File size: 8,938 Bytes
2e30d6c 36fb866 2e30d6c 36fb866 313755b ade77e4 5f390e9 6bd475f 2e30d6c 0fd1c04 2e30d6c ade77e4 2e30d6c 36fb866 2e30d6c 36fb866 2e30d6c 36fb866 2e30d6c b6712bb 2e30d6c ade77e4 36fb866 2e30d6c 15bf5b8 2e30d6c ade77e4 15bf5b8 b6712bb 2e30d6c 15bf5b8 2e30d6c b6712bb 9cc1a90 b6712bb 15bf5b8 b6712bb 9cc1a90 b6712bb 2e30d6c 272eb49 2e30d6c 272eb49 36fb866 2e30d6c 272eb49 36fb866 2e30d6c 92844bc acd856a 313755b acd856a 313755b acd856a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and Open Climate Fix.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This dataset consists of HRV channel imagery from the EUMETSAT SEVIRI RSS service covering the UK from 2020-2021"""
import pandas as pd
import xarray
import zarr
import gcsfs
import datasets
_CITATION = """\
@InProceedings{eumetsat:ocf_uk_hrv,
title = {EUMETSAT SEVIRI RSS UK HRV},
author={EUMETSAT, with preparation by Open Climate Fix
},
year={2022}
}
"""
_DESCRIPTION = """\
The EUMETSAT Spinning Enhanced Visible and InfraRed Imager (SEVIRI) rapid scanning service (RSS) takes an image of the northern third of the Meteosat disc every five minutes (see the EUMETSAT website for more information on SEVIRI RSS ). The original EUMETSAT dataset contains data from 2008 to the present day from 12 channels, and for a wide geographical extent covering North Africa, Saudi Arabia, all of Europe, and Western Russia. In contrast, this dataset on Google Cloud is a small subset of the entire SEVIRI RSS dataset: This Google Cloud dataset is from a single channel: the "high resolution visible" (HRV) channel; and contains data from January 2020 to November 2021. The geographical extent of this dataset on Google Cloud is a small subset of the total SEVIRI RSS extent: This Google Cloud dataset includes data over the United Kingdom and over North Western Europe.
This dataset is slightly transformed: It does not contain the original numerical values.
The original data is copyright EUMETSAT. EUMETSAT has given permission to redistribute this transformed data. The data was transformed by Open Climate Fix using satip.
This public dataset is hosted in Google Cloud Storage and available free to use.
"""
_HOMEPAGE = "https://console.cloud.google.com/marketplace/product/bigquery-public-data/eumetsat-seviri-rss-hrv-uk?project=tactile-acrobat-249716"
_LICENSE = "Cite EUMETSAT as the data source. This data is redistributed with permission from EUMETSAT under the terms of the EUMETSAT Data Policy for SEVIRI data with a latency of >3 hours . This redistributed dataset is released under the CC BY 4.0 open data license & is provided \"AS IS\" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset."
_URL = "gs://public-datasets-eumetsat-solar-forecasting/satellite/EUMETSAT/SEVIRI_RSS/v3/eumetsat_seviri_hrv_uk.zarr"
class EumetsatUkHrvDataset(datasets.GeneratorBasedBuilder):
"""This dataset consists of the HRV channel from the EUMETSAT SEVIRI RSS service covering the UK from 2020 to 2021."""
VERSION = datasets.Version("1.2.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="uk", version=VERSION, description="This part of the dataset covers the UK"),
datasets.BuilderConfig(name="uk_osgb", version=VERSION, description="This part of the dataset covers the UK in OSGB coordinates"),
datasets.BuilderConfig(name="uk_video", version=VERSION, description="This dataset is for video prediction")
]
DEFAULT_CONFIG_NAME = "uk_osgb" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
if self.config.name == "uk":
features = datasets.Features(
{
"timestamp": datasets.Value("time64[ns]"),
"image": datasets.Array2D(shape=(891,1843), dtype="int16"),
"x_coordinates": datasets.Sequence(datasets.Value("float64")),
"y_coordinates": datasets.Sequence(datasets.Value("float64"))
}
)
elif self.config.name == "uk_osgb":
features = datasets.Features(
{
"timestamp": datasets.Value("time64[ns]"),
"image": datasets.Array2D(shape=(891,1843), dtype="int16"),
"x_coordinates": datasets.Array2D(shape=(891,1843), dtype="float64"),
"y_coordinates": datasets.Array2D(shape=(891,1843), dtype="float64")
}
)
else:
features = datasets.Features(
{
"timestamps":datasets.Sequence(datasets.Value("time64[ns]")),
"video": datasets.Array3D(shape=(36,891,1843), dtype="int16"),
"x_coordinates": datasets.Sequence(datasets.Value("float64")),
"y_coordinates": datasets.Sequence(datasets.Value("float64"))
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
#data_dir = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _URL,
"time_range": slice("2020-01-01", "2020-12-31"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": _URL,
"time_range": slice("2021-01-01", "2021-12-31"),
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, time_range, split):
sat_data = xarray.open_dataset(filepath, engine="zarr", chunks='auto')
sat_data = sat_data.sel(time=time_range)
if self.config.name == "uk_video":
last_chunk_time = sat_data.time.values[0] - pd.Timedelta("3 hours")
for key, timestamp in enumerate(sat_data.time.values):
if timestamp >= last_chunk_time + pd.Timedelta("3 hours"):
# Get current time and go backwards an hour and forward 2 hours
start_time = timestamp - pd.Timedelta("55 minutes")
end_time = timestamp + pd.Timedelta("2 hours")
entry = sat_data.sel(time=slice(start_time, end_time))
# Only want to keep ones that have the correct length
if len(entry.time.values) == 36:
last_chunk_time = timestamp
yield key, {
"timestamps": entry.time.values,
"x_coordinates": entry.x.values,
"y_coordinates": entry.y.values,
"video": entry.values,
}
else:
for key, timestamp in enumerate(sat_data.time.values):
if self.config.name == "uk":
entry = sat_data.sel(time=timestamp)
yield key, {
"timestamp": entry.time.values,
"x_coordinates": entry.x.values,
"y_coordinates": entry.y.values,
"image": entry.values,
}
elif self.config.name == "uk_osgb":
entry = sat_data.sel(time=timestamp)
yield key, {
"timestamp": entry.time.values,
"x_coordinates": entry.x_osgb.values,
"y_coordinates": entry.y_osgb.values,
"image": entry.values,
}
|