--- dataset_info: - config_name: corpus features: - name: corpus-id dtype: string - name: image dtype: image splits: - name: train num_bytes: 290540525.0 num_examples: 741 download_size: 269549927 dataset_size: 290540525.0 - config_name: qrels features: - name: query-id dtype: string - name: corpus-id dtype: string - name: score dtype: int32 splits: - name: train num_bytes: 84334 num_examples: 1879 download_size: 25863 dataset_size: 84334 - config_name: queries features: - name: query-id dtype: string - name: query dtype: string - name: answer sequence: string - name: options sequence: string - name: is_numerical dtype: int32 splits: - name: train num_bytes: 225532 num_examples: 1879 download_size: 112662 dataset_size: 225532 configs: - config_name: corpus data_files: - split: train path: corpus/train-* - config_name: qrels data_files: - split: train path: qrels/train-* - config_name: queries data_files: - split: train path: queries/train-* --- ## Dataset Description This is a VQA dataset based on Industrial Documents from MP-DocVQA dataset from [MP-DocVQA](https://www.docvqa.org/datasets/docvqa). ### Load the dataset ```python from datasets import load_dataset import csv def load_beir_qrels(qrels_file): qrels = {} with open(qrels_file) as f: tsvreader = csv.DictReader(f, delimiter="\t") for row in tsvreader: qid = row["query-id"] pid = row["corpus-id"] rel = int(row["score"]) if qid in qrels: qrels[qid][pid] = rel else: qrels[qid] = {pid: rel} return qrels corpus_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="corpus", split="train") queries_ds = load_dataset("openbmb/VisRAG-Ret-Test-MP-DocVQA", name="queries", split="train") qrels_path = "xxxx" # path to qrels file which can be found under qrels folder in the repo. qrels = load_beir_qrels(qrels_path) ```