albertvillanova HF staff commited on
Commit
91c6572
·
1 Parent(s): ceae714

Convert dataset to Parquet (#4)

Browse files

- Convert dataset to Parquet (c8b1a7c8030f0ee2f38de477e61aee71151e82d0)
- Delete loading script (09acc4b67177d31ff5909ecc794bc802dd50a34d)
- Delete legacy dataset_infos.json (15f785401378e655378a11e9325212c4c8688e65)

README.md CHANGED
@@ -53,16 +53,25 @@ dataset_info:
53
  dtype: string
54
  splits:
55
  - name: train
56
- num_bytes: 131904057
57
  num_examples: 182822
58
  - name: test
59
- num_bytes: 1447829
60
  num_examples: 6150
61
  - name: validation
62
- num_bytes: 2221468
63
  num_examples: 4183
64
- download_size: 55285460
65
- dataset_size: 135573354
 
 
 
 
 
 
 
 
 
66
  ---
67
 
68
  # Dataset Card for MedMCQA
 
53
  dtype: string
54
  splits:
55
  - name: train
56
+ num_bytes: 131903297
57
  num_examples: 182822
58
  - name: test
59
+ num_bytes: 1399350
60
  num_examples: 6150
61
  - name: validation
62
+ num_bytes: 2221428
63
  num_examples: 4183
64
+ download_size: 88311487
65
+ dataset_size: 135524075
66
+ configs:
67
+ - config_name: default
68
+ data_files:
69
+ - split: train
70
+ path: data/train-*
71
+ - split: test
72
+ path: data/test-*
73
+ - split: validation
74
+ path: data/validation-*
75
  ---
76
 
77
  # Dataset Card for MedMCQA
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d308841f0c82df363d3d638b33b69b8abd266b1e615ae5d2607dbb24c70beb1
3
+ size 936358
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b119434ba551517a6ec0ba1f7e0b4c029165ed284a4704f262ce37c791c493c5
3
+ size 85899025
data/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b768a1ea34afc9f80d3106d9b21f80fa8a00ec450a1f6cd641af72ca9e591021
3
+ size 1476104
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. \nMedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity.\nThe dataset contains questions about the following topics: Anesthesia, Anatomy, Biochemistry, Dental, ENT, Forensic Medicine (FM)\nObstetrics and Gynecology (O&G), Medicine, Microbiology, Ophthalmology, Orthopedics Pathology, Pediatrics, Pharmacology, Physiology, \nPsychiatry, Radiology Skin, Preventive & Social Medicine (PSM) and Surgery\n", "citation": "CHILL'2022", "homepage": "https://medmcqa.github.io", "license": "Apache License 2.0", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "opa": {"dtype": "string", "id": null, "_type": "Value"}, "opb": {"dtype": "string", "id": null, "_type": "Value"}, "opc": {"dtype": "string", "id": null, "_type": "Value"}, "opd": {"dtype": "string", "id": null, "_type": "Value"}, "cop": {"num_classes": 4, "names": ["a", "b", "c", "d"], "id": null, "_type": "ClassLabel"}, "choice_type": {"dtype": "string", "id": null, "_type": "Value"}, "exp": {"dtype": "string", "id": null, "_type": "Value"}, "subject_name": {"dtype": "string", "id": null, "_type": "Value"}, "topic_name": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "med_mcqa", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 131904057, "num_examples": 182822, "dataset_name": "med_mcqa"}, "test": {"name": "test", "num_bytes": 1447829, "num_examples": 6150, "dataset_name": "med_mcqa"}, "validation": {"name": "validation", "num_bytes": 2221468, "num_examples": 4183, "dataset_name": "med_mcqa"}}, "download_checksums": {"https://drive.google.com/uc?export=download&id=15VkJdq5eyWIkfb_aoD3oS8i4tScbHYky": {"num_bytes": 55285460, "checksum": "16c1fbc6f47d548d2af7837b18e893aa45f45c0be9bda0a9adfff3c625bf9262"}}, "download_size": 55285460, "post_processing_size": null, "dataset_size": 135573354, "size_in_bytes": 190858814}}
 
