config.name,config.backend.name,config.backend.version,config.backend._target_,config.backend.task,config.backend.library,config.backend.model_type,config.backend.model,config.backend.processor,config.backend.device,config.backend.device_ids,config.backend.seed,config.backend.inter_op_num_threads,config.backend.intra_op_num_threads,config.backend.model_kwargs.trust_remote_code,config.backend.no_weights,config.backend.device_map,config.backend.torch_dtype,config.backend.eval_mode,config.backend.to_bettertransformer,config.backend.low_cpu_mem_usage,config.backend.attn_implementation,config.backend.cache_implementation,config.backend.autocast_enabled,config.backend.autocast_dtype,config.backend.torch_compile,config.backend.torch_compile_target,config.backend.quantization_scheme,config.backend.quantization_config.bits,config.backend.quantization_config.use_exllama ,config.backend.quantization_config.version,config.backend.quantization_config.model_seqlen,config.backend.deepspeed_inference,config.backend.peft_type,config.scenario.name,config.scenario._target_,config.scenario.iterations,config.scenario.duration,config.scenario.warmup_runs,config.scenario.input_shapes.batch_size,config.scenario.input_shapes.num_choices,config.scenario.input_shapes.sequence_length,config.scenario.new_tokens,config.scenario.memory,config.scenario.latency,config.scenario.energy,config.scenario.generate_kwargs.max_new_tokens,config.scenario.generate_kwargs.min_new_tokens,config.launcher.name,config.launcher._target_,config.launcher.device_isolation,config.launcher.device_isolation_action,config.launcher.numactl,config.launcher.start_method,config.environment.cpu,config.environment.cpu_count,config.environment.cpu_ram_mb,config.environment.system,config.environment.machine,config.environment.platform,config.environment.processor,config.environment.python_version,config.environment.gpu,config.environment.gpu_count,config.environment.gpu_vram_mb,config.environment.optimum_benchmark_version,config.environment.optimum_benchmark_commit,config.environment.transformers_version,config.environment.transformers_commit,config.environment.accelerate_version,config.environment.accelerate_commit,config.environment.diffusers_version,config.environment.diffusers_commit,config.environment.optimum_version,config.environment.optimum_commit,config.environment.timm_version,config.environment.timm_commit,config.environment.peft_version,config.environment.peft_commit,report.traceback,report.load.memory.unit,report.load.memory.max_ram,report.load.memory.max_global_vram,report.load.memory.max_process_vram,report.load.memory.max_reserved,report.load.memory.max_allocated,report.load.latency.unit,report.load.latency.count,report.load.latency.total,report.load.latency.mean,report.load.latency.stdev,report.load.latency.p50,report.load.latency.p90,report.load.latency.p95,report.load.latency.p99,report.load.latency.values,report.load.throughput,report.load.energy.unit,report.load.energy.cpu,report.load.energy.ram,report.load.energy.gpu,report.load.energy.total,report.load.efficiency,report.prefill.memory.unit,report.prefill.memory.max_ram,report.prefill.memory.max_global_vram,report.prefill.memory.max_process_vram,report.prefill.memory.max_reserved,report.prefill.memory.max_allocated,report.prefill.latency.unit,report.prefill.latency.count,report.prefill.latency.total,report.prefill.latency.mean,report.prefill.latency.stdev,report.prefill.latency.p50,report.prefill.latency.p90,report.prefill.latency.p95,report.prefill.latency.p99,report.prefill.latency.values,report.prefill.throughput.unit,report.prefill.throughput.value,report.prefill.energy.unit,report.prefill.energy.cpu,report.prefill.energy.ram,report.prefill.energy.gpu,report.prefill.energy.total,report.prefill.efficiency.unit,report.prefill.efficiency.value,report.decode.memory.unit,report.decode.memory.max_ram,report.decode.memory.max_global_vram,report.decode.memory.max_process_vram,report.decode.memory.max_reserved,report.decode.memory.max_allocated,report.decode.latency.unit,report.decode.latency.count,report.decode.latency.total,report.decode.latency.mean,report.decode.latency.stdev,report.decode.latency.p50,report.decode.latency.p90,report.decode.latency.p95,report.decode.latency.p99,report.decode.latency.values,report.decode.throughput.unit,report.decode.throughput.value,report.decode.energy.unit,report.decode.energy.cpu,report.decode.energy.ram,report.decode.energy.gpu,report.decode.energy.total,report.decode.efficiency.unit,report.decode.efficiency.value,report.per_token.memory,report.per_token.latency.unit,report.per_token.latency.count,report.per_token.latency.total,report.per_token.latency.mean,report.per_token.latency.stdev,report.per_token.latency.p50,report.per_token.latency.p90,report.per_token.latency.p95,report.per_token.latency.p99,report.per_token.latency.values,report.per_token.throughput.unit,report.per_token.throughput.value,report.per_token.energy,report.per_token.efficiency 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4384.014336,4566.482944,0.0,4188.012544,4187.049984,s,1,10.3226669921875,10.3226669921875,0.0,10.3226669921875,10.3226669921875,10.3226669921875,10.3226669921875,[10.3226669921875],,kWh,9.785378997917177e-05,1.0785661533696069e-05,3.2396137028004035e-05,0.00014103558854087187,,MB,4337.463296,4962.844672,0.0,4555.014144,4514.269184,s,10,7.85943878173828,0.7859438781738282,0.003248193699247347,0.7875285034179688,0.7886953369140625,0.7889753234863282,0.7891993127441406,"[0.78, 0.7875231323242188, 0.7826694946289062, 0.7807692260742187, 0.7872844848632813, 0.7876341552734375, 0.788135986328125, 0.7892553100585937, 0.7875338745117187, 0.7886331176757813]",tokens/s,325.72300276048486,kWh,2.281208450769251e-05,2.5157658233373223e-06,1.5158153152154578e-05,4.048600348318441e-05,tokens/kWh,6323172.898661828,MB,4346.912768,4979.621888,0.0,4571.79136,4514.271744,s,10,466.6024882812499,46.660248828125,0.011068309855742515,46.662541015625,46.666687499999995,46.672259765625,46.676717578125,"[46.632265625, 46.65224609375, 46.66014453125, 46.6612578125, 46.6629609375, 46.663859375, 46.66212109375, 46.6643515625, 46.66544921875, 46.67783203125]",tokens/s,1.3501856844369426,kWh,0.0013613940065339734,0.000150172057835159,0.0009055239445040442,0.0024170900088731767,tokens/kWh,26064.39965773967,,s,630,466.5971835937501,0.7406304501488096,0.0003842440844463258,0.7406415100097656,0.741086279296875,0.7412395568847657,0.7414922277832031,"[0.7400195922851562, 0.7400505981445312, 0.7398154907226563, 0.739328857421875, 0.7396557006835938, 0.7402882080078125, 0.739842529296875, 0.7398804931640625, 0.7397766723632813, 0.7399896240234375, 0.739989501953125, 0.7401123046875, 0.7397409057617188, 0.7400776977539063, 0.7401336059570313, 0.7396638793945313, 0.7399824829101562, 0.7398463745117188, 0.740166259765625, 0.7398889770507813, 0.7399959716796874, 0.740632080078125, 0.7399937133789063, 0.740153564453125, 0.740021728515625, 0.7406412963867187, 0.7402557373046875, 0.7396383056640625, 0.7405346069335937, 0.74044873046875, 0.7398190307617187, 0.7404366455078125, 0.7408128051757813, 0.7404246826171875, 0.740150146484375, 0.7401944580078125, 0.7401615600585938, 0.7403519897460937, 0.739842041015625, 0.740030029296875, 0.7403851928710937, 0.7400409545898438, 0.7400709228515625, 0.740415771484375, 0.74038623046875, 0.7406367797851563, 0.7403157958984375, 0.7405259399414063, 0.7403190307617188, 0.7402066650390625, 0.7406757202148437, 0.74048681640625, 0.7396448974609375, 0.740488037109375, 0.7407861938476562, 0.7405541381835937, 0.739809814453125, 0.740874267578125, 0.740378662109375, 0.7405140380859375, 0.7401420288085937, 0.74058544921875, 0.740694580078125, 0.7398834228515625, 0.740550048828125, 0.7404017944335938, 0.740384765625, 0.7400115966796875, 0.7401517333984375, 0.7411056518554687, 0.7402147827148438, 0.7400131225585938, 0.7413422241210937, 0.7399955444335937, 0.7396536254882813, 0.7408514404296875, 0.7402305908203125, 0.740455078125, 0.7398401489257812, 0.7406387329101562, 0.7405711059570312, 0.7406399536132813, 0.7395582275390625, 0.74058544921875, 0.7408004760742187, 0.7407980346679688, 0.739641845703125, 0.7406991577148437, 0.7408834228515625, 0.7402168579101562, 0.739751220703125, 0.7406128540039062, 0.740921142578125, 0.7402518310546875, 0.74022705078125, 0.7406018676757813, 0.7409004516601563, 0.7403721313476562, 0.740874755859375, 0.7404523315429687, 0.7409985961914063, 0.7404183349609375, 0.7406793823242187, 0.7401761474609375, 0.7410494384765625, 0.7407820434570312, 0.7404300537109375, 0.740877197265625, 0.7407839965820312, 0.7402352905273437, 0.7404441528320312, 0.7406465454101563, 0.7406863403320313, 0.740124755859375, 0.7403067016601562, 0.7408099365234375, 0.7403179931640625, 0.7408599243164062, 0.7406141357421875, 0.7409703369140626, 0.740460693359375, 0.7409868774414062, 0.7406669311523437, 0.7407661743164062, 0.7410028076171875, 0.74051953125, 0.740729248046875, 0.7405772705078125, 0.7405260620117188, 0.740441162109375, 0.7405618286132812, 0.7406755981445312, 0.739999755859375, 0.7403212890625, 0.7403572998046875, 0.7405899658203124, 0.739885498046875, 0.7405383911132812, 0.74066943359375, 0.7408038940429688, 0.740121337890625, 0.7403797607421875, 0.7404747314453125, 0.7406744995117187, 0.7401647338867188, 0.7403672485351562, 0.7405545654296875, 0.7406163940429688, 0.740849853515625, 0.74037841796875, 0.7402281494140625, 0.7402581176757812, 0.7403209838867187, 0.7402026977539062, 0.74078076171875, 0.7406192626953125, 0.7403645629882812, 0.74097021484375, 0.740475341796875, 0.7406515502929687, 0.7405623779296875, 0.7410548095703124, 0.740423828125, 0.7406408081054687, 0.7409862060546875, 0.7403770141601562, 0.7402435302734375, 0.7409392700195313, 0.7409180297851562, 0.7407205810546875, 0.7408023071289063, 0.7407756958007813, 0.7408173217773437, 0.7409131469726562, 0.7404827880859375, 0.7408663330078125, 0.7405254516601563, 0.7406817016601562, 0.7409219970703125, 0.7408558349609375, 0.7406814575195313, 0.7406544799804687, 0.7410221557617187, 0.7406570434570312, 0.7411595458984375, 0.7401569213867187, 0.74084814453125, 0.74292431640625, 0.7409152221679688, 0.741015625, 0.7407022094726563, 0.7403618774414062, 0.73979931640625, 0.7403438110351562, 0.7413043212890625, 0.740691650390625, 0.7397128295898437, 0.7405382690429687, 0.7412589721679688, 0.7402750244140625, 0.7407606201171875, 0.7405452270507813, 0.7407579956054687, 0.7404172973632812, 0.7403253784179687, 0.7409540405273437, 0.7409331665039063, 0.7402005004882812, 0.7401491088867187, 0.7404910888671875, 0.7404653930664062, 0.7410072631835938, 0.7403982543945312, 0.7402630615234375, 0.7406876831054687, 0.7406591186523438, 0.7409129028320313, 0.740784423828125, 0.7405977783203125, 0.7408927001953125, 0.740636474609375, 0.7404173583984375, 0.7406964721679687, 0.7409541015625, 0.7407647705078125, 0.7403014526367188, 0.7405775146484375, 0.7406959838867188, 0.7411856079101562, 0.7405547485351562, 0.7409561767578124, 0.74051953125, 0.7405894775390625, 0.7410322265625, 0.7404525146484375, 0.740384033203125, 0.74058154296875, 0.7407244262695313, 0.7407064208984375, 0.7408749389648438, 0.7411825561523437, 0.7406376342773437, 0.7403233032226563, 0.7412362670898438, 0.7411880493164062, 0.7403493041992187, 0.7403728637695313, 0.7409031982421875, 0.7412422485351563, 0.7403444213867187, 0.74039501953125, 0.7407388916015625, 0.7407108764648438, 0.7405159301757812, 0.7409315795898438, 0.7405479125976563, 0.7402473754882812, 0.7405596923828125, 0.7411990966796875, 0.7401375122070313, 0.74032568359375, 0.7403480834960937, 0.7403026733398438, 0.7407575073242187, 0.7404391479492187, 0.7401747436523437, 0.7403162841796875, 0.7408889770507813, 0.7405757446289063, 0.7406051635742188, 0.7404649658203125, 0.7399645385742187, 0.7404735107421875, 0.7410853271484374, 0.740697509765625, 0.740595458984375, 0.740115234375, 0.7407564697265625, 0.7409378051757812, 0.7409120483398437, 0.7404903564453125, 0.740961181640625, 0.7407882080078125, 0.740537353515625, 0.7407932739257812, 0.7409603271484375, 0.7407615966796876, 0.7405029296875, 0.7403587646484375, 0.7408844604492187, 0.7408968505859375, 0.7407646484375, 0.7403816528320313, 0.7410360107421875, 0.740190185546875, 0.741265380859375, 0.7407677001953125, 0.7410004272460937, 0.74047119140625, 0.7410343017578125, 0.7408720703125, 0.7408909301757812, 0.7405621948242187, 0.7408171997070313, 