responsibility.
See also summaries from paperwithcode, [OntoNotes 5.0](https://paperswithcode.com/dataset/ontonotes-5-0) and [CoNLL-2012](https://paperswithcode.com/dataset/conll-2012-1)
For more detailed info of the dataset like annotation, tag set, etc., you can refer to the documents in the Mendeley repo mentioned above.
"""
_URL = "https://data.mendeley.com/public-files/datasets/zmycy7t9h9/files/b078e1c4-f7a4-4427-be7f-9389967831ef/file_downloaded"
class Conll2012Ontonotesv5Config(datasets.BuilderConfig):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset."""
def __init__(self, language=None, conll_version=None, **kwargs):
"""BuilderConfig for the CoNLL formatted OntoNotes dataset.
Args:
language: string, one of the language {"english", "chinese", "arabic"} .
conll_version: string, "v4" or "v12". Note there is only English v12.
**kwargs: keyword arguments forwarded to super.
"""
assert language in ["english", "chinese", "arabic"]
assert conll_version in ["v4", "v12"]
if conll_version == "v12":
assert language == "english"
super(Conll2012Ontonotesv5Config, self).__init__(
name=f"{language}_{conll_version}",
description=f"{conll_version} of CoNLL formatted OntoNotes dataset for {language}.",
version=datasets.Version("1.0.0"), # hf dataset script version
**kwargs,
)
self.language = language
self.conll_version = conll_version
class Conll2012Ontonotesv5(datasets.GeneratorBasedBuilder):
"""The CoNLL formatted OntoNotes dataset."""
BUILDER_CONFIGS = [
Conll2012Ontonotesv5Config(
language=lang,
conll_version="v4",
)
for lang in ["english", "chinese", "arabic"]
] + [
Conll2012Ontonotesv5Config(
language="english",
conll_version="v12",
)
]
def _info(self):
lang = self.config.language
conll_version = self.config.conll_version
if lang == "arabic":
pos_tag_feature = datasets.Value("string")
else:
tag_set = _POS_TAGS[f"{lang}_{conll_version}"]
pos_tag_feature = datasets.ClassLabel(num_classes=len(tag_set), names=tag_set)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"document_id": datasets.Value("string"),
"sentences": [
{
"part_id": datasets.Value("int32"),
"words": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(pos_tag_feature),
"parse_tree": datasets.Value("string"),
"predicate_lemmas": datasets.Sequence(datasets.Value("string")),
"predicate_framenet_ids": datasets.Sequence(datasets.Value("string")),
"word_senses": datasets.Sequence(datasets.Value("float32")),
"speaker": datasets.Value("string"),
"named_entities": datasets.Sequence(
datasets.ClassLabel(num_classes=37, names=_NAMED_ENTITY_TAGS)
),
"srl_frames": [
{
"verb": datasets.Value("string"),
"frames": datasets.Sequence(datasets.Value("string")),
}
],
"coref_spans": datasets.Sequence(datasets.Sequence(datasets.Value("int32"), length=3)),
}
],
}
),
homepage="https://conll.cemantix.org/2012/introduction.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
lang = self.config.language
conll_version = self.config.conll_version
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, f"conll-2012/{conll_version}/data")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"train/data/{lang}")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"development/data/{lang}")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"conll_files_directory": os.path.join(data_dir, f"test/data/{lang}")},
),
]
def _generate_examples(self, conll_files_directory):
conll_files = sorted(glob.glob(os.path.join(conll_files_directory, "**/*gold_conll"), recursive=True))
for idx, conll_file in enumerate(conll_files):
sentences = []
for sent in Ontonotes().sentence_iterator(conll_file):
document_id = sent.document_id
sentences.append(
{
"part_id": sent.sentence_id, # should be part id, according to https://conll.cemantix.org/2012/data.html
"words": sent.words,
"pos_tags": sent.pos_tags,
"parse_tree": sent.parse_tree,
"predicate_lemmas": sent.predicate_lemmas,
"predicate_framenet_ids": sent.predicate_framenet_ids,
"word_senses": sent.word_senses,
"speaker": sent.speakers[0],