 
medmcqa.py DELETED
@@ -1,116 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering"""
16
-
17
-
18
- import json
19
- import os
20
-
21
- import datasets
22
-
23
-
24
- _DESCRIPTION = """\
25
- MedMCQA is a large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions.
26
- MedMCQA has more than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity.
27
- The dataset contains questions about the following topics: Anesthesia, Anatomy, Biochemistry, Dental, ENT, Forensic Medicine (FM)
28
- Obstetrics and Gynecology (O&G), Medicine, Microbiology, Ophthalmology, Orthopedics Pathology, Pediatrics, Pharmacology, Physiology,
29
- Psychiatry, Radiology Skin, Preventive & Social Medicine (PSM) and Surgery
30
- """
31
-
32
-
33
- _HOMEPAGE = "https://medmcqa.github.io"
34
-
35
- _LICENSE = "Apache License 2.0"
36
- _URL = "https://drive.google.com/uc?export=download&id=15VkJdq5eyWIkfb_aoD3oS8i4tScbHYky"
37
- _CITATION = """\
38
- @InProceedings{pmlr-v174-pal22a,
39
- title = {MedMCQA: A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
40
- author = {Pal, Ankit and Umapathi, Logesh Kumar and Sankarasubbu, Malaikannan},
41
- booktitle = {Proceedings of the Conference on Health, Inference, and Learning},
42
- pages = {248--260},
43
- year = {2022},
44
- editor = {Flores, Gerardo and Chen, George H and Pollard, Tom and Ho, Joyce C and Naumann, Tristan},
45
- volume = {174},
46
- series = {Proceedings of Machine Learning Research},
47
- month = {07--08 Apr},
48
- publisher = {PMLR},
49
- pdf = {https://proceedings.mlr.press/v174/pal22a/pal22a.pdf},
50
- url = {https://proceedings.mlr.press/v174/pal22a.html},
51
- abstract = {This paper introduces MedMCQA, a new large-scale, Multiple-Choice Question Answering (MCQA) dataset designed to address real-world medical entrance exam questions. More than 194k high-quality AIIMS & NEET PG entrance exam MCQs covering 2.4k healthcare topics and 21 medical subjects are collected with an average token length of 12.77 and high topical diversity. Each sample contains a question, correct answer(s), and other options which requires a deeper language understanding as it tests the 10+ reasoning abilities of a model across a wide range of medical subjects & topics. A detailed explanation of the solution, along with the above information, is provided in this study.}
52
- }
53
- """
54
-
55
-
56
- class MedMCQA(datasets.GeneratorBasedBuilder):
57
- """MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering"""
58
-
59
- VERSION = datasets.Version("1.1.0")
60
-
61
- def _info(self):
62
-
63
- features = datasets.Features(
64
- {
65
- "id": datasets.Value("string"),
66
- "question": datasets.Value("string"),
67
- "opa": datasets.Value("string"),
68
- "opb": datasets.Value("string"),
69
- "opc": datasets.Value("string"),
70
- "opd": datasets.Value("string"),
71
- "cop": datasets.features.ClassLabel(names=["a", "b", "c", "d"]),
72
- "choice_type": datasets.Value("string"),
73
- "exp": datasets.Value("string"),
74
- "subject_name": datasets.Value("string"),
75
- "topic_name": datasets.Value("string"),
76
- }
77
- )
78
- return datasets.DatasetInfo(
79
- description=_DESCRIPTION,
80
- features=features,
81
- homepage=_HOMEPAGE,
82
- license=_LICENSE,
83
- citation=_CITATION,
84
- )
85
-
86
- def _split_generators(self, dl_manager):
87
- """Returns SplitGenerators."""
88
- data_dir = dl_manager.download_and_extract(_URL)
89
- return [
90
- datasets.SplitGenerator(
91
- name=datasets.Split.TRAIN,
92
- gen_kwargs={
93
- "filepath": os.path.join(data_dir, "train.json"),
94
- },
95
- ),
96
- datasets.SplitGenerator(
97
- name=datasets.Split.TEST,
98
- gen_kwargs={
99
- "filepath": os.path.join(data_dir, "test.json"),
100
- },
101
- ),
102
- datasets.SplitGenerator(
103
- name=datasets.Split.VALIDATION,
104
- gen_kwargs={
105
- "filepath": os.path.join(data_dir, "dev.json"),
106
- },
107
- ),
108
- ]
109
-
110
- def _generate_examples(self, filepath):
111
- with open(filepath, encoding="utf-8") as f:
112
- for key, row in enumerate(f):
113
- data = json.loads(row)
114
- data["cop"] = int(data.get("cop", 0)) - 1
115
- data["exp"] = data.get("exp", "")
116
- yield key, data