0.740706787109375, 0.7409868774414062, 0.7408309936523437, 0.7405748291015625, 0.7406619262695312, 0.7407206420898438, 0.7407114868164062, 0.7407252197265625, 0.7413704833984375, 0.7406524047851563, 0.7408787841796876, 0.7406328125, 0.7405247802734375, 0.7409304809570313, 0.7407001342773437, 0.7402608032226563, 0.7400745239257812, 0.7405209350585937, 0.7406243896484375, 0.74045849609375, 0.7405711059570312, 0.7408148193359375, 0.7404664916992187, 0.7404846801757813, 0.7408441772460937, 0.7406868896484375, 0.7407542724609375, 0.7403439331054688, 0.7405230712890625, 0.740754150390625, 0.74096630859375, 0.740278564453125, 0.7405875244140625, 0.740833251953125, 0.7408721923828125, 0.7404459228515625, 0.7403925170898438, 0.74037841796875, 0.7408239135742187, 0.7405977783203125, 0.7402426147460938, 0.7409152221679688, 0.7409365234375, 0.7402453002929688, 0.7410056762695313, 0.7410706787109375, 0.74068994140625, 0.740447509765625, 0.7406742553710938, 0.7407472534179688, 0.74175927734375, 0.7406363525390625, 0.7406817626953125, 0.74133642578125, 0.7406576538085937, 0.7406693725585938, 0.7409738159179687, 0.7410184936523437, 0.7404336547851562, 0.7407271728515625, 0.7404195556640625, 0.7414859008789062, 0.7402501831054688, 0.7405077514648437, 0.7404359741210937, 0.741105224609375, 0.7406533203125, 0.7404771118164063, 0.74070654296875, 0.7406445922851562, 0.7408680419921875, 0.7405767822265625, 0.7410755004882813, 0.74109130859375, 0.7405181274414062, 0.7403685913085938, 0.7405951538085938, 0.7404239501953125, 0.7404251098632812, 0.7405381469726563, 0.740688232421875, 0.7403665161132813, 0.7406198120117188, 0.740737548828125, 0.7408297119140625, 0.7404478759765625, 0.7403399047851562, 0.7411488037109375, 0.7406000366210937, 0.740068115234375, 0.7401787719726562, 0.7406900024414063, 0.7399046020507812, 0.7412335815429687, 0.740421630859375, 0.7405916137695312, 0.7405240478515625, 0.7406632690429688, 0.7404830932617188, 0.7408414916992188, 0.7406366577148438, 0.7406956176757813, 0.7402152099609375, 0.7408025512695312, 0.741148681640625, 0.7409144897460938, 0.7405612182617187, 0.74076318359375, 0.7404671630859375, 0.7405343017578125, 0.7407120361328124, 0.7408722534179687, 0.7407449951171875, 0.7402197875976563, 0.7407444458007812, 0.7409302978515625, 0.7409007568359375, 0.74053857421875, 0.741087158203125, 0.7408059692382812, 0.7411715087890625, 0.74035205078125, 0.7410333251953125, 0.7403152465820313, 0.740950927734375, 0.7404436645507813, 0.7409464111328125, 0.7409313354492187, 0.7408642578125, 0.7404564208984376, 0.7408292236328125, 0.7408162841796875, 0.7409790649414062, 0.7411129760742188, 0.7406704711914063, 0.7402434692382812, 0.7409337768554688, 0.7404783935546875, 0.7400045166015625, 0.740599609375, 0.7409668579101563, 0.7405609130859375, 0.74033740234375, 0.7406492309570313, 0.7410005493164062, 0.7402352294921875, 0.7402005004882812, 0.7404649047851563, 0.7413662109375, 0.74050537109375, 0.7403521728515625, 0.7408446655273437, 0.7406520385742188, 0.7407183227539063, 0.7406736450195313, 0.740123779296875, 0.74053515625, 0.7404544067382812, 0.7410208129882813, 0.7403468017578125, 0.7404906005859375, 0.7409271850585938, 0.7403507080078126, 0.7404238891601562, 0.7406466064453125, 0.7406123657226562, 0.7408271484375, 0.7403028564453125, 0.7402880249023438, 0.7413002319335937, 0.740756103515625, 0.7403969116210938, 0.7409766235351563, 0.741285888671875, 0.7410333862304688, 0.740450927734375, 0.74140283203125, 0.7407388305664062, 0.7408353271484375, 0.7404111328125, 0.7407590942382812, 0.7405862426757812, 0.7411541137695312, 0.7404346313476563, 0.7409149780273437, 0.7412155151367188, 0.7401030883789063, 0.7410667724609376, 0.7412072143554688, 0.7405166625976562, 0.74062353515625, 0.741194580078125, 0.7408453979492188, 0.7408536987304688, 0.7405017700195312, 0.74096630859375, 0.7404544067382812, 0.741702880859375, 0.7403590087890625, 0.7408206787109375, 0.7402210083007813, 0.7412155151367188, 0.74056689453125, 0.7406417236328126, 0.7403038940429687, 0.7407339477539062, 0.7400856323242188, 0.7402881469726562, 0.7404854736328125, 0.7403048706054688, 0.7405787353515625, 0.740346435546875, 0.7411138305664062, 0.7401697387695313, 0.7402978515625, 0.7403488159179688, 0.740921142578125, 0.7409185180664063, 0.7402034912109375, 0.7403060302734376, 0.7403733520507813, 0.7407513427734375, 0.7413466796875, 0.7407335815429688, 0.740063232421875, 0.7410543212890625, 0.7406931762695312, 0.741095458984375, 0.7402077026367188, 0.7405111694335937, 0.740576904296875, 0.7409139404296875, 0.74109130859375, 0.7403963012695313, 0.7408911743164063, 0.7407228393554688, 0.740656494140625, 0.7409578857421875, 0.7406044311523438, 0.7414297485351562, 0.741580810546875, 0.740294677734375, 0.7404707641601562, 0.7409067993164062, 0.7414436645507813, 0.740173828125, 0.740737060546875, 0.7412010498046875, 0.7408501586914062, 0.7404363403320312, 0.7409541015625, 0.7410216674804687, 0.7404930419921875, 0.74058984375, 0.7407490844726563, 0.7411278686523437, 0.740725341796875, 0.7408616333007813, 0.7412691650390625, 0.7407438354492187, 0.7408267211914062, 0.741392822265625, 0.740957275390625, 0.7410277709960937, 0.7412838745117187, 0.7407637329101563, 0.7409290771484375, 0.7401904907226563, 0.7408988037109375, 0.740469970703125, 0.7405146484375, 0.7407565307617188, 0.74098583984375, 0.7407430419921875, 0.7400154418945313, 0.7405875854492188, 0.7409999389648437, 0.7410193481445313, 0.7408694458007813, 0.7402786865234375, 0.740968505859375, 0.7406876220703125, 0.7410165405273438, 0.7406650390625, 0.7407493896484375, 0.7404891967773437, 0.7407401733398438, 0.7408728637695312, 0.740468994140625, 0.7417009887695313, 0.7409425048828125, 0.7408291625976563, 0.740797607421875, 0.7413209228515625, 0.740708984375, 0.7406807861328125, 0.7412581787109375, 0.7409722900390625, 0.7409625244140625, 0.7412992553710938, 0.7411414184570313, 0.7412796630859375, 0.7408763427734375, 0.7417642211914063, 0.74086083984375, 0.7408189697265625, 0.7406930541992187, 0.7413052978515625, 0.7410216674804687, 0.7411827392578125, 0.741086181640625, 0.7409776611328125, 0.7408381958007813, 0.7414948120117187, 0.7412696533203125, 0.740348876953125, 0.740801025390625, 0.7411981811523437, 0.7411402587890625, 0.7410465087890625, 0.740831298828125, 0.7412284545898438, 0.7412449951171876, 0.740482177734375, 0.7411937255859375, 0.7407173461914063]",tokens/s,1.350201034536289,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,3161.960448,4423.876608,0.0,4028.628992,3944.723968,s,1,10.405025390625,10.405025390625,0.0,10.405025390625,10.405025390625,10.405025390625,10.405025390625,[10.405025390625],,kWh,9.278183984999561e-05,1.022738812495303e-05,2.9278912311997418e-05,0.00013228814028694606,,MB,3216.65024,4763.615232,0.0,4353.687552,4305.05728,s,10,1.091167808532715,0.1091167808532715,0.0004448517049072606,0.10910725021362305,0.10960431518554688,0.10980559844970703,0.10996662506103516,"[0.11000688171386719, 0.10916985321044922, 0.10916105651855469, 0.10896675109863281, 0.10890582275390626, 0.10955958557128906, 0.1091534423828125, 0.1090610580444336, 0.10901763153076172, 0.10816572570800781]",tokens/s,2346.110268266081,kWh,3.258486512037279e-06,3.593257365275346e-07,2.1669801286445e-06,5.7847923772093135e-06,tokens/kWh,44253965.10488056,MB,3216.65024,4763.615232,0.0,4353.687552,4305.05984,s,10,21.80553564453125,2.180553564453125,0.02097974010962949,2.1801929931640625,2.2088744140625,2.2116095703125,2.2137976953125,"[2.156970703125, 2.16743212890625, 2.1854130859375, 2.18996337890625, 2.2082666015625, 2.2143447265625, 2.19798046875, 2.158267822265625, 2.174972900390625, 2.151923828125]",tokens/s,28.891746126768584,kWh,6.251471981838032e-05,6.894757265456508e-06,3.406832663735535e-05,0.00010347780372119218,tokens/kWh,608826.2190966626,,s,630,21.802990219116204,0.03460792098272415,0.0006658891403288806,0.034552591323852536,0.0352255615234375,0.035505592918395994,0.03711125492095947,"[0.03509654235839844, 0.03595951843261719, 0.035210529327392576, 0.034835166931152343, 0.03445062255859375, 0.03415110397338867, 0.03393548965454102, 0.03414435195922851, 0.034076576232910154, 0.03444262313842773, 0.03470195388793945, 0.03417462539672852, 0.034293758392333985, 0.03453916931152344, 0.03415420913696289, 0.03390768051147461, 0.033990657806396485, 0.03405619049072266, 0.03407462310791016, 0.03397836685180664, 0.033908447265625, 0.03399871826171875, 0.03419587326049805, 0.03399244689941406, 0.03463139343261719, 0.03472835159301758, 0.03432815933227539, 0.0341099853515625, 0.03376128005981445, 0.0343138542175293, 0.033948257446289064, 0.03386729431152344, 0.03376582336425781, 0.033990623474121094, 0.03388809585571289, 0.03425484848022461, 0.03367731094360352, 0.03400246429443359, 0.03439459228515625, 0.03425075149536133, 0.03394889450073242, 0.033987422943115235, 0.03379363250732422, 0.034143775939941404, 0.03374982452392578, 0.03466156768798828, 0.03387065505981445, 0.03401318359375, 0.03391692733764649, 0.03429507064819336, 0.03451279830932617, 0.03441337585449219, 0.034031105041503903, 0.03390476989746094, 0.034646400451660155, 0.03609395217895508, 0.03399660873413086, 0.034113792419433596, 0.03396207809448242, 0.03436243057250977, 0.033936161041259766, 0.03416409683227539, 0.03404249572753906, 0.033922752380371096, 0.03433776092529297, 0.03377884674072266, 0.03417379379272461, 0.03391692733764649, 0.034095104217529294, 0.03455376052856445, 0.035139041900634764, 0.034988094329833984, 0.0345337905883789, 0.0342437744140625, 0.034579071044921875, 0.03435760116577148, 0.034170879364013675, 0.03415244674682617, 0.03437363052368164, 0.034473983764648435, 0.03499990463256836, 0.034547168731689455, 0.034648448944091796, 0.03439878463745117, 0.03417497634887695, 0.034342910766601564, 0.03405984115600586, 0.03398905563354492, 0.034218273162841796, 0.034145694732666015, 0.03409337615966797, 0.03409414291381836, 0.03392006301879883, 0.03439603042602539, 0.0349793930053711, 0.034476478576660155, 0.0344637451171875, 0.034080768585205076, 0.03424383926391601, 0.03412416076660156, 0.03412211227416992, 0.03400006484985352, 0.03408364868164063, 0.034430816650390626, 0.03420585632324219, 0.03439206314086914, 0.03450470352172851, 0.03434604644775391, 0.0343438720703125, 0.034945022583007815, 0.03455535888671875, 0.0343680305480957, 0.034605216979980466, 0.03431817626953125, 0.03422329711914063, 0.03417171096801758, 0.038128673553466795, 0.03480630493164062, 0.03482444763183594, 0.03446137619018555, 0.034327041625976565, 0.03402751922607422, 0.03420707321166992, 0.034441600799560546, 0.03404828643798828, 0.034103294372558594, 0.0355650863647461, 0.035081695556640625, 0.03469327926635742, 0.03470217514038086, 0.034557823181152345, 0.03460051345825195, 0.03414883041381836, 0.034154590606689454, 0.0343818244934082, 0.034854911804199216, 0.03466796875, 0.03447251129150391, 0.034484222412109376, 0.03455590438842773, 0.034710655212402346, 0.034253150939941406, 0.03412022399902344, 0.0339351692199707, 0.03395734405517578, 0.03386220932006836, 0.0338331184387207, 0.03466864013671875, 0.03408886337280274, 0.034938880920410156, 0.03616553497314453, 0.03512723159790039, 0.035084190368652346, 0.03486896133422852, 0.03422467041015625, 0.034164894104003904, 0.03409628677368164, 0.03440915298461914, 0.034516990661621096, 0.034353153228759765, 0.03438796615600586, 0.03469107055664063, 0.034830337524414064, 0.034559745788574216, 0.034516895294189456, 0.03556524658203125, 0.03461574554443359, 0.03441622543334961, 0.0347465934753418, 0.03712432098388672, 0.035794113159179686, 0.034700286865234374, 0.03456121444702148, 0.03482502365112305, 0.034740097045898435, 0.034680606842041016, 0.03462118530273438, 0.0347039680480957, 0.03428966522216797, 0.034447647094726565, 0.03426793670654297, 0.03435212707519531, 0.03504316711425781, 0.035305023193359375, 0.034802207946777346, 0.034887680053710936, 0.03566400146484375, 0.03505539321899414, 0.03467273712158203, 0.03537715148925781, 0.03451289749145508, 0.03461648178100586, 0.03460796737670899, 0.034680831909179685, 0.0351879997253418, 0.03484659194946289, 0.03484297561645508, 0.03463164901733398, 0.03426556777954102, 0.034078784942626957, 0.03398976135253906, 0.033917823791503904, 0.03422617721557617, 0.034369537353515625, 0.034772991180419925, 0.03456361770629883, 0.03477164840698242, 0.03490505599975586, 0.034991104125976565, 0.03879670333862305, 0.03533567810058594, 0.0346591682434082, 