"named_entities": sent.named_entities,
"srl_frames": [{"verb": f[0], "frames": f[1]} for f in sent.srl_frames],
"coref_spans": [(c[0], *c[1]) for c in sent.coref_spans],
}
)
yield idx, {"document_id": document_id, "sentences": sentences}
# --------------------------------------------------------------------------------------------------------
# Tag set
_NAMED_ENTITY_TAGS = [
"O", # out of named entity
"B-PERSON",
"I-PERSON",
"B-NORP",
"I-NORP",
"B-FAC", # FACILITY
"I-FAC",
"B-ORG", # ORGANIZATION
"I-ORG",
"B-GPE",
"I-GPE",
"B-LOC",
"I-LOC",
"B-PRODUCT",
"I-PRODUCT",
"B-DATE",
"I-DATE",
"B-TIME",
"I-TIME",
"B-PERCENT",
"I-PERCENT",
"B-MONEY",
"I-MONEY",
"B-QUANTITY",
"I-QUANTITY",
"B-ORDINAL",
"I-ORDINAL",
"B-CARDINAL",
"I-CARDINAL",
"B-EVENT",
"I-EVENT",
"B-WORK_OF_ART",
"I-WORK_OF_ART",
"B-LAW",
"I-LAW",
"B-LANGUAGE",
"I-LANGUAGE",
]
_POS_TAGS = {
"english_v4": [
"XX", # missing
"``",
"$",
"''",
",",
"-LRB-", # (
"-RRB-", # )
".",
":",
"ADD",
"AFX",
"CC",
"CD",
"DT",
"EX",
"FW",
"HYPH",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NFP",
"NN",
"NNP",
"NNPS",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB",
], # 49
"english_v12": [
"XX", # misssing
"``",
"$",
"''",
"*",
",",
"-LRB-", # (
"-RRB-", # )
".",
":",
"ADD",
"AFX",
"CC",
"CD",
"DT",
"EX",
"FW",
"HYPH",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NFP",
"NN",
"NNP",
"NNPS",
"NNS",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"VERB",
"WDT",
"WP",
"WP$",
"WRB",
], # 51
"chinese_v4": [
"X", # missing
"AD",
"AS",
"BA",
"CC",
"CD",
"CS",
"DEC",
"DEG",
"DER",
"DEV",
"DT",
"ETC",
"FW",
"IJ",
"INF",
"JJ",
"LB",
"LC",
"M",
"MSP",
"NN",
"NR",
"NT",
"OD",
"ON",
"P",
"PN",
"PU",
"SB",
"SP",
"URL",
"VA",
"VC",
"VE",
"VV",
], # 36
}
# --------------------------------------------------------------------------------------------------------
# The CoNLL(2012) file reader
# Modified the original code to get rid of extra package dependency.
# Original code: https://github.com/allenai/allennlp-models/blob/main/allennlp_models/common/ontonotes.py
class OntonotesSentence:
"""
A class representing the annotations available for a single CONLL formatted sentence.
# Parameters
document_id : `str`
This is a variation on the document filename
sentence_id : `int`
The integer ID of the sentence within a document.
words : `List[str]`
This is the tokens as segmented/tokenized in the bank.
pos_tags : `List[str]`
This is the Penn-Treebank-style part of speech. When parse information is missing,
all parts of speech except the one for which there is some sense or proposition
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
parse_tree : `nltk.Tree`
An nltk Tree representing the parse. It includes POS tags as pre-terminal nodes.
When the parse information is missing, the parse will be `None`.
predicate_lemmas : `List[Optional[str]]`
The predicate lemma of the words for which we have semantic role
information or word sense information. All other indices are `None`.
predicate_framenet_ids : `List[Optional[int]]`
The PropBank frameset ID of the lemmas in `predicate_lemmas`, or `None`.
word_senses : `List[Optional[float]]`
The word senses for the words in the sentence, or `None`. These are floats
because the word sense can have values after the decimal, like `1.1`.
speakers : `List[Optional[str]]`
The speaker information for the words in the sentence, if present, or `None`
This is the speaker or author name where available. Mostly in Broadcast Conversation
and Web Log data. When not available the rows are marked with an "-".
named_entities : `List[str]`
The BIO tags for named entities in the sentence.
srl_frames : `List[Tuple[str, List[str]]]`
A dictionary keyed by the verb in the sentence for the given
Propbank frame labels, in a BIO format.
coref_spans : `Set[TypedSpan]`
The spans for entity mentions involved in coreference resolution within the sentence.
Each element is a tuple composed of (cluster_id, (start_index, end_index)). Indices
are `inclusive`.
