IlyasMoutawwakil HF staff commited on
Commit
5562c86
·
verified ·
1 Parent(s): 329ca39

Upload cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json with huggingface_hub

Browse files
cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json CHANGED
@@ -3,7 +3,7 @@
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
- "version": "2.4.0+cu124",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
@@ -110,7 +110,7 @@
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
- "max_ram": 1282.056192,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
@@ -119,24 +119,24 @@
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
- "total": 0.5029416427612304,
123
- "mean": 0.10058832855224609,
124
- "stdev": 0.11439831019396637,
125
- "p50": 0.04344518280029297,
126
- "p90": 0.21540864562988282,
127
- "p95": 0.2723952713012695,
128
- "p99": 0.3179845718383789,
129
  "values": [
130
- 0.32938189697265624,
131
- 0.04444876861572265,
132
- 0.04281139373779297,
133
- 0.04344518280029297,
134
- 0.04285440063476562
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
- "value": 99.41511250786864
140
  },
141
  "energy": null,
142
  "efficiency": null
@@ -144,7 +144,7 @@
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
- "max_ram": 1282.056192,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
@@ -153,21 +153,21 @@
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
- "total": 0.3738306655883789,
157
- "mean": 0.18691533279418945,
158
- "stdev": 0.1424665641784668,
159
- "p50": 0.18691533279418945,
160
- "p90": 0.3008885841369629,
161
- "p95": 0.31513524055480957,
162
- "p99": 0.3265325656890869,
163
  "values": [
164
- 0.32938189697265624,
165
- 0.04444876861572265
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
- "value": 21.40006354858196
171
  },
172
  "energy": null,
173
  "efficiency": null
@@ -175,7 +175,7 @@
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
- "max_ram": 1282.056192,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
@@ -184,22 +184,22 @@
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
- "total": 0.12911097717285155,
188
- "mean": 0.04303699239095052,
189
- "stdev": 0.0002891677206584111,
190
- "p50": 0.04285440063476562,
191
- "p90": 0.0433270263671875,
192
- "p95": 0.04338610458374023,
193
- "p99": 0.04343336715698242,
194
  "values": [
195
- 0.04281139373779297,
196
- 0.04344518280029297,
197
- 0.04285440063476562
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
- "value": 139.41494669273482
203
  },
204
  "energy": null,
205
  "efficiency": null
 
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
+ "version": "2.4.0+cu121",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
 
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
+ "max_ram": 1154.838528,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
 
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
+ "total": 0.8190555839538574,
123
+ "mean": 0.16381111679077148,
124
+ "stdev": 0.24238888085378063,
125
+ "p50": 0.04297420883178711,
126
+ "p90": 0.40638486328125,
127
+ "p95": 0.5274865905761718,
128
+ "p99": 0.6243679724121093,
129
  "values": [
130
+ 0.6485883178710937,
131
+ 0.043079681396484375,
132
+ 0.042183616638183596,
133
+ 0.04297420883178711,
134
+ 0.042229759216308595
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
+ "value": 61.045917981088834
140
  },
141
  "energy": null,
142
  "efficiency": null
 
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
+ "max_ram": 1154.838528,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
 
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
+ "total": 0.691667999267578,
157
+ "mean": 0.345833999633789,
158
+ "stdev": 0.3027543182373047,
159
+ "p50": 0.345833999633789,
160
+ "p90": 0.5880374542236328,
161
+ "p95": 0.6183128860473632,
162
+ "p99": 0.6425332315063477,
163
  "values": [
164
+ 0.6485883178710937,
165
+ 0.043079681396484375
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
+ "value": 11.566242776117111
171
  },
172
  "energy": null,
173
  "efficiency": null
 
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
+ "max_ram": 1154.838528,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
 
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
+ "total": 0.1273875846862793,
188
+ "mean": 0.04246252822875977,
189
+ "stdev": 0.0003623028788319013,
190
+ "p50": 0.042229759216308595,
191
+ "p90": 0.04282531890869141,
192
+ "p95": 0.042899763870239256,
193
+ "p99": 0.04295931983947754,
194
  "values": [
195
+ 0.042183616638183596,
196
+ 0.04297420883178711,
197
+ 0.042229759216308595
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
+ "value": 141.30105413591966
203
  },
204
  "energy": null,
205
  "efficiency": null