0.03478707122802734, 0.034330944061279296, 0.0346063346862793, 0.03451980972290039, 0.03462742233276367, 0.03484832000732422, 0.034780895233154294, 0.03472473526000976, 0.03473958587646484, 0.0345258560180664, 0.03461526489257812, 0.03456185531616211, 0.034276542663574217, 0.03456467056274414, 0.03443545532226563, 0.03443308639526367, 0.03444073486328125, 0.03492659378051758, 0.03478371047973633, 0.03444351959228516, 0.03461503982543945, 0.03451084899902344, 0.03458047866821289, 0.034566143035888675, 0.034729312896728516, 0.034703296661376955, 0.0348076171875, 0.03496217727661133, 0.034923774719238285, 0.035213375091552736, 0.03538118362426758, 0.03506473541259766, 0.034935905456542966, 0.034724544525146485, 0.03443119812011719, 0.03478112030029297, 0.03448384094238281, 0.03514147186279297, 0.03490671920776367, 0.03527635192871094, 0.035624767303466795, 0.034840766906738284, 0.0347770881652832, 0.035833854675292966, 0.034551422119140626, 0.034689407348632816, 0.034639297485351564, 0.0348326416015625, 0.03500374221801758, 0.035044097900390626, 0.035154144287109376, 0.03490611267089844, 0.03464803314208984, 0.03485084915161133, 0.03470675277709961, 0.03522364807128906, 0.034676704406738285, 0.03496409606933594, 0.03654156875610352, 0.034880542755126955, 0.03480508804321289, 0.03857664108276367, 0.039120670318603515, 0.03547772979736328, 0.035065345764160157, 0.036252159118652344, 0.03515561676025391, 0.034939231872558596, 0.035098175048828124, 0.03520131301879883, 0.034938880920410156, 0.034785438537597656, 0.03502899169921875, 0.03494297790527344, 0.03540297698974609, 0.034892097473144534, 0.034705886840820314, 0.034715648651123046, 0.03491017532348633, 0.034504127502441403, 0.03457904052734375, 0.03451084899902344, 0.034441375732421876, 0.034786975860595704, 0.03572326278686523, 0.034955455780029294, 0.03479267120361328, 0.03472006225585938, 0.03451667022705078, 0.03495987319946289, 0.03466287994384765, 0.03441030502319336, 0.0344268798828125, 0.034720863342285156, 0.03499212646484375, 0.034783905029296874, 0.03461759948730469, 0.034715648651123046, 0.03663644790649414, 0.034318431854248044, 0.03423654556274414, 0.03424822235107422, 0.034327007293701174, 0.035743743896484374, 0.0349813117980957, 0.03508486557006836, 0.03509209442138672, 0.034703742980957034, 0.03487094497680664, 0.035350879669189456, 0.03534643173217773, 0.03541315078735351, 0.03526460647583008, 0.035396350860595706, 0.035339488983154296, 0.03519302368164062, 0.035885887145996095, 0.03549776077270508, 0.035512001037597656, 0.035766654968261716, 0.03545270538330078, 0.03541798400878906, 0.03645257568359375, 0.035020030975341794, 0.035074432373046874, 0.03521120071411133, 0.03520134353637695, 0.03535865783691406, 0.035495872497558596, 0.03512761688232422, 0.035181888580322264, 0.03532025527954102, 0.03533657455444336, 0.035026016235351565, 0.035149951934814454, 0.035219680786132815, 0.03542265701293945, 0.03548291015625, 0.03532255935668945, 0.035182624816894534, 0.03524937438964844, 0.035242782592773435, 0.03516630554199219, 0.035165313720703126, 0.03500316619873047, 0.03480780792236328, 0.03474147033691406, 0.03481884765625, 0.03463782501220703, 0.034560001373291016, 0.034548927307128906, 0.03493356704711914, 0.03480985641479492, 0.03451446533203125, 0.03480403137207031, 0.03469942474365234, 0.03495462417602539, 0.035043968200683596, 0.03493289566040039, 0.03481340789794922, 0.03489782333374023, 0.03485948944091797, 0.03466377639770508, 0.034996158599853514, 0.03510140609741211, 0.03519875335693359, 0.035409374237060545, 0.03462995147705078, 0.03457660675048828, 0.03436515045166016, 0.03453366470336914, 0.03482624053955078, 0.035003681182861325, 0.03593084716796875, 0.03477119827270508, 0.03476591873168945, 0.03486991882324219, 0.03469827270507812, 0.03465315246582031, 0.03475807952880859, 0.03452985763549805, 0.03474172973632812, 0.03506230545043945, 0.03494841766357422, 0.03519081497192383, 0.03495126342773437, 0.03480137634277344, 0.034683582305908206, 0.03494620895385742, 0.034976768493652347, 0.03466035079956055, 0.034781185150146485, 0.03496345520019531, 0.0348671989440918, 0.03478732681274414, 0.03504870223999024, 0.034992511749267576, 0.03479385757446289, 0.03472348785400391, 0.034721439361572265, 0.03470748901367188, 0.03489449691772461, 0.03505753707885742, 0.03471516799926758, 0.03458623886108399, 0.034869598388671874, 0.035068641662597655, 0.03502070236206055, 0.03495062255859375, 0.035025440216064456, 0.035039039611816404, 0.03559401702880859, 0.03707926559448242, 0.03541196823120117, 0.03491244888305664, 0.035081825256347655, 0.034916767120361326, 0.03485081481933594, 0.03526041412353516, 0.03489542388916016, 0.035051166534423826, 0.034824897766113284, 0.03441468811035156, 0.034426433563232425, 0.034592254638671875, 0.03435820770263672, 0.03441049575805664, 0.03435449600219727, 0.034409183502197266, 0.03584000015258789, 0.035125022888183595, 0.03453155136108398, 0.03490611267089844, 0.034385921478271485, 0.03449446487426758, 0.034203647613525394, 0.03486265563964844, 0.034346462249755856, 0.034222270965576174, 0.034565086364746096, 0.03439708709716797, 0.03424256134033203, 0.03418320083618164, 0.03398332977294922, 0.0339733772277832, 0.03397097778320313, 0.034213985443115234, 0.03391507339477539, 0.03389763259887695, 0.033841888427734376, 0.03421366500854492, 0.03461920166015625, 0.03466713714599609, 0.034688766479492185, 0.034313377380371095, 0.03388678359985352, 0.034439456939697265, 0.03433606338500977, 0.033769439697265625, 0.033979393005371096, 0.03383779144287109, 0.0337716178894043, 0.03385232162475586, 0.034070526123046875, 0.03451084899902344, 0.03450470352172851, 0.035192832946777344, 0.03407177734375, 0.03403807830810547, 0.033831390380859375, 0.0339046401977539, 0.03376278305053711, 0.033944095611572266, 0.03393283081054688, 0.033931743621826174, 0.034598911285400394, 0.03465420913696289, 0.03409920120239258, 0.034164798736572265, 0.03379929733276367, 0.0338460807800293, 0.03393769454956055, 0.034035423278808596, 0.03392716979980469, 0.03393920135498047, 0.033820926666259764, 0.034618751525878906, 0.03434764862060547, 0.03470950317382813, 0.034523136138916014, 0.03405414581298828, 0.03476620864868164, 0.03478169631958008, 0.03407257461547852, 0.03406028747558594, 0.03402921676635742, 0.03434121704101562, 0.03446783828735352, 0.03423436737060547, 0.03403571319580078, 0.034086910247802735, 0.03407417678833008, 0.034165184020996095, 0.03404211044311523, 0.03380607986450195, 0.034104991912841796, 0.034027870178222654, 0.03464751815795898, 0.035576446533203125, 0.03469609451293945, 0.034511871337890625, 0.03500758361816406, 0.03757689666748047, 0.035991680145263674, 0.03477155303955078, 0.03431628799438476, 0.03403945541381836, 0.03410364913940429, 0.034293758392333985, 0.03417497634887695, 0.034411937713623046, 0.03487152099609375, 0.03424643325805664, 0.03402403259277344, 0.03400908660888672, 0.03389788818359375, 0.03394211196899414, 0.03400089645385742, 0.03410124969482422, 0.03391897583007813, 0.034301246643066406, 0.034157249450683595, 0.034395904541015626, 0.035299583435058596, 0.034170879364013675, 0.03416595077514648, 0.03697318267822266, 0.03438963317871094, 0.039381568908691406, 0.03473932647705078, 0.0350599365234375, 0.035256446838378905, 0.034990623474121095, 0.03497369766235352, 0.03488668823242187, 0.03453231811523438, 0.03417472076416016, 0.03397635269165039, 0.03385776138305664, 0.03382259368896484, 0.034319553375244144, 0.033739391326904296, 0.03385139083862305, 0.03376115036010742, 0.03409561538696289, 0.03479347229003906, 0.034361343383789066, 0.033853408813476565, 0.03376278305053711, 0.03380691146850586, 0.033767425537109375, 0.03386163330078125, 0.0340450553894043, 0.03404422378540039, 0.03406905746459961, 0.03470131301879883, 0.0353372802734375, 0.034986686706542966, 0.034277023315429686, 0.034027679443359375, 0.033849342346191406, 0.033900993347167965, 0.03395174407958984, 0.03382463836669922, 0.03386175918579101, 0.033957279205322266, 0.035156574249267575, 0.03484463882446289, 0.03477916717529297, 0.03410678482055664, 0.033841758728027346, 0.033939582824707035, 0.03377139282226563, 0.033990657806396485, 0.03378176116943359, 0.03415654373168946, 0.033890304565429685, 0.03390566253662109, 0.03387078475952148, 0.03399875259399414, 0.03388022232055664, 0.03407254409790039, 0.03374460983276367, 0.03406012725830078, 0.033717758178710935, 0.033992897033691405, 0.034468639373779295, 0.03417702484130859, 0.03381657409667969, 0.03401068878173828, 0.034042304992675784, 0.03454969787597656, 0.03435504150390625, 0.03427145767211914, 0.034184638977050784, 0.03400140762329101, 0.03411500930786133, 0.03395660781860352, 0.03419075012207031, 0.03394303894042969, 0.03406742477416992, 0.03387187194824219, 0.03408835220336914, 0.034789985656738284, 0.03487948989868164, 0.0349409294128418, 0.03435520172119141, 0.03406643295288086]",tokens/s,28.895119140476183,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1169.5104,1101.98784,0.0,706.740224,681.6384,s,1,7.8803232421875,7.8803232421875,0.0,7.8803232421875,7.8803232421875,7.8803232421875,7.8803232421875,[7.8803232421875],,kWh,2.994021517082122e-05,3.2955293587886216e-06,9.018618325994099e-06,4.225436285560394e-05,,MB,1473.560576,1406.07488,0.0,996.1472,949.238272,s,10,0.2701465301513672,0.027014653015136718,0.0002590781925695431,0.026916496276855467,0.02731109790802002,0.02742468538284302,0.027515555362701418,"[0.027538272857666017, 0.027266656875610352, 0.0267741756439209, 0.027285856246948244, 0.02666486358642578, 0.026836351394653322, 0.02688630485534668, 0.02694668769836426, 0.027082208633422852, 0.026865152359008788]",tokens/s,9476.338632095676,kWh,7.87035152987432e-07,8.679267208216295e-08,4.824255132237186e-07,1.3562533382933135e-06,tokens/kWh,188755295.76365587,MB,1494.245376,1414.463488,0.0,1004.535808,949.240832,s,10,12.78926037597656,1.2789260375976563,0.004933773595789401,1.2782561645507813,1.2860602294921875,1.2865773559570313,1.2869910571289063,"[1.287094482421875, 1.2779775390625, 1.2859453125, 1.2803258056640625, 1.2744139404296875, 1.27096923828125, 1.2768492431640626, 1.28282861328125, 1.2785347900390625, 1.2743214111328125]",tokens/s,49.26008083965484,kWh,3.754832102909648e-05,4.1411248843222496e-06,1.5031698009176037e-05,5.6721143922594757e-05,tokens/kWh,1110696.9225792373,,s,630,12.787142049789429,0.020297050872681632,0.00033143789891812,0.020219488143920897,0.020541273307800294,0.02072889757156372,0.021887381591796873,"[0.020536287307739258, 0.020398143768310548, 0.02035308837890625, 0.020231744766235352, 0.020243776321411132, 0.020232736587524416, 0.020072927474975587, 0.020193439483642578, 0.020277088165283202, 0.02020351982116699, 0.02022809600830078, 0.02029148864746094, 0.020152416229248047, 0.020344352722167967, 0.020193952560424805, 0.020031295776367187, 0.020373504638671876, 0.020368831634521484, 0.020482624053955078, 0.020609024047851563, 0.02038102340698242, 0.020664831161499024, 0.022929567337036133, 0.020983808517456053, 0.02082611274719238, 0.020406272888183592, 0.020279296875, 0.020290559768676757, 0.020488576889038088, 0.0201997127532959, 0.020320608139038087, 0.02035043144226074, 0.020193824768066405, 0.020362335205078123, 0.020255647659301757, 0.020701183319091796, 0.020346879959106445, 0.020231775283813477, 0.02055619239807129, 0.02037721633911133, 0.020295904159545897, 0.020572256088256836, 0.02027676773071289, 0.02042524719238281, 0.020340448379516603, 0.02029801559448242, 0.020967424392700194, 0.022359968185424805, 0.020377695083618166, 0.020338623046875, 0.020423904418945312, 0.020304672241210936, 0.02027503967285156, 0.020164255142211915, 0.02020924758911133, 0.020259071350097656, 0.02015715217590332, 0.020161632537841798, 0.020675487518310547, 0.020349056243896484, 0.020332416534423827, 0.020082687377929686, 0.02027030372619629, 0.020314815521240235, 0.020259872436523437, 0.020146303176879883, 0.020446144104003906, 0.02020310401916504, 0.020187456130981444, 0.020291200637817385, 0.02019500732421875, 0.02021651268005371, 0.020248575210571287, 0.020183040618896485, 0.02009059143066406, 0.02006390380859375, 0.020212352752685545, 0.020471519470214843, 0.0204169921875, 0.02052076721191406, 0.02086016082763672, 0.020358144760131838, 0.020449024200439453, 0.020305919647216796, 0.020273151397705077, 0.02020966339111328, 0.020241472244262697, 0.020204479217529298, 0.020332256317138673, 0.020277088165283202, 