"""
def __init__(
self,
document_id: str,
sentence_id: int,
words: List[str],
pos_tags: List[str],
parse_tree: Optional[str],
predicate_lemmas: List[Optional[str]],
predicate_framenet_ids: List[Optional[str]],
word_senses: List[Optional[float]],
speakers: List[Optional[str]],
named_entities: List[str],
srl_frames: List[Tuple[str, List[str]]],
coref_spans,
) -> None:
self.document_id = document_id
self.sentence_id = sentence_id
self.words = words
self.pos_tags = pos_tags
self.parse_tree = parse_tree
self.predicate_lemmas = predicate_lemmas
self.predicate_framenet_ids = predicate_framenet_ids
self.word_senses = word_senses
self.speakers = speakers
self.named_entities = named_entities
self.srl_frames = srl_frames
self.coref_spans = coref_spans
class Ontonotes:
"""
This `DatasetReader` is designed to read in the English OntoNotes v5.0 data
in the format used by the CoNLL 2011/2012 shared tasks. In order to use this
Reader, you must follow the instructions provided [here (v12 release):]
(https://cemantix.org/data/ontonotes.html), which will allow you to download
the CoNLL style annotations for the OntoNotes v5.0 release -- LDC2013T19.tgz
obtained from LDC.
Once you have run the scripts on the extracted data, you will have a folder
structured as follows:
```
conll-formatted-ontonotes-5.0/
ββ data
βββ development
βββ data
βββ english
βββ annotations
βββ bc
βββ bn
βββ mz
βββ nw
βββ pt
βββ tc
βββ wb
βββ test
βββ data
βββ english
βββ annotations
βββ bc
βββ bn
βββ mz
βββ nw
βββ pt
βββ tc
βββ wb
βββ train
βββ data
βββ english
βββ annotations
βββ bc
βββ bn
βββ mz
βββ nw
βββ pt
βββ tc
βββ wb
```
The file path provided to this class can then be any of the train, test or development
directories(or the top level data directory, if you are not utilizing the splits).
The data has the following format, ordered by column.
1. Document ID : `str`
This is a variation on the document filename
2. Part number : `int`
Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.
3. Word number : `int`
This is the word index of the word in that sentence.
4. Word : `str`
This is the token as segmented/tokenized in the Treebank. Initially the `*_skel` file
contain the placeholder [WORD] which gets replaced by the actual token from the
Treebank which is part of the OntoNotes release.
5. POS Tag : `str`
This is the Penn Treebank style part of speech. When parse information is missing,
all part of speeches except the one for which there is some sense or proposition
annotation are marked with a XX tag. The verb is marked with just a VERB tag.
6. Parse bit : `str`
This is the bracketed structure broken before the first open parenthesis in the parse,
and the word/part-of-speech leaf replaced with a `*`. When the parse information is
missing, the first word of a sentence is tagged as `(TOP*` and the last word is tagged
as `*)` and all intermediate words are tagged with a `*`.
7. Predicate lemma : `str`
The predicate lemma is mentioned for the rows for which we have semantic role
information or word sense information. All other rows are marked with a "-".
8. Predicate Frameset ID : `int`
The PropBank frameset ID of the predicate in Column 7.
9. Word sense : `float`
This is the word sense of the word in Column 3.
10. Speaker/Author : `str`
This is the speaker or author name where available. Mostly in Broadcast Conversation
and Web Log data. When not available the rows are marked with an "-".
11. Named Entities : `str`
These columns identifies the spans representing various named entities. For documents
which do not have named entity annotation, each line is represented with an `*`.
12. Predicate Arguments : `str`
There is one column each of predicate argument structure information for the predicate
mentioned in Column 7. If there are no predicates tagged in a sentence this is a
single column with all rows marked with an `*`.
-1. Co-reference : `str`
Co-reference chain information encoded in a parenthesis structure. For documents that do
not have co-reference annotations, each line is represented with a "-".
"""
def dataset_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
"""
An iterator over the entire dataset, yielding all sentences processed.
"""
for conll_file in self.dataset_path_iterator(file_path):
yield from self.sentence_iterator(conll_file)
@staticmethod
def dataset_path_iterator(file_path: str) -> Iterator[str]:
"""
An iterator returning file_paths in a directory
containing CONLL-formatted files.
