IlyasMoutawwakil's picture
Upload cpu_inference_transformers_token-classification_microsoft/deberta-v3-base/benchmark.json with huggingface_hub
a7b43e7 verified
raw
history blame
6.25 kB
{
"config": {
"name": "cpu_inference_transformers_token-classification_microsoft/deberta-v3-base",
"backend": {
"name": "pytorch",
"version": "2.5.1+cpu",
"_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
"task": "token-classification",
"library": "transformers",
"model_type": "deberta-v2",
"model": "microsoft/deberta-v3-base",
"processor": "microsoft/deberta-v3-base",
"device": "cpu",
"device_ids": null,
"seed": 42,
"inter_op_num_threads": null,
"intra_op_num_threads": null,
"model_kwargs": {},
"processor_kwargs": {},
"no_weights": true,
"device_map": null,
"torch_dtype": null,
"eval_mode": true,
"to_bettertransformer": false,
"low_cpu_mem_usage": null,
"attn_implementation": null,
"cache_implementation": null,
"autocast_enabled": false,
"autocast_dtype": null,
"torch_compile": false,
"torch_compile_target": "forward",
"torch_compile_config": {},
"quantization_scheme": null,
"quantization_config": {},
"deepspeed_inference": false,
"deepspeed_inference_config": {},
"peft_type": null,
"peft_config": {}
},
"scenario": {
"name": "inference",
"_target_": "optimum_benchmark.scenarios.inference.scenario.InferenceScenario",
"iterations": 1,
"duration": 1,
"warmup_runs": 1,
"input_shapes": {
"batch_size": 2,
"sequence_length": 16,
"num_choices": 2
},
"new_tokens": null,
"memory": true,
"latency": true,
"energy": true,
"forward_kwargs": {},
"generate_kwargs": {
"max_new_tokens": 2,
"min_new_tokens": 2
},
"call_kwargs": {
"num_inference_steps": 2
}
},
"launcher": {
"name": "process",
"_target_": "optimum_benchmark.launchers.process.launcher.ProcessLauncher",
"device_isolation": false,
"device_isolation_action": null,
"numactl": false,
"numactl_kwargs": {},
"start_method": "spawn"
},
"environment": {
"cpu": " AMD EPYC 7763 64-Core Processor",
"cpu_count": 4,
"cpu_ram_mb": 16766.779392,
"system": "Linux",
"machine": "x86_64",
"platform": "Linux-6.8.0-1017-azure-x86_64-with-glibc2.39",
"processor": "x86_64",
"python_version": "3.10.15",
"optimum_benchmark_version": "0.5.0.dev0",
"optimum_benchmark_commit": "b28613edd07775950ebcafe798ccfb9a5b1d3c5b",
"transformers_version": "4.47.0",
"transformers_commit": null,
"accelerate_version": "1.2.0",
"accelerate_commit": null,
"diffusers_version": "0.31.0",
"diffusers_commit": null,
"optimum_version": null,
"optimum_commit": null,
"timm_version": "1.0.12",
"timm_commit": null,
"peft_version": null,
"peft_commit": null
},
"print_report": true,
"log_report": true
},
"report": {
"load_model": {
"memory": {
"unit": "MB",
"max_ram": 1183.117312,
"max_global_vram": null,
"max_process_vram": null,
"max_reserved": null,
"max_allocated": null
},
"latency": {
"unit": "s",
"values": [
1.7620751199999631
],
"count": 1,
"total": 1.7620751199999631,
"mean": 1.7620751199999631,
"p50": 1.7620751199999631,
"p90": 1.7620751199999631,
"p95": 1.7620751199999631,
"p99": 1.7620751199999631,
"stdev": 0,
"stdev_": 0
},
"throughput": null,
"energy": {
"unit": "kWh",
"cpu": 0.00019621199818888708,
"ram": 8.20638155541104e-06,
"gpu": 0,
"total": 0.00020441837974429812
},
"efficiency": null
},
"forward": {
"memory": {
"unit": "MB",
"max_ram": 1220.390912,
"max_global_vram": null,
"max_process_vram": null,
"max_reserved": null,
"max_allocated": null
},
"latency": {
"unit": "s",
"values": [
0.20002633900003275,
0.20329137100003436,
0.2069761010000093,
0.1947413649999703,
0.17730166199999076,
0.18792657500000587
],
"count": 6,
"total": 1.1702634130000433,
"mean": 0.1950439021666739,
"p50": 0.19738385200000153,
"p90": 0.20513373600002183,
"p95": 0.20605491850001556,
"p99": 0.20679186450001055,
"stdev": 0.010006312581072728,
"stdev_": 5.130287319888565
},
"throughput": {
"unit": "samples/s",
"value": 10.254101654974628
},
"energy": {
"unit": "kWh",
"cpu": 7.848815169999929e-06,
"ram": 3.282031205838437e-07,
"gpu": 0.0,
"total": 8.177018290583772e-06
},
"efficiency": {
"unit": "samples/kWh",
"value": 244587.93278022818
}
}
}
}