0.02077231979370117, 0.02034787178039551, 0.020099071502685546, 0.02011955261230469, 0.020090463638305665, 0.020115615844726563, 0.020101343154907227, 0.020148256301879882, 0.020245920181274413, 0.020203327178955077, 0.02021251106262207, 0.020332096099853515, 0.020263359069824217, 0.02033193588256836, 0.020107872009277345, 0.020090879440307616, 0.02008780860900879, 0.020118528366088868, 0.020154144287109373, 0.020258848190307616, 0.02051705551147461, 0.02022604751586914, 0.020312063217163084, 0.020172224044799805, 0.020146751403808595, 0.020231264114379883, 0.020179872512817384, 0.020313791275024414, 0.02095110321044922, 0.02037785530090332, 0.020238336563110353, 0.020243616104125978, 0.02030473518371582, 0.020606719970703125, 0.020461248397827148, 0.02031804847717285, 0.020342784881591795, 0.02071743965148926, 0.020582176208496093, 0.020520864486694337, 0.020335039138793944, 0.020254720687866212, 0.020152288436889647, 0.02016422462463379, 0.020121088027954103, 0.020138912200927735, 0.02016694450378418, 0.021693727493286134, 0.023953760147094726, 0.02070742416381836, 0.020313215255737305, 0.02029862403869629, 0.020166656494140626, 0.020137311935424805, 0.02012835121154785, 0.020041791915893555, 0.020041696548461913, 0.02001513671875, 0.02012553596496582, 0.02018694305419922, 0.019988832473754884, 0.01999667167663574, 0.02028489685058594, 0.02004368019104004, 0.02008127975463867, 0.01997177505493164, 0.020008575439453124, 0.020226816177368163, 0.02003721618652344, 0.02002569580078125, 0.020109312057495117, 0.02015203285217285, 0.02030342483520508, 0.020167392730712892, 0.02013167953491211, 0.020144287109375, 0.02017430305480957, 0.020273408889770507, 0.02027343940734863, 0.02169241523742676, 0.02009449577331543, 0.020060319900512696, 0.02017100715637207, 0.02012985610961914, 0.0204532470703125, 0.020096607208251953, 0.02045580863952637, 0.02041993522644043, 0.020534080505371095, 0.022040576934814454, 0.021884927749633788, 0.020585472106933594, 0.020264192581176756, 0.020108415603637696, 0.020173440933227538, 0.02021785545349121, 0.020731903076171874, 0.02103455924987793, 0.020854272842407227, 0.0206210880279541, 0.020460416793823242, 0.020256000518798827, 0.020345600128173828, 0.02017817687988281, 0.019983104705810547, 0.02003763198852539, 0.020129791259765627, 0.020162559509277343, 0.02007027244567871, 0.02005219268798828, 0.020506528854370116, 0.02044108772277832, 0.02072985649108887, 0.0202478084564209, 0.020196096420288086, 0.02037555122375488, 0.020158464431762696, 0.02035513687133789, 0.020459455490112306, 0.020457023620605468, 0.020291584014892578, 0.02044905662536621, 0.020607295989990233, 0.020414464950561522, 0.020338848114013673, 0.020510143280029296, 0.020599552154541016, 0.020445184707641603, 0.02029363250732422, 0.020238431930541992, 0.02022390365600586, 0.02060438346862793, 0.020640287399291992, 0.020385440826416017, 0.020267360687255858, 0.020099071502685546, 0.02048521614074707, 0.02062019157409668, 0.020312320709228514, 0.02045302391052246, 0.020192607879638672, 0.020062591552734373, 0.020275583267211916, 0.02004991912841797, 0.020846176147460937, 0.02024393653869629, 0.020247488021850585, 0.020282527923583985, 0.02016099166870117, 0.020140415191650392, 0.020120895385742188, 0.020588319778442384, 0.020652416229248047, 0.02015216064453125, 0.020126399993896486, 0.020099071502685546, 0.020414016723632813, 0.020089088439941408, 0.020086336135864257, 0.020177536010742188, 0.020320255279541014, 0.02030182456970215, 0.020199424743652345, 0.020346879959106445, 0.020165792465209963, 0.02033750343322754, 0.020207199096679687, 0.02032067108154297, 0.020219295501708985, 0.02022825622558594, 0.020525503158569335, 0.020254720687866212, 0.020207616806030275, 0.02008678436279297, 0.020115455627441405, 0.020148000717163085, 0.019962015151977538, 0.020093055725097658, 0.020264896392822265, 0.020526144027709962, 0.02036761665344238, 0.020107872009277345, 0.020520832061767576, 0.020217567443847655, 0.020670656204223634, 0.020363584518432617, 0.02020265579223633, 0.020601152420043945, 0.020189855575561525, 0.02016828727722168, 0.02026851272583008, 0.020228000640869142, 0.020165536880493166, 0.020420608520507814, 0.020316160202026368, 0.02022400093078613, 0.02020351982116699, 0.0202608642578125, 0.020324352264404297, 0.020225727081298828, 0.020258207321166993, 0.020112287521362304, 0.020129600524902345, 0.020076736450195313, 0.020057952880859375, 0.020307680130004883, 0.020178720474243163, 0.020081087112426756, 0.02007267189025879, 0.02006630325317383, 0.020291648864746093, 0.020270015716552733, 0.020164960861206054, 0.020084672927856446, 0.019987167358398436, 0.02006447982788086, 0.020113183975219728, 0.02021990394592285, 0.020145503997802735, 0.020286111831665038, 0.020076831817626952, 0.020248287200927733, 0.020182912826538085, 0.020172927856445314, 0.02026713562011719, 0.020234079360961915, 0.02019001579284668, 0.02013507270812988, 0.020095840454101562, 0.02027519989013672, 0.020404224395751954, 0.02021347236633301, 0.02012598419189453, 0.020072160720825197, 0.020044063568115233, 0.02006220817565918, 0.020074495315551756, 0.020266176223754883, 0.02008291244506836, 0.020119935989379882, 0.020111263275146483, 0.020388160705566406, 0.020172800064086914, 0.02006387138366699, 0.020089216232299804, 0.020215232849121093, 0.0200949764251709, 0.02010086441040039, 0.020111583709716798, 0.02004591941833496, 0.020212223052978515, 0.020150272369384766, 0.020116800308227538, 0.020177600860595703, 0.02013545608520508, 0.020197248458862303, 0.020139711380004883, 0.020226112365722658, 0.020063072204589843, 0.020068351745605468, 0.02004991912841797, 0.020099071502685546, 0.02003094482421875, 0.02010998344421387, 0.020062080383300783, 0.02012575912475586, 0.020151615142822266, 0.02007072067260742, 0.02011372756958008, 0.020178112030029297, 0.02041324806213379, 0.020496383666992187, 0.020442367553710938, 0.02026927947998047, 0.02026451110839844, 0.020360160827636718, 0.02029737663269043, 0.020291936874389647, 0.020206975936889648, 0.020287359237670898, 0.020189952850341798, 0.020125696182250977, 0.02016041564941406, 0.020164735794067384, 0.020106592178344727, 0.02013657569885254, 0.020135936737060548, 0.02015145683288574, 0.020189247131347655, 0.02145964813232422, 0.020557151794433594, 0.020238624572753907, 0.020468128204345702, 0.020353023529052734, 0.020131839752197265, 0.02019046401977539, 0.020155136108398437, 0.020155679702758788, 0.020162879943847658, 0.020066015243530272, 0.02018387222290039, 0.020022687911987306, 0.02003955268859863, 0.020009151458740236, 0.02012179183959961, 0.020081888198852538, 0.020204128265380858, 0.020212127685546876, 0.020841503143310548, 0.02094179153442383, 0.020672191619873048, 0.02053356742858887, 0.020341951370239256, 0.020169408798217773, 0.020629568099975584, 0.020369472503662108, 0.020136224746704103, 0.020309728622436525, 0.020264959335327147, 0.020286975860595705, 0.020226560592651367, 0.020237600326538086, 0.02017967987060547, 0.020174400329589844, 0.02009542465209961, 0.02032614326477051, 0.020232448577880858, 0.02002943992614746, 0.02006559944152832, 0.020134143829345703, 0.020112831115722655, 0.02002841567993164, 0.020113311767578124, 0.02011532783508301, 0.020146400451660156, 0.020094911575317384, 0.020130943298339844, 0.02021062469482422, 0.020297439575195312, 0.02020089530944824, 0.020228960037231444, 0.02020547294616699, 0.0202589111328125, 0.020287488937377928, 0.020264671325683593, 0.02032217597961426, 0.020343040466308592, 0.020292800903320314, 0.020138975143432616, 0.02027123260498047, 0.02036467170715332, 0.020186784744262696, 0.020093088150024415, 0.020076959609985352, 0.021663551330566407, 0.020729631423950196, 0.02037507247924805, 0.02034550476074219, 0.020173023223876953, 0.02011071968078613, 0.020136159896850588, 0.020074176788330077, 0.020048608779907228, 0.02008998489379883, 0.020138463973999023, 0.02006671905517578, 0.02002739143371582, 0.020172800064086914, 0.020178943634033202, 0.020281183242797853, 0.020312223434448242, 0.02027724838256836, 0.02026700782775879, 0.02023756790161133, 0.020208383560180666, 0.020412416458129884, 0.020518463134765626, 0.020332992553710936, 0.02020351982116699, 0.020202783584594725, 0.020396415710449218, 0.020629215240478515, 0.02039583969116211, 0.020456256866455077, 0.020520191192626953, 0.020398847579956053, 0.02189516830444336, 0.021045120239257812, 0.021192832946777342, 0.02072800064086914, 0.020289344787597655, 0.020159584045410156, 0.020315135955810547, 0.020084543228149412, 0.020142175674438476, 0.020104448318481447, 0.02013670349121094, 0.020256767272949217, 0.02026412773132324, 0.02021049690246582, 0.02007040023803711, 0.020365407943725586, 0.020072351455688475, 0.020178592681884766, 0.020453535079956054, 0.020179136276245117, 0.020171903610229493, 0.020130367279052735, 0.020160831451416016, 0.020740352630615234, 0.02069273567199707, 0.020630624771118163, 0.0206713924407959, 0.020539104461669924, 0.020254720687866212, 0.020227519989013672, 0.020447551727294924, 0.020270784378051757, 0.020208192825317384, 0.02019708824157715, 0.020093215942382812, 0.020069408416748046, 0.020165599822998048, 0.02020147132873535, 0.02011955261230469, 0.02004604721069336, 0.020053632736206056, 0.02001862335205078, 0.020177631378173827, 0.02021171188354492, 0.020127391815185545, 0.02009123229980469, 0.020167776107788086, 0.02039695930480957, 0.020174848556518556, 0.020144384384155275, 0.020188928604125977, 0.020213567733764648, 0.020182975769042967, 0.020115711212158202, 0.02231500816345215, 0.021888383865356444, 0.02017286491394043, 0.02031827163696289, 0.020119359970092773, 0.02000761604309082, 0.02010851287841797, 0.02010601615905762, 0.02010316848754883, 0.020260351181030273, 0.020464128494262695, 0.02051411247253418, 0.02022879981994629, 0.020133535385131837, 0.020136287689208984, 0.020142080307006836, 0.020146175384521483, 0.020193248748779296, 0.020129919052124023, 0.02015376091003418, 0.020219680786132812, 0.020128416061401366, 0.020221824645996093, 0.020226240158081055, 0.020120864868164064, 0.020331520080566406, 0.02014156723022461, 0.020133344650268555, 0.020318431854248045, 0.020539615631103517, 0.020437280654907228, 0.0208240966796875, 0.020520959854125977, 0.02082611274719238, 0.02038374328613281, 0.02039971160888672, 0.020343135833740235, 0.02015884780883789, 0.020219200134277342, 0.020131711959838868, 0.020112192153930664, 0.020262271881103515, 0.020804224014282228, 0.020303871154785155, 0.020286624908447265, 0.020218719482421876, 0.020238336563110353, 0.020298751831054687, 0.020274175643920898, 0.020162559509277343, 0.02023129653930664, 0.02026380729675293, 0.02019327926635742, 0.02007619285583496, 0.020160863876342774, 0.020131839752197265, 0.02011907196044922, 0.020170272827148436, 0.020071359634399415, 0.02009235191345215, 0.019951583862304688, 0.019995136260986326, 0.020176416397094728, 0.020002975463867187, 0.019990528106689453, 0.02008720016479492, 0.02004547119140625, 0.020197120666503907, 0.020457632064819337, 0.020302528381347655, 0.02017817687988281, 0.020056575775146485, 0.020215808868408205, 0.02021785545349121, 0.020223039627075196, 0.020109535217285156, 0.020251199722290038, 0.0202446403503418, 0.020183040618896485, 0.020120960235595703, 0.020142816543579103, 0.02039504051208496, 0.020392671585083007, 0.020256927490234375, 0.020234176635742188, 0.020149951934814454, 0.020121952056884766, 0.020616863250732424, 0.020461952209472656, 0.020563968658447264, 0.020348031997680663, 0.020419456481933593, 0.02033459281921387, 0.020314111709594726, 0.02024448013305664, 0.020125696182250977, 0.020161951065063476, 0.020261472702026367, 0.02021990394592285, 0.02036639976501465]",tokens/s,49.26824129637119,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1582.342144,1596.915712,0.0,1201.668096,1189.151232,s,1,8.6505029296875,8.6505029296875,0.0,8.6505029296875,8.6505029296875,8.6505029296875,8.6505029296875,[8.6505029296875],,kWh,3.685549087500135e-05,4.0580436646186965e-06,1.1927509542004194e-05,5.284104408162424e-05,,MB,1563.049984,1794.048,0.0,1384.12032,1351.367168,s,10,0.4121473541259766,0.04121473541259766,0.0002022758176152118,0.04114734268188476,0.04153757705688477,0.041589892578124996,0.04163174499511719,"[0.04164220809936523, 0.04098281478881836, 0.041086112976074216, 0.04125983810424805, 0.04104713439941406, 0.041223487854003905, 0.04108512115478516, 0.04152595138549805, 0.04118703842163086, 