"""
for root, _, files in list(os.walk(file_path)):
for data_file in sorted(files):
# These are a relic of the dataset pre-processing. Every
# file will be duplicated - one file called filename.gold_skel
# and one generated from the preprocessing called filename.gold_conll.
if not data_file.endswith("gold_conll"):
continue
yield os.path.join(root, data_file)
def dataset_document_iterator(self, file_path: str) -> Iterator[List[OntonotesSentence]]:
"""
An iterator over CONLL formatted files which yields documents, regardless
of the number of document annotations in a particular file. This is useful
for conll data which has been preprocessed, such as the preprocessing which
takes place for the 2012 CONLL Coreference Resolution task.
"""
with open(file_path, "r", encoding="utf8") as open_file:
conll_rows = []
document: List[OntonotesSentence] = []
for line in open_file:
line = line.strip()
if line != "" and not line.startswith("#"):
# Non-empty line. Collect the annotation.
conll_rows.append(line)
else:
if conll_rows:
document.append(self._conll_rows_to_sentence(conll_rows))
conll_rows = []
if line.startswith("#end document"):
yield document
document = []
if document:
# Collect any stragglers or files which might not
# have the '#end document' format for the end of the file.
yield document
def sentence_iterator(self, file_path: str) -> Iterator[OntonotesSentence]:
"""
An iterator over the sentences in an individual CONLL formatted file.
"""
for document in self.dataset_document_iterator(file_path):
for sentence in document:
yield sentence
def _conll_rows_to_sentence(self, conll_rows: List[str]) -> OntonotesSentence:
document_id: str = None
sentence_id: int = None
# The words in the sentence.
sentence: List[str] = []
# The pos tags of the words in the sentence.
pos_tags: List[str] = []
# the pieces of the parse tree.
parse_pieces: List[str] = []
# The lemmatised form of the words in the sentence which
# have SRL or word sense information.
predicate_lemmas: List[str] = []
# The FrameNet ID of the predicate.
predicate_framenet_ids: List[str] = []
# The sense of the word, if available.
word_senses: List[float] = []
# The current speaker, if available.
speakers: List[str] = []
verbal_predicates: List[str] = []
span_labels: List[List[str]] = []
current_span_labels: List[str] = []
# Cluster id -> List of (start_index, end_index) spans.
clusters: DefaultDict[int, List[Tuple[int, int]]] = defaultdict(list)
# Cluster id -> List of start_indices which are open for this id.
coref_stacks: DefaultDict[int, List[int]] = defaultdict(list)
for index, row in enumerate(conll_rows):
conll_components = row.split()
document_id = conll_components[0]
sentence_id = int(conll_components[1])
word = conll_components[3]
pos_tag = conll_components[4]
parse_piece = conll_components[5]
# Replace brackets in text and pos tags
# with a different token for parse trees.
if pos_tag != "XX" and word != "XX":
if word == "(":
parse_word = "-LRB-"
elif word == ")":
parse_word = "-RRB-"
else:
parse_word = word
if pos_tag == "(":
pos_tag = "-LRB-"
if pos_tag == ")":
pos_tag = "-RRB-"
(left_brackets, right_hand_side) = parse_piece.split("*")
# only keep ')' if there are nested brackets with nothing in them.
right_brackets = right_hand_side.count(")") * ")"
parse_piece = f"{left_brackets} ({pos_tag} {parse_word}) {right_brackets}"
else:
# There are some bad annotations in the CONLL data.
# They contain no information, so to make this explicit,
# we just set the parse piece to be None which will result
# in the overall parse tree being None.
parse_piece = None
lemmatised_word = conll_components[6]
framenet_id = conll_components[7]
word_sense = conll_components[8]
speaker = conll_components[9]
if not span_labels:
# If this is the first word in the sentence, create
# empty lists to collect the NER and SRL BIO labels.
# We can't do this upfront, because we don't know how many
# components we are collecting, as a sentence can have
# variable numbers of SRL frames.
span_labels = [[] for _ in conll_components[10:-1]]
# Create variables representing the current label for each label
# sequence we are collecting.
current_span_labels = [None for _ in conll_components[10:-1]]
self._process_span_annotations_for_word(conll_components[10:-1], span_labels, current_span_labels)
# If any annotation marks this word as a verb predicate,
# we need to record its index. This also has the side effect
# of ordering the verbal predicates by their location in the
# sentence, automatically aligning them with the annotations.
word_is_verbal_predicate = any("(V" in x for x in conll_components[11:-1])
if word_is_verbal_predicate:
verbal_predicates.append(word)
self._process_coref_span_annotations_for_word(conll_components[-1], index, clusters, coref_stacks)
sentence.append(word)
pos_tags.append(pos_tag)
parse_pieces.append(parse_piece)
predicate_lemmas.append(lemmatised_word if lemmatised_word != "-" else None)
predicate_framenet_ids.append(framenet_id if framenet_id != "-" else None)
word_senses.append(float(word_sense) if word_sense != "-" else None)
speakers.append(speaker if speaker != "-" else None)
named_entities = span_labels[0]
srl_frames = [(predicate, labels) for predicate, labels in zip(verbal_predicates, span_labels[1:])]
if all(parse_pieces):
parse_tree = "".join(parse_pieces)
else:
parse_tree = None
coref_span_tuples = {(cluster_id, span) for cluster_id, span_list in clusters.items() for span in span_list}
return OntonotesSentence(
document_id,
sentence_id,
sentence,
pos_tags,
parse_tree,
predicate_lemmas,
predicate_framenet_ids,
word_senses,
speakers,
named_entities,
srl_frames,
coref_span_tuples,
)
@staticmethod
def _process_coref_span_annotations_for_word(
label: str,
word_index: int,
clusters: DefaultDict[int, List[Tuple[int, int]]],
coref_stacks: DefaultDict[int, List[int]],
) -> None:
"""
For a given coref label, add it to a currently open span(s), complete a span(s) or
ignore it, if it is outside of all spans. This method mutates the clusters and coref_stacks
dictionaries.
# Parameters
label : `str`
The coref label for this word.
word_index : `int`
The word index into the sentence.
clusters : `DefaultDict[int, List[Tuple[int, int]]]`
A dictionary mapping cluster ids to lists of inclusive spans into the
sentence.
coref_stacks : `DefaultDict[int, List[int]]`
Stacks for each cluster id to hold the start indices of active spans (spans
which we are inside of when processing a given word). Spans with the same id
can be nested, which is why we collect these opening spans on a stack, e.g:
[Greg, the baker who referred to [himself]_ID1 as 'the bread man']_ID1
"""
if label != "-":
for segment in label.split("|"):
# The conll representation of coref spans allows spans to
# overlap. If spans end or begin at the same word, they are
# separated by a "|".
if segment[0] == "(":
# The span begins at this word.
if segment[-1] == ")":
# The span begins and ends at this word (single word span).
cluster_id = int(segment[1:-1])
clusters[cluster_id].append((word_index, word_index))
else:
# The span is starting, so we record the index of the word.
cluster_id = int(segment[1:])
coref_stacks[cluster_id].append(word_index)
else:
# The span for this id is ending, but didn't start at this word.
# Retrieve the start index from the document state and
# add the span to the clusters for this id.
cluster_id = int(segment[:-1])
start = coref_stacks[cluster_id].pop()
clusters[cluster_id].append((start, word_index))
@staticmethod
def _process_span_annotations_for_word(
annotations: List[str],
span_labels: List[List[str]],
current_span_labels: List[Optional[str]],
) -> None:
"""
Given a sequence of different label types for a single word and the current
span label we are inside, compute the BIO tag for each label and append to a list.
# Parameters
annotations : `List[str]`
A list of labels to compute BIO tags for.
span_labels : `List[List[str]]`
A list of lists, one for each annotation, to incrementally collect
the BIO tags for a sequence.
current_span_labels : `List[Optional[str]]`
The currently open span per annotation type, or `None` if there is no open span.
"""
for annotation_index, annotation in enumerate(annotations):
# strip all bracketing information to
# get the actual propbank label.
label = annotation.strip("()*")
if "(" in annotation:
# Entering into a span for a particular semantic role label.
# We append the label and set the current span for this annotation.
bio_label = "B-" + label
span_labels[annotation_index].append(bio_label)
current_span_labels[annotation_index] = label
elif current_span_labels[annotation_index] is not None:
# If there's no '(' token, but the current_span_label is not None,
# then we are inside a span.
bio_label = "I-" + current_span_labels[annotation_index]
span_labels[annotation_index].append(bio_label)
else:
# We're outside a span.
span_labels[annotation_index].append("O")
# Exiting a span, so we reset the current span label for this annotation.
if ")" in annotation:
current_span_labels[annotation_index] = None
|