0.04110764694213867]",tokens/s,6211.370701211666,kWh,1.2486447791132654e-06,1.3770349550795996e-07,8.256404990683729e-07,2.211988773689598e-06,tokens/kWh,115732956.26315133,MB,1572.442112,1835.99104,0.0,1426.06336,1407.548416,s,10,10.61557373046875,1.061557373046875,0.005552198334380235,1.0607288208007812,1.0706404907226563,1.0711919494628908,1.071633116455078,"[1.0594141845703124, 1.0570184326171874, 1.0705179443359376, 1.06061181640625, 1.0608458251953126, 1.0575704345703125, 1.071743408203125, 1.0526453857421876, 1.062847900390625, 1.0623583984375]",tokens/s,59.34676881304852,kWh,3.098585049172095e-05,3.4171700681130072e-06,1.5428455837531704e-05,4.983147639736567e-05,tokens/kWh,1264261.1568966173,,s,630,10.611997209548951,0.016844440015157062,0.0002947726225189542,0.01678551959991455,0.017162866401672364,0.01731639394760132,0.017957598571777342,"[0.017451072692871095, 0.017297407150268555, 0.017342464447021484, 0.01744895935058594, 0.01720684814453125, 0.017137151718139648, 0.017303680419921873, 0.017027904510498047, 0.01723353576660156, 0.0169168643951416, 0.016577983856201173, 0.016558048248291015, 0.016688800811767577, 0.016571327209472655, 0.016566272735595702, 0.01682009506225586, 0.016686399459838866, 0.016845632553100585, 0.016680959701538087, 0.016692256927490233, 0.016493024826049803, 0.016673023223876954, 0.016505088806152344, 0.01654560089111328, 0.016789695739746095, 0.016633440017700195, 0.016837024688720705, 0.016939008712768554, 0.016987327575683595, 0.016929599761962892, 0.016754079818725585, 0.016622047424316406, 0.016738431930541992, 0.0167587833404541, 0.016670719146728515, 0.016709632873535156, 0.016766592025756834, 0.016744384765625, 0.016711679458618164, 0.016721887588500975, 0.01676131248474121, 0.016676000595092774, 0.016565088272094727, 0.016502784729003905, 0.016496639251708984, 0.01643712043762207, 0.017168512344360353, 0.016590368270874022, 0.017137247085571287, 0.016565120697021485, 0.016664287567138673, 0.016777503967285157, 0.016833536148071288, 0.016686080932617187, 0.016695295333862305, 0.016498239517211914, 0.016601280212402345, 0.016535423278808595, 0.01654207992553711, 0.0186079044342041, 0.01702729606628418, 0.01662156867980957, 0.016537599563598633, 0.016503583908081054, 0.016575647354125977, 0.016554847717285156, 0.016551008224487306, 0.01651395225524902, 0.016324607849121094, 0.016479583740234376, 0.016461471557617187, 0.01647702407836914, 0.01651113510131836, 0.016631296157836914, 0.01672809600830078, 0.01696201515197754, 0.01697996711730957, 0.016798944473266603, 0.01676144027709961, 0.0167524471282959, 0.016743904113769532, 0.01680476760864258, 0.016920576095581053, 0.01657151985168457, 0.01662656021118164, 0.016687103271484375, 0.016846847534179688, 0.016939008712768554, 0.01695884895324707, 0.01686355209350586, 0.016666431427001954, 0.016719808578491212, 0.016720447540283203, 0.01716223907470703, 0.016729663848876954, 0.01656262397766113, 0.016525312423706053, 0.016654144287109374, 0.016635391235351564, 0.016847551345825194, 0.01699737548828125, 0.016933696746826172, 0.016909631729125976, 0.016720703125, 0.016834592819213866, 0.016748575210571288, 0.017229824066162108, 0.016768896102905273, 0.016633663177490234, 0.016742719650268554, 0.016685056686401366, 0.016654016494750977, 0.016572351455688476, 0.01679782485961914, 0.016810239791870116, 0.016915840148925783, 0.016792192459106445, 0.017161920547485353, 0.016748287200927733, 0.016734207153320312, 0.016648767471313476, 0.016643104553222657, 0.016561119079589844, 0.017476640701293945, 0.017296255111694334, 0.01794451141357422, 0.017136831283569336, 0.01717945671081543, 0.017006591796875, 0.017069536209106444, 0.016922399520874022, 0.016787967681884765, 0.016718080520629883, 0.016755807876586915, 0.01679657554626465, 0.016773120880126953, 0.016802976608276367, 0.01673097610473633, 0.016815935134887695, 0.01702112007141113, 0.016847936630249024, 0.01666099166870117, 0.016709407806396483, 0.016681631088256835, 0.016644096374511717, 0.018257568359375, 0.019118431091308594, 0.01719478416442871, 0.017072351455688476, 0.017295360565185547, 0.017141632080078125, 0.016875232696533203, 0.01685696029663086, 0.01693503952026367, 0.01691484832763672, 0.016858848571777343, 0.016818464279174803, 0.01671500778198242, 0.016831167221069337, 0.01713145637512207, 0.018671743392944334, 0.01787017631530762, 0.017562271118164063, 0.017112640380859374, 0.016931264877319337, 0.01722127914428711, 0.016879968643188477, 0.01690345573425293, 0.016857376098632814, 0.016716224670410156, 0.01686028861999512, 0.016845695495605467, 0.016742399215698242, 0.016725215911865234, 0.016838464736938476, 0.016762943267822267, 0.016718751907348634, 0.01678335952758789, 0.016811391830444337, 0.016959104537963867, 0.016870399475097657, 0.016831935882568358, 0.016806463241577148, 0.016734207153320312, 0.016711679458618164, 0.016660255432128908, 0.017047775268554687, 0.016889312744140624, 0.01686787223815918, 0.017353471755981446, 0.017210752487182616, 0.01717737579345703, 0.016963136672973632, 0.016852800369262694, 0.016831104278564452, 0.01692803192138672, 0.01665865516662598, 0.01672857666015625, 0.016793344497680666, 0.01693712043762207, 0.016992223739624022, 0.016904319763183594, 0.016969280242919924, 0.017099199295043947, 0.017080320358276366, 0.016892927169799805, 0.016773183822631835, 0.016613471984863282, 0.016587615966796875, 0.016647647857666016, 0.016623584747314454, 0.016553728103637696, 0.016537919998168945, 0.016626176834106447, 0.016721920013427736, 0.016703487396240235, 0.017117183685302736, 0.016946367263793945, 0.016955839157104493, 0.016781696319580076, 0.016842111587524414, 0.01670003128051758, 0.016695295333862305, 0.01661270332336426, 0.016765600204467775, 0.01696710395812988, 0.016869951248168945, 0.016885759353637696, 0.016709632873535156, 0.0167106876373291, 0.016724960327148437, 0.01666662406921387, 0.01658399963378906, 0.016628416061401367, 0.01665433692932129, 0.01660518455505371, 0.017032224655151366, 0.0168253116607666, 0.0169671688079834, 0.016806047439575197, 0.016836959838867186, 0.01687321662902832, 0.0172359676361084, 0.016883935928344727, 0.01679145622253418, 0.01678335952758789, 0.01681011199951172, 0.016683008193969725, 0.01677516746520996, 0.016932159423828124, 0.016926496505737305, 0.016823200225830077, 0.01686387252807617, 0.016883712768554687, 0.01677052879333496, 0.016775711059570313, 0.016723968505859374, 0.01682431983947754, 0.01679974365234375, 0.016901920318603516, 0.01700864028930664, 0.01696995162963867, 0.01699827194213867, 0.017452928543090822, 0.01718092727661133, 0.016957439422607423, 0.016793279647827147, 0.016757055282592772, 0.016690303802490234, 0.01674025535583496, 0.016690143585205076, 0.016697343826293946, 0.016676864624023437, 0.017032480239868163, 0.017193695068359376, 0.01687049674987793, 0.016724063873291017, 0.016806720733642578, 0.01682431983947754, 0.01680998420715332, 0.017360895156860352, 0.017012224197387696, 0.016830976486206056, 0.016864831924438477, 0.01696988868713379, 0.01690140724182129, 0.016843679428100587, 0.017008447647094728, 0.01709699249267578, 0.017082368850708008, 0.0168407039642334, 0.016713727951049806, 0.016695295333862305, 0.016752639770507814, 0.01679897689819336, 0.0168721923828125, 0.0169881591796875, 0.01683865547180176, 0.016904191970825197, 0.016815488815307617, 0.016633823394775392, 0.016732831954956055, 0.01656831932067871, 0.01681203269958496, 0.016695295333862305, 0.01658060836791992, 0.01659596824645996, 0.016638528823852538, 0.01656262397766113, 0.016623615264892578, 0.016632863998413086, 0.016630752563476563, 0.017035039901733398, 0.01665660858154297, 0.01661337661743164, 0.01661337661743164, 0.01660518455505371, 0.016677984237670897, 0.016710559844970704, 0.016738304138183592, 0.01687084770202637, 0.01699897575378418, 0.016915935516357422, 0.016595487594604493, 0.017386816024780274, 0.01676767921447754, 0.01663711929321289, 0.01654457664489746, 0.01667647933959961, 0.017084096908569334, 0.017472192764282225, 0.01714995193481445, 0.016780799865722656, 0.016638463973999023, 0.016817663192749025, 0.01654550361633301, 0.016712480545043946, 0.01670252799987793, 0.016652416229248047, 0.016610111236572266, 0.01677926445007324, 0.016563552856445313, 0.01661404800415039, 0.01765171241760254, 0.016590848922729492, 0.016531455993652345, 0.016547840118408205, 0.016600128173828124, 0.0165283203125, 0.016530847549438475, 0.01652387237548828, 0.01656831932067871, 0.016573728561401366, 0.016622304916381836, 0.01652236747741699, 0.01661427116394043, 0.016621183395385743, 0.016637632369995117, 0.016906335830688478, 0.017150367736816406, 0.017219776153564452, 0.01697750473022461, 0.016859136581420898, 0.01674870491027832, 0.01677337646484375, 0.016680608749389647, 0.016644447326660157, 0.016742399215698242, 0.01666662406921387, 0.017180543899536133, 0.017081663131713866, 0.016775999069213867, 0.016821504592895508, 0.016838464736938476, 0.01674336051940918, 0.01681407928466797, 0.01729030418395996, 0.01687443161010742, 0.017922048568725587, 0.017962944030761718, 0.017193023681640624, 0.01722572708129883, 0.01738137626647949, 0.016969728469848632, 0.016934911727905275, 0.018257568359375, 0.017338720321655274, 0.018175199508666993, 0.01744156837463379, 0.017542463302612304, 0.017328832626342775, 0.017270784378051757, 0.01712656021118164, 0.017015199661254882, 0.016795904159545898, 0.016736064910888672, 0.017590175628662108, 0.01686895942687988, 0.01683340835571289, 0.01686275291442871, 0.01694748878479004, 0.016906015396118163, 0.0169005126953125, 0.01682156753540039, 0.017078975677490234, 0.017127424240112304, 0.01694476890563965, 0.016777599334716797, 0.01681782341003418, 0.0167541446685791, 0.01681702423095703, 0.01677926445007324, 0.016979135513305665, 0.016814943313598632, 0.01694921684265137, 0.017285120010375975, 0.017466367721557616, 0.017293664932250978, 0.017140384674072265, 0.016879615783691407, 0.01703321647644043, 0.017006591796875, 0.017008319854736328, 0.016900415420532226, 0.016743743896484375, 0.017015487670898437, 0.016602975845336914, 0.01669264030456543, 0.016739072799682616, 0.01672985649108887, 0.016734464645385742, 0.016562175750732423, 0.01662156867980957, 0.016611328125, 0.016620800018310546, 0.016610048294067384, 0.016682815551757813, 0.016639999389648438, 0.016533695220947265, 0.016504512786865235, 0.016662847518920897, 0.01666489601135254, 0.01659516716003418, 0.016832735061645506, 0.016553567886352538, 0.01653398323059082, 0.016618623733520507, 0.016832832336425782, 0.016665151596069336, 0.01658470344543457, 0.016664575576782227, 0.01684480094909668, 0.016701440811157226, 0.01678303909301758, 0.01663167953491211, 0.016662975311279297, 0.016668479919433595, 0.0165762882232666, 0.01668943977355957, 0.016667999267578126, 0.01648259162902832, 0.01657244873046875, 0.016601343154907227, 0.01662518310546875, 0.016603839874267577, 0.016564224243164064, 0.01657651138305664, 0.016479711532592773, 0.0165949764251709, 0.016429567337036134, 0.0165150089263916, 0.016563743591308595, 0.016546239852905275, 0.01658684730529785, 0.016486400604248046, 0.016728063583374024, 0.01696476745605469, 0.016734880447387697, 0.01664224052429199, 0.016639999389648438, 0.016734207153320312, 0.01668035125732422, 0.01697443199157715, 0.017004480361938478, 0.01674553680419922, 0.016666976928710938, 0.016740447998046876, 0.016773183822631835, 0.01672652816772461, 0.016781312942504883, 0.016699392318725585, 0.016760223388671874, 0.016706144332885742, 0.01675468826293945, 0.016752479553222656, 0.016826528549194336, 0.01679088020324707, 0.016910560607910158, 0.016717920303344725, 0.016873823165893555, 0.016855039596557618, 0.01680499267578125, 0.01682111930847168, 0.017536735534667967, 0.017137567520141603, 0.01711680030822754, 0.01692310333251953, 0.01679132843017578, 0.01684707260131836, 0.016873151779174804, 0.016877887725830078, 0.016928543090820314, 0.016996383666992188, 0.01693244743347168, 0.016800352096557617, 0.016756032943725584, 0.016765056610107423, 0.01681056022644043, 0.016893951416015626, 0.017053152084350588, 0.01720944023132324, 0.017316287994384765, 0.017229663848876954, 0.017062047958374023, 0.016963584899902344, 0.016957439422607423, 0.01697737693786621, 0.016949792861938477, 0.017065568923950194, 0.01710483169555664, 0.016903999328613282, 0.01678767967224121, 0.01681657600402832, 0.016982015609741212, 0.0170700798034668, 0.016920576095581053, 0.016910335540771485, 0.016903392791748045, 0.01680668830871582, 0.01684480094909668, 0.017215360641479494, 0.01670297622680664, 0.01661734390258789, 0.016546560287475587, 0.016672479629516603, 0.016572160720825194, 0.016679328918457033, 0.016694528579711914, 0.016683839797973634, 0.0167445125579834, 0.016752639770507814, 0.016517120361328123, 0.017156095504760743, 0.01731328010559082, 0.01665279960632324, 0.016615423202514648, 0.016730112075805666, 0.016581823348999023, 0.016572799682617188, 0.017783231735229492, 0.0166146240234375, 0.01653619194030762, 0.016703647613525392, 0.016515071868896485, 0.01661248016357422, 0.016515104293823243, 0.016530271530151366, 0.01681135940551758, 0.016821920394897463, 0.016870399475097657, 0.01670512008666992, 0.016639968872070313, 0.01674630355834961, 0.016577152252197264, 0.016578367233276367, 0.016578752517700194, 0.016664447784423827, 0.017078399658203125, 0.016770368576049806, 0.016636608123779296, 0.016602239608764648, 0.016633823394775392, 0.016505760192871095, 0.01659235191345215, 0.016730655670166017, 0.016494272232055664, 0.016560447692871093, 0.016543359756469728, 0.01651545524597168, 0.016695295333862305, 0.016926528930664063, 0.016590816497802734, 0.01664841651916504, 0.016757984161376954, 0.01670822334289551, 0.016474271774291994, 0.0167891845703125, 0.017135263442993164, 0.016675071716308595, 0.01675817680358887, 0.016991231918334963, 0.01683046340942383, 0.017059648513793945, 0.01690812873840332, 0.017029087066650392, 0.016902336120605467, 0.016955583572387696, 0.016957439422607423, 0.017147903442382813, 0.016701440811157226, 0.01692188835144043, 0.016795520782470704, 0.01686409568786621, 0.017022335052490234, 0.01731648063659668, 0.0171615047454834, 0.01712611198425293, 0.017074176788330078, 0.017657632827758788, 0.016963808059692383, 0.016977920532226562, 0.016920576095581053, 0.016924671173095703, 0.016932384490966797, 0.01713404846191406, 0.017041120529174805, 0.017170719146728516, 0.017114591598510743, 0.017281120300292968, 0.017107168197631837]",tokens/s,59.36677022804998,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1583.456256,1596.915712,0.0,1201.668096,1189.151232,s,1,8.8428955078125,8.8428955078125,0.0,8.8428955078125,8.8428955078125,8.8428955078125,8.8428955078125,[8.8428955078125],,kWh,3.590696299166514e-05,3.950185491363577e-06,1.1906676192000726e-05,5.176382467502944e-05,,MB,1568.436224,1794.048,0.0,1384.12032,1351.367168,s,10,0.4130821113586426,0.04130821113586426,0.00022286802072661455,0.0412576961517334,0.041507010269165034,0.04170185794830322,0.041857736091613765,"[0.041896705627441404, 0.04109718322753906, 0.04121372985839844, 0.04126678466796875, 0.04124860763549805, 0.04128707122802734, 0.041103679656982424, 0.04146371078491211, 0.04115500640869141, 0.0413496322631836]",tokens/s,6197.315084838856,kWh,1.2452644686701731e-06,1.3733006921265444e-07,8.294391978297931e-07,2.2120337357126205e-06,tokens/kWh,115730603.86329415,MB,1573.920768,1835.99104,0.0,1426.06336,1407.548416,s,10,10.498130493164062,1.0498130493164062,0.006266048482070716,1.0488837890625,1.0573603149414061,1.0606197937011719,1.0632273767089844,"[1.056635986328125, 1.0469267578125, 1.04680224609375, 1.0506383056640625, 1.044119140625, 1.0502557373046875, 1.0475118408203126, 1.040291748046875, 1.0510694580078126, 1.0638792724609376]",tokens/s,60.01068479861527,kWh,3.0614132719246836e-05,3.376261120950881e-06,1.530290704136997e-05,4.929330088156768e-05,tokens/kWh,1278064.1359637105,,s,630,10.494630895614618,0.01665814427875337,0.00033934837523612196,0.016566128730773927,0.016881436538696292,0.0172128849029541,0.018070274982452398,"[0.017091936111450195, 0.016477983474731447, 0.016464927673339843, 0.017317983627319337, 0.01666227149963379, 0.016607168197631837, 0.01690451240539551, 0.016965375900268555, 0.01659507179260254, 0.016795520782470704, 0.016619136810302734, 0.01656412887573242, 0.016537471771240233, 0.016523359298706054, 0.016473920822143554, 0.01665273666381836, 0.016604799270629883, 0.0167325439453125, 0.01671833610534668, 0.016717664718627928, 0.01679315185546875, 0.016848735809326172, 0.01670729637145996, 0.016689952850341798, 0.016637184143066405, 0.016526079177856444, 0.016634016036987304, 0.0166910400390625, 0.016626943588256837, 0.016745088577270507, 0.016730239868164062, 0.01675823974609375, 0.0175164794921875, 0.02031407928466797, 0.016833152770996094, 0.017135200500488282, 0.016765344619750978, 0.016703487396240235, 0.016674943923950195, 0.01668492889404297, 0.016623231887817384, 0.016543231964111327, 0.016556768417358397, 0.016605344772338868, 0.016571584701538085, 0.016638784408569335, 0.016842975616455078, 0.017002368927001955, 0.016908191680908204, 0.016742080688476563, 0.016611648559570313, 0.016763904571533202, 0.01654854393005371, 0.016836095809936523, 0.01661836814880371, 0.01681952095031738, 0.01661372756958008, 0.016633216857910155, 0.01659587287902832, 0.01660313606262207, 0.01661452865600586, 0.01654431915283203, 0.01653094482421875, 0.016677728652954103, 0.016698400497436525, 0.016706335067749024, 0.01661894416809082, 0.016435327529907225, 0.01647385597229004, 0.016509408950805663, 0.016431583404541015, 0.016676095962524413, 0.016424959182739257, 0.016535167694091798, 0.01664080047607422, 0.016694623947143553, 0.016685600280761718, 0.016835071563720702, 0.016699392318725585, 0.016648000717163085, 0.01658060836791992, 0.01659903907775879, 0.016561216354370117, 0.01668611145019531, 0.016582784652709962, 0.01675388717651367, 0.016906816482543944, 0.016691328048706055, 0.016530912399291994, 0.01665065574645996, 0.016477695465087892, 0.016539840698242186, 0.016596895217895508, 0.01665043258666992, 0.016730112075805666, 0.01648371124267578, 0.016382816314697266, 0.016558080673217773, 0.016523263931274415, 0.0165515193939209, 0.016525728225708008, 0.016504608154296874, 0.01641878318786621, 0.01638015937805176, 0.01647830390930176, 0.01655388832092285, 0.016680959701538087, 0.016590848922729492, 0.016530527114868163, 0.016690080642700195, 0.01649228858947754, 0.01688118362426758, 0.016558847427368163, 0.0170383358001709, 0.016556480407714843, 0.01659721565246582, 0.01640790367126465, 0.01655833625793457, 0.017318592071533204, 0.01661136054992676, 0.01659699249267578, 0.01671196746826172, 0.01649839973449707, 0.01676268768310547, 0.016574655532836914, 0.0167587833404541, 0.016698400497436525, 0.01652214431762695, 0.01661756706237793, 0.016695327758789062, 0.016475839614868162, 0.016708608627319335, 0.01663692855834961, 0.016599231719970704, 0.016619327545166016, 0.01657206344604492, 0.0166376953125, 0.017625696182250978, 0.016693248748779296, 0.0167093448638916, 0.016582944869995116, 0.016862720489501954, 0.016586528778076173, 0.01645654487609863, 0.016459648132324218, 0.016478208541870116, 0.016449535369873047, 0.01668908882141113, 0.0165, 0.016587392807006836, 0.016574111938476563, 0.016785184860229493, 0.01666223907470703, 0.01662054443359375, 0.016556032180786134, 0.016719871520996094, 0.016582656860351562, 0.016476320266723632, 0.016555871963500977, 0.016547840118408205, 0.016521215438842773, 0.016586143493652342, 0.0167491512298584, 0.016582399368286132, 0.0165295352935791, 0.016610687255859374, 0.016523935317993163, 0.018104415893554687, 0.01661747169494629, 0.01643123245239258, 0.016514080047607422, 0.01648441505432129, 0.016457984924316407, 0.0164234561920166, 0.016478208541870116, 0.016489791870117187, 0.01632736015319824, 0.016474367141723633, 0.01647385597229004, 0.017044479370117188, 0.016540735244750977, 0.01654368019104004, 0.016496639251708984, 0.016483840942382814, 0.0164564151763916, 0.01658412742614746, 0.0165479679107666, 0.01646636772155762, 0.016494367599487306, 0.01680588722229004, 0.01665238380432129, 0.016529312133789064, 0.016668832778930665, 0.016694496154785157, 0.016510719299316405, 0.01649158477783203, 0.016447231292724608, 0.016648384094238283, 0.016777088165283203, 0.017125280380249023, 0.017897247314453125, 0.016877887725830078, 0.016652288436889647, 0.01661337661743164, 0.01656345558166504, 0.016556800842285155, 0.01660927963256836, 0.016559648513793945, 0.016801279067993165, 0.0179866886138916, 0.016797536849975585, 0.017172479629516603, 0.0168222713470459, 0.016748544692993163, 0.01660927963256836, 0.016494783401489257, 0.016852800369262694, 0.016554048538208008, 0.017024959564208984, 0.01648182487487793, 0.016572895050048827, 0.01644361686706543, 0.016498207092285156, 0.016445695877075197, 0.01670070457458496, 0.016646879196166992, 0.016883712768554687, 0.016496448516845702, 0.016517311096191405, 0.016487808227539064, 0.016517536163330078, 0.016473600387573242, 0.016496864318847657, 0.016605695724487304, 0.01653286361694336, 0.016490144729614256, 0.01662393569946289, 0.01665705680847168, 0.016703487396240235, 0.016768768310546876, 0.01654537582397461, 0.016490144729614256, 0.01661849594116211, 0.01662774467468262, 0.01667068862915039, 0.016600896835327148, 0.016529024124145506, 0.01638243293762207, 0.016512287139892577, 0.016646528244018556, 0.016551488876342772, 0.016448095321655275, 0.01669647979736328, 0.016658912658691405, 0.01663363265991211, 0.01656425666809082, 0.016624191284179687, 0.016760831832885743, 0.016678848266601563, 0.016529632568359376, 0.016622623443603515, 0.016550336837768555, 0.016636287689208985, 0.01677654457092285, 0.01663657569885254, 0.016647647857666016, 0.017009279251098634, 0.01671721649169922, 0.016531103134155272, 0.016533504486083983, 0.016513919830322264, 0.016727455139160158, 0.016565984725952148, 0.016540512084960938, 0.016497695922851562, 0.0165644474029541, 0.016497407913208008, 0.016523008346557618, 0.016498943328857422, 0.016519264221191408, 0.016525087356567384, 0.0165295352935791, 0.016733407974243164, 0.016671232223510742, 0.01678531265258789, 0.01650636863708496, 0.016445728302001954, 0.016415327072143555, 0.016467967987060548, 0.01642291259765625, 0.016472063064575194, 0.01648748779296875, 0.01635568046569824, 0.01649135971069336, 0.016602880477905275, 0.016811168670654297, 0.016786272048950196, 0.016473472595214842, 0.016496992111206053, 0.016427295684814453, 0.016483583450317384, 0.01646227264404297, 0.01642527961730957, 0.01653932762145996, 0.016414751052856447, 0.016462112426757814, 0.01643519973754883, 0.016469215393066405, 0.016443487167358398, 0.016548288345336913, 0.01655628776550293, 0.016645824432373047, 0.01662393569946289, 0.01670908737182617, 0.0165053768157959, 0.016819839477539063, 0.016869184494018554, 0.016781280517578125, 0.016736799240112305, 0.016488191604614257, 0.016576927185058595, 0.016425312042236326, 0.016528032302856446, 0.016493408203125, 0.016719104766845704, 0.01693503952026367, 0.016679328918457033, 0.016483871459960938, 0.01656028747558594, 0.016478912353515625, 0.01673539161682129, 0.01669206428527832, 0.016670719146728515, 0.016525312423706053, 0.016612991333007813, 0.01650931167602539, 0.016554208755493165, 0.016469280242919923, 0.016458240509033203, 0.016526975631713868, 0.016889984130859376, 0.016519071578979493, 0.01675254440307617, 0.016612831115722655, 0.016677888870239257, 0.016588544845581053, 0.016454879760742187, 0.016422048568725586, 0.016567583084106444, 0.016529983520507812, 0.016545024871826172, 0.01655593681335449, 0.01648691177368164, 0.016471616744995116, 0.01655084800720215, 0.016504640579223632, 0.016524896621704102, 0.016412992477416993, 0.016513151168823244, 0.016455039978027344, 0.016406431198120117, 0.01655471992492676, 0.01663145637512207, 0.016683040618896486, 0.016557695388793946, 0.01654035186767578, 0.016527328491210937, 0.016754720687866213, 0.016684255599975585, 0.016522016525268555, 0.016726015090942382, 0.016720096588134767, 0.01678927993774414, 0.016739904403686525, 0.017084863662719725, 0.017033376693725587, 0.01822697639465332, 0.018415679931640627, 0.017523136138916016, 0.017217536926269532, 0.016865280151367186, 0.016986112594604492, 0.01660927963256836, 0.016615423202514648, 0.01656831932067871, 0.016570367813110352, 0.016635168075561525, 0.016456703186035156, 0.016532735824584963, 0.016640480041503907, 0.016758687973022462, 0.016892000198364256, 0.0168175048828125, 0.016799999237060548, 0.016800159454345702, 0.01676313591003418, 0.01666227149963379, 0.016699392318725585, 0.016564224243164064, 0.016740352630615234, 0.016547359466552735, 0.016535072326660155, 0.016573375701904296, 0.016566272735595702, 0.01648454475402832, 0.01657360076904297, 0.016485023498535156, 0.016541919708251952, 0.01646335983276367, 0.016529695510864258, 0.016518367767333984, 0.01638275146484375, 0.016678720474243163, 0.016558080673217773, 0.016748191833496094, 0.016793535232543944, 0.016501344680786133, 0.016424959182739257, 0.01639833641052246, 0.01640457534790039, 0.016539072036743162, 0.016466400146484376, 0.01652889633178711, 0.01662822341918945, 0.016666656494140626, 0.016626976013183595, 0.0167425594329834, 0.01664463996887207, 0.01664521598815918, 0.016526144027709962, 0.016506975173950195, 0.016456800460815428, 0.016733152389526367, 0.016617408752441408, 0.016581920623779296, 0.016483327865600587, 0.016498559951782225, 0.016408063888549804, 0.01655228805541992, 0.016513023376464844, 0.016495967864990236, 0.016802175521850586, 0.01655193519592285, 0.01660745620727539, 0.01645955276489258, 0.016465919494628906, 0.01660927963256836, 0.016547168731689453, 0.016519392013549804, 0.01663337516784668, 0.01652934455871582, 0.016509920120239257, 0.01645484733581543, 0.016497472763061523, 0.016451583862304688, 0.016582271575927735, 0.0165230712890625, 0.016457664489746095, 0.016456319808959962, 0.016445119857788085, 0.01638387107849121, 0.016455423355102538, 0.01646771240234375, 0.01648736000061035, 0.01650499153137207, 0.016417856216430663, 0.016458528518676758, 0.016433120727539063, 0.016455135345458984, 0.016427583694458008, 0.016424959182739257, 0.016465280532836916, 0.016411264419555663, 0.01653913688659668, 0.01661939239501953, 0.0166015682220459, 0.016494752883911133, 0.01639423942565918, 0.0164270076751709, 0.01652118492126465, 0.01658064079284668, 0.016453472137451172, 0.016449695587158204, 0.016459840774536133, 0.01642255973815918, 0.01646620750427246, 0.016565568923950197, 0.016538303375244142, 0.0164454402923584, 0.016476160049438478, 0.016455455780029295, 0.016521087646484377, 0.01648089599609375, 0.016430816650390624, 0.01643734359741211, 0.016543968200683594, 0.01641212844848633, 0.016506399154663086, 0.016597312927246095, 0.016727935791015624, 0.01656268882751465, 0.016418560028076172, 0.0164552001953125, 0.017152448654174805, 0.016714784622192384, 0.01652124786376953, 0.016458688735961916, 0.016565311431884767, 0.01648736000061035, 0.01645523262023926, 0.016470464706420898, 0.016441343307495117, 0.016541696548461913, 0.016490848541259765, 0.016506528854370116, 0.016561983108520507, 0.016670143127441406, 0.016548608779907225, 0.017452959060668946, 0.019414623260498046, 0.01674678421020508, 0.01699567985534668, 0.016751487731933593, 0.016631999969482423, 0.01649203109741211, 0.01672137641906738, 0.016611743927001953, 0.01671340751647949, 0.016554752349853517, 0.016625631332397462, 0.016477407455444334, 0.016512096405029295, 0.01646972846984863, 0.016660480499267577, 0.016531455993652345, 0.016476160049438478, 0.016463872909545898, 0.016461599349975587, 0.016363616943359374, 0.01657644844055176, 0.01645996856689453, 0.016438592910766603, 0.016446144104003906, 0.016442752838134764, 0.01646860885620117, 0.01660518455505371, 0.01653555107116699, 0.016453632354736326, 0.016568191528320314, 0.017970304489135742, 0.01645804786682129, 0.016741056442260743, 0.016471647262573243, 0.01645199966430664, 0.016377504348754884, 0.016375167846679688, 0.016376800537109375, 0.01666975975036621, 0.018975679397583007, 0.016713727951049806, 0.017374656677246095, 0.016542272567749025, 0.01646518325805664, 0.016378591537475586, 0.01664723205566406, 0.01645254325866699, 0.0164270076751709, 0.016817663192749025, 0.016674911499023438, 0.016589664459228517, 0.01655948829650879, 0.016436960220336912, 0.01651299285888672, 0.016752960205078125, 0.016716415405273438, 0.016699392318725585, 0.016584928512573243, 0.01650787162780762, 0.016466720581054688, 0.01647830390930176, 0.01650886344909668, 0.016529632568359376, 0.016445215225219727, 0.01644476890563965, 0.016406784057617186, 0.016482208251953127, 0.016546239852905275, 0.016580671310424806, 0.016555807113647462, 0.016865503311157225, 0.01696998405456543, 0.017135360717773437, 0.01738479995727539, 0.01736969566345215, 0.017295295715332032, 0.01719718360900879, 0.01723391914367676, 0.017320032119750976, 0.017207199096679688, 0.01739366340637207, 0.017253503799438477, 0.017158687591552733, 0.017285472869873048, 0.01745305633544922, 0.017662208557128908, 0.017401599884033205, 0.01873823928833008, 0.016734336853027342, 0.01657734489440918, 0.01651456069946289, 0.016600576400756836, 0.016484640121459962, 0.017732320785522462, 0.01759052848815918, 0.017706111907958986, 0.016631935119628908, 0.01669990348815918, 0.016725887298583986, 0.016681087493896483, 0.016531455993652345, 0.01656012725830078, 0.01653539276123047, 0.016534879684448243, 0.01654662322998047, 0.01658060836791992, 0.016697343826293946, 0.01696713638305664, 0.016904735565185548, 0.01698406410217285, 0.01694633674621582]",tokens/s,60.03069629283077,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,823.488512,554.631168,0.0,159.383552,143.673856,s,1,7.305361328125,7.305361328125,0.0,7.305361328125,7.305361328125,7.305361328125,7.305361328125,[7.305361328125],,kWh,1.1056477220840102e-05,1.2058617879394831e-06,3.5866695360028955e-06,1.584900854478248e-05,,MB,1305.423872,609.15712,0.0,199.22944,186.684928,s,32,0.19960160017013548,0.006237550005316735,0.00015914221107278168,0.006206959962844849,0.0062986785411834716,0.006448363280296326,0.0068627054214477545,"[0.0063146882057189945, 0.00616428804397583, 0.006129983901977539, 0.006231584072113037, 0.006142784118652344, 0.006127295970916748, 0.006237760066986084, 0.006172063827514648, 0.0061476478576660155, 0.006155168056488037, 0.006201024055480957, 0.006183008193969727, 0.006218016147613525, 0.006250720024108886, 0.0062919678688049315, 0.006138720035552978, 0.006232992172241211, 0.0062548799514770504, 0.006299424171447754, 0.006134943962097168, 0.006259615898132324, 0.006975456237792969, 0.0062202239036560055, 0.006215839862823486, 0.006187359809875489, 0.0062410240173339845, 0.006119743824005127, 0.006167327880859375, 0.006160384178161621, 0.006611743927001953, 0.006207007884979248, 0.006206912040710449]",tokens/s,41041.75514132823,kWh,1.8462630307294917e-07,2.0361089943147197e-08,7.79196280113859e-08,2.829070210274823e-07,tokens/kWh,904890939.327842,MB,1319.186432,613.351424,0.0,203.423744,186.687488,s,32,9.894926513671873,0.30921645355224614,0.0016198589206653123,0.30923019409179686,0.31221292419433594,0.3126740478515625,0.3129811117553711,"[0.31301141357421874, 0.30927874755859375, 0.3124779968261719, 0.30763729858398436, 0.30926971435546874, 0.31235183715820314, 0.30713351440429687, 0.30975051879882814, 0.3097658996582031, 0.3073489990234375, 0.30855889892578126, 0.309537109375, 0.30816668701171873, 0.30962884521484374, 0.30777706909179686, 0.30975933837890623, 0.30842816162109377, 0.3079856872558594, 0.3084017333984375, 0.30803717041015627, 0.3129136657714844, 0.3104873046875, 0.3094598693847656, 0.30852020263671875, 0.31096270751953126, 0.3075557250976563, 0.3083272705078125, 0.3069648742675781, 0.30923321533203124, 0.3092739868164063, 0.3092271728515625, 0.30769387817382815]",tokens/s,203.7407753573997,kWh,9.012871368541888e-06,9.939593985697612e-07,3.2511715769261455e-06,1.3258002344037798e-05,tokens/kWh,4751847.100730939,,s,2016,9.880397473812101,0.00490099081042267,0.0001024788382667862,0.004880608081817627,0.004958703994750976,0.005008639931678772,0.005323640060424802,"[0.004883200168609619, 0.004953279972076416, 0.004961343765258789, 0.00510265588760376, 0.00504527997970581, 0.005024991989135742, 0.005040639877319336, 0.005111743927001953, 0.004993343830108642, 0.004972288131713867, 0.004968575954437256, 0.00499721622467041, 0.004990047931671142, 0.004978367805480957, 0.004932544231414795, 0.004988480091094971, 0.004948416233062744, 0.004912576198577881, 0.004884384155273438, 0.005165152072906494, 0.004973120212554931, 0.004969664096832275, 0.005055295944213867, 0.004997119903564453, 0.004910943984985351, 0.004894911766052246, 0.004877664089202881, 0.0050466561317443846, 0.004924767971038818, 0.004904032230377197, 0.004883296012878418, 0.004971072196960449, 0.004937344074249268, 0.004936480045318604, 0.004922880172729492, 0.0049177598953247074, 0.005053952217102051, 0.0049706239700317385, 0.004906752109527588, 0.004887167930603027, 0.004962495803833008, 0.0049498238563537595, 0.004886879920959473, 0.004884223937988281, 0.004931488037109375, 0.004898111820220947, 0.004861824035644531, 0.004846496105194092, 0.004960159778594971, 0.004958208084106445, 0.005238783836364746, 0.005243040084838867, 0.004990848064422607, 0.0049417920112609865, 0.004863999843597412, 0.004848991870880127, 0.0049424958229064946, 0.0049459199905395506, 0.004896895885467529, 0.004869440078735352, 0.004977215766906738, 0.0049642882347106934, 0.0049194879531860355, 0.004890719890594483, 0.004903808116912842, 0.004904191970825195, 0.004895487785339356, 0.004949567794799804, 0.004917695999145508, 0.0049040641784667965, 0.004940671920776367, 0.004983871936798096, 0.004920000076293945, 0.004914624214172363, 0.004891039848327637, 0.004942240238189698, 0.004978687763214112, 0.004894720077514648, 0.004890175819396972, 0.004880832195281982, 0.005065824031829834, 0.004891551971435547, 0.004884479999542236, 0.004843520164489746, 0.004949632167816162, 0.004906623840332031, 0.0048455362319946285, 0.004846367835998535, 0.004835328102111816, 0.004916639804840088, 0.004878943920135498, 0.004853824138641358, 0.0048949761390686035, 0.004928671836853028, 0.004901408195495605, 0.00486195182800293, 0.004845471858978272, 0.004843616008758545, 0.004915071964263916, 0.004877952098846436, 0.004860415935516358, 0.004866047859191895, 0.004917247772216797, 0.004910079956054687, 0.004870240211486816, 0.0049081602096557615, 0.004859200000762939, 0.004915103912353515, 0.0048707199096679685, 0.004839647769927979, 0.004871967792510986, 0.005203487873077392, 0.0048865280151367185, 0.004857952117919922, 0.004831168174743652, 0.004940224170684814, 0.004941760063171386, 0.004881792068481446, 0.004872928142547608, 0.0049552001953125, 0.0049222722053527835, 0.004892799854278564, 0.004867231845855713, 0.004868031978607178, 0.004895423889160156, 0.0049348797798156735, 0.004910975933074951, 0.004876607894897461, 0.004896448135375976, 0.004853919982910156, 0.004913055896759033, 0.004892288208007812, 0.004886847972869873, 0.0049090561866760255, 0.004867455959320068, 0.004942207813262939, 0.004982175827026367, 0.004860383987426758, 0.004872576236724853, 0.004941504001617431, 0.00490118408203125, 0.004875936031341553, 0.004864672183990479, 0.0048717761039733885, 0.00492080020904541, 0.004888351917266846, 0.004871007919311524, 0.004860127925872803, 0.005211071968078613, 0.004926271915435791, 0.00490499210357666, 0.004885568141937256, 0.0049304962158203125, 0.004935679912567138, 0.004888576030731201, 0.0048676800727844236, 0.0048726401329040525, 0.004927072048187256, 0.004910880088806152, 0.0048707518577575685, 0.004882431983947754, 0.004912191867828369, 0.004903168201446533, 0.004967103958129883, 0.0048858561515808105, 0.004934304237365723, 0.004931583881378174, 0.004881951808929443, 0.004868256092071533, 0.005226560115814209, 0.005945824146270752, 0.006082335948944092, 0.005511168003082275, 0.00488150405883789, 0.004871071815490723, 0.004909311771392822, 0.004931551933288574, 0.004892127990722656, 0.004880671977996826, 0.004857183933258057, 0.004930079936981201, 0.00495798397064209, 0.004874623775482177, 0.004872223854064941, 0.004882336139678955, 0.004916736125946045, 0.0048932480812072755, 0.0048782720565795894, 0.004861760139465332, 0.004765920162200928, 0.0048412480354309085, 0.0049192957878112795, 0.0048558077812194825, 0.004869376182556152, 0.004844287872314453, 0.004917503833770752, 0.004863743782043457, 0.004833439826965332, 0.0048495039939880375, 0.004838880062103272, 0.00491267204284668, 0.004883456230163574, 0.004833280086517334, 0.00506060791015625, 0.004902112007141113, 0.004879136085510254, 0.004874239921569825, 0.004851712226867676, 0.004847519874572754, 0.004908927917480469, 0.004890560150146484, 0.004851488113403321, 0.004839104175567627, 0.004903744220733643, 0.004857855796813965, 0.004911104202270508, 0.004834496021270752, 0.004823872089385986, 0.005014912128448486, 0.00487494421005249, 0.004868031978607178, 0.004837376117706299, 0.004888576030731201, 0.004882080078125, 0.004862592220306396, 0.004840799808502197, 0.004901247978210449, 0.004959743976593017, 0.004881087779998779, 0.004873600006103516, 0.004884928226470947, 0.004888031959533691, 0.0049054079055786135, 0.004860000133514404, 0.004845664024353027, 0.004873695850372314, 0.004938176155090332, 0.004861760139465332, 0.004821248054504394, 0.0048167362213134765, 0.0048288640975952144, 0.004917695999145508, 0.004881663799285889, 0.004850399971008301, 0.004851583957672119, 0.004890175819396972, 0.004860095977783203, 0.0048520960807800296, 0.004837376117706299, 0.004843039989471436, 0.005059135913848877, 0.004891808032989502, 0.004814464092254639, 0.004858240127563477, 0.004861536026000976, 0.00485478401184082, 0.004921504020690918, 0.004882527828216553, 0.004857600212097168, 0.004843520164489746, 0.0061512961387634275, 0.00503219223022461, 0.004885119915008545, 0.004923391819000244, 0.0049268798828125, 0.004880767822265625, 0.004849696159362793, 0.004892864227294922, 0.004947968006134033, 0.004892672061920166, 0.004910975933074951, 0.004860032081604004, 0.004892447948455811, 0.004903295993804932, 0.0048576960563659665, 0.004838687896728516, 0.004842207908630371, 0.004919583797454834, 0.0048657598495483395, 0.004875775814056397, 0.004919807910919189, 0.004837471961975098, 0.004863903999328613, 0.004888576030731201, 0.00482316780090332, 0.004945792198181152, 0.00491315221786499, 0.0048631677627563475, 0.004851967811584473, 0.004837855815887451, 0.004873792171478272, 0.0048932161331176754, 0.004856063842773438, 0.0048427519798278805, 0.00483187198638916, 0.00486406421661377, 0.004929312229156494, 0.004874112129211426, 0.004829343795776367, 0.004843135833740234, 0.004933760166168213, 0.004884736061096191, 0.004864287853240967, 0.00486137580871582, 0.004870431900024414, 0.004917151927947998, 0.004870240211486816, 0.004876287937164306, 0.004875840187072754, 0.005017216205596924, 0.004891456127166748, 0.004901887893676758, 0.004870175838470459, 0.0048752322196960445, 0.004884479999542236, 0.0048148479461669925, 0.005328896045684814, 0.004988704204559326, 0.005273888111114502, 0.005115839958190918, 0.005059936046600342, 0.005655200004577637, 0.005015744209289551, 0.004933055877685547, 0.004913536071777344, 0.004977695941925049, 0.004991968154907226, 0.0049194879531860355, 0.0048781437873840336, 0.005010623931884766, 0.004971327781677246, 0.004911359786987305, 0.004886271953582763, 0.0048717761039733885, 0.004921343803405762, 0.004926208019256592, 0.004969279766082763, 0.004868192195892334, 0.0049712638854980465, 0.004918911933898926, 0.004891007900238037, 0.004857855796813965, 0.004882207870483398, 0.004919616222381592, 0.004894464015960693, 0.004894271850585937, 0.004905568122863769, 0.004884479999542236, 0.004952064037322998, 0.005062655925750732, 0.004935679912567138, 0.005176896095275879, 0.005029888153076172, 0.004959968090057373, 0.004863999843597412, 0.005, 0.00495411205291748, 0.00489462423324585, 0.004916863918304443, 0.004899199962615967, 0.004947968006134033, 0.004895071983337402, 0.004883168220520019, 0.004910016059875488, 0.004876192092895508, 0.004947904109954834, 0.004887904167175293, 0.004862239837646484, 0.0048603200912475586, 0.004923520088195801, 0.004940127849578858, 0.004881887912750244, 0.004870399951934814, 0.004902847766876221, 0.004925439834594727, 0.004854015827178955, 0.004835072040557861, 0.0048364481925964355, 0.004737984180450439, 0.004821951866149902, 0.004923264026641846, 0.0048512320518493655, 0.004825568199157715, 0.004839424133300781, 0.004864128112792969, 0.004878047943115234, 0.004845248222351074, 0.004861440181732178, 0.004836160182952881, 0.004940095901489258, 0.004875360012054443, 0.004846335887908936, 0.004847616195678711, 0.004839360237121582, 0.004929535865783692, 0.004847392082214356, 0.004865503787994384, 0.00483241605758667, 0.004876192092895508, 0.004869472026824951, 0.004845983982086181, 0.004835328102111816, 0.004869503974914551, 0.004919936180114746, 0.004884479999542236, 0.004843520164489746, 0.004881663799285889, 0.004865824222564697, 0.00489299201965332, 0.004852384090423584, 0.004857855796813965, 0.004833280086517334, 0.0048865280151367185, 0.004871935844421387, 0.004829728126525879, 0.004831103801727295, 0.00483135986328125, 0.005004928112030029, 0.0048807039260864256, 0.004950079917907715, 0.004824927806854248, 0.004894432067871094, 0.004841983795166016, 0.004877888202667237, 0.004829311847686767, 0.0048373441696166995, 0.0050013761520385745, 0.004875391960144043, 0.004845280170440674, 0.004909599781036377, 0.004960927963256836, 0.004890431880950927, 0.004851712226867676, 0.004851327896118164, 0.00483676815032959, 0.004903232097625733, 0.00488105583190918, 0.004820991992950439, 0.0048455681800842285, 0.0048717761039733885, 0.004911520004272461, 0.004815519809722901, 0.004883488178253174, 0.004831615924835205, 0.004847904205322265, 0.004843391895294189, 0.004901120185852051, 0.004851903915405274, 0.004851712226867676, 0.005111743927001953, 0.004943935871124267, 0.004988927841186524, 0.004886496067047119, 0.004847392082214356, 0.004857151985168457, 0.00489683198928833, 0.004862847805023193, 0.004873792171478272, 0.0048685441017150876, 0.004941823959350586, 0.0048800320625305175, 0.004900288105010986, 0.004872608184814453, 0.004926080226898193, 0.004963200092315673, 0.004887551784515381, 0.004882080078125, 0.00488640022277832, 0.004976384162902832, 0.00491593599319458, 0.005014688014984131, 0.005024608135223389, 0.004943168163299561, 0.004906847953796387, 0.004892767906188965, 0.004877056121826172, 0.004952352046966552, 0.004918176174163819, 0.004864831924438476, 0.005365471839904785, 0.004956319808959961, 0.004939583778381348, 0.0048657598495483395, 0.004858431816101075, 0.004861824035644531, 0.004935840129852295, 0.004958208084106445, 0.0048715839385986325, 0.0049014720916748045, 0.004972671985626221, 0.004915071964263916, 0.0048496642112731934, 0.004859903812408447, 0.0048510079383850095, 0.004921247959136963, 0.004917503833770752, 0.004951615810394287, 0.004860896110534668, 0.004931007862091065, 0.004903488159179688, 0.004839424133300781, 0.004857855796813965, 0.0048865280151367185, 0.0048798398971557615, 0.004788640022277832, 0.004847263813018799, 0.004858143806457519, 0.004847263813018799, 0.004863903999328613, 0.00493171215057373, 0.004871744155883789, 0.0049543361663818355, 0.004852255821228027, 0.0049316477775573735, 0.004877664089202881, 0.004926208019256592, 0.004853248119354248, 0.004993375778198242, 0.005007359981536865, 0.0049062399864196774, 0.004866335868835449, 0.0048501439094543455, 0.004900864124298096, 0.0048940801620483395, 0.004853983879089355, 0.004951712131500244, 0.004877056121826172, 0.004894720077514648, 0.0049032001495361325, 0.004869311809539795, 0.00490550422668457, 0.00504633617401123, 0.004877888202667237, 0.004853280067443848, 0.004852575778961182, 0.004889984130859375, 0.004987520217895508, 0.004894720077514648, 0.004829440116882324, 0.004862944126129151, 0.004903711795806885, 0.004877823829650879, 0.004870656013488769, 0.004843520164489746, 0.004863999843597412, 0.004981056213378906, 0.004894144058227539, 0.005847296237945557, 0.00494217586517334, 0.004884191989898682, 0.005015488147735596, 0.004859903812408447, 0.0049359359741210935, 0.004887680053710938, 0.004956255912780762, 0.004872735977172852, 0.004878335952758789, 0.004919616222381592, 0.0049064640998840335, 0.004862175941467285, 0.004859903812408447, 0.0049192957878112795, 0.004898848056793213, 0.004835296154022217, 0.004838655948638916, 0.00485811185836792, 0.00492742395401001, 0.004800415992736816, 0.004882751941680908, 0.004905216217041016, 0.0048716158866882325, 0.004848192214965821, 0.004932928085327149, 0.004880799770355225, 0.0048373122215270995, 0.004887936115264893, 0.004909183979034424, 0.004864543914794922, 0.004861504077911377, 0.0049303040504455565, 0.004863999843597412, 0.004929664134979248, 0.004898943901062012, 0.0048477439880371094, 0.0048403840065002444, 0.00488489580154419, 0.0048932480812072755, 0.004839136123657227, 0.004851391792297363, 0.004845888137817383, 0.0049296321868896485, 0.004873824119567871, 0.004837696075439453, 0.0048455681800842285, 0.004841760158538818, 0.0048923840522766115, 0.004866047859191895, 0.0048492798805236815, 0.004920896053314209, 0.004911712169647217, 0.00486569595336914, 0.004840000152587891, 0.004831456184387207, 0.004849440097808838, 0.004918496131896973, 0.004879039764404297, 0.004833375930786133, 0.0048455681800842285, 0.004880383968353271, 0.004886847972869873, 0.0048821120262146, 0.004824639797210694, 0.004837823867797852, 0.0048886399269104, 0.004863647937774658, 0.004833407878875732, 0.004843679904937745, 0.004838560104370117, 0.005009791851043701, 0.004860383987426758, 0.004843743801116943, 0.004847392082214356, 0.004920671939849854, 0.004934304237365723, 0.004850016117095947, 0.004845215797424317, 0.004836832046508789, 0.004911647796630859, 0.004876192092895508, 0.004858272075653076, 0.0047964158058166504, 0.004858208179473877, 0.004851583957672119, 0.0049047360420227054, 0.0048757119178771974, 0.004849599838256836, 0.004850304126739502, 0.004844831943511963, 0.004942560195922851, 0.004896768093109131, 0.004876448154449463, 0.0048678722381591795, 0.004933695793151855, 0.004925280094146728, 0.004866208076477051, 0.004853759765625, 0.004842527866363525, 0.004905951976776123, 0.004859519958496094, 0.005039840221405029, 0.004881343841552734, 0.004910816192626953, 0.004910624027252198, 0.00485430383682251, 0.004868031978607178, 0.004902912139892578, 0.004894720077514648, 0.004856927871704102, 0.004866208076477051, 0.004909311771392822, 0.004901375770568848, 0.00484991979598999, 0.004837279796600342, 0.004864992141723633, 0.004879231929779053, 0.00494543981552124, 0.00487388801574707, 0.004833087921142578, 0.004838272094726563, 0.004923232078552246, 0.004960639953613281, 0.004964255809783936, 0.0048967041969299316, 0.005382527828216552, 0.004910912036895752, 0.004888095855712891, 0.004909567832946778, 0.004910943984985351, 0.004904767990112305, 0.004840928077697754, 0.004884672164916992, 0.004839136123657227, 0.004881216049194336, 0.004868095874786377, 0.004845759868621826, 0.0048455362319946285, 0.004865888118743896, 0.0049246401786804195, 0.004883552074432373, 0.004830912113189697, 0.004839295864105224, 0.004933760166168213, 0.004857632160186767, 0.004804831981658935, 0.004863999843597412, 0.004837183952331543, 0.004855552196502686, 0.0048559679985046384, 0.004896224021911621, 0.00488102388381958, 0.0048334717750549315, 0.004838687896728516, 0.004917984008789063, 0.0048939199447631835, 0.004868607997894287, 0.0048393278121948245, 0.004868415832519532, 0.004931968212127685, 0.0048575358390808105, 0.004818848133087158, 0.004894815921783448, 0.0049049282073974606, 0.004971744060516358, 0.004850111961364746, 0.004860288143157959, 0.004871520042419433, 0.0049522237777709964, 0.004876736164093017, 0.004900928020477295, 0.00486521577835083, 0.0049714879989624025, 0.004908895969390869, 0.004853759765625, 0.0049472317695617675, 0.004848351955413818, 0.004928864002227783, 0.004869984149932861, 0.004850304126739502, 0.0048798398971557615, 0.005143231868743896, 0.0051528000831604, 0.004874239921569825, 0.004866047859191895, 0.004956160068511963, 0.004890624046325683, 0.004853472232818603, 0.004867360115051269, 0.004860288143157959, 0.005061247825622559, 0.004906400203704834, 0.004980607986450196, 0.004880576133728027, 0.004968992233276367, 0.004908576011657715, 0.004904895782470703, 0.0048830718994140624, 0.004941535949707031, 0.004955359935760498, 0.0048670401573181156, 0.004892672061920166, 0.004886144161224365, 0.005253536224365234, 0.004880159854888916, 0.004912864208221435, 0.00491158390045166, 0.004953919887542724, 0.004863999843597412, 0.004882016181945801, 0.004866464138031006, 0.004954368114471436, 0.00488640022277832, 0.004908927917480469, 0.004863679885864258, 0.004850080013275146, 0.004875199794769287, 0.004948639869689941, 0.004905280113220215, 0.00488159990310669, 0.0048661761283874515, 0.004900928020477295, 0.0049690880775451664, 0.004864128112792969, 0.004876160144805909, 0.0048314881324768065, 0.004927199840545654, 0.0048865599632263185, 0.004857503890991211, 0.004882368087768554, 0.00488489580154419, 0.0048865280151367185, 0.004955808162689209, 0.004842144012451172, 0.004839104175567627, 0.004907008171081543, 0.004870016098022461, 0.004831424236297607, 0.004848959922790527, 0.004829823970794678, 0.004917407989501953, 0.004920447826385498, 0.004898528099060059, 0.004834303855895996, 0.004892672061920166, 0.004888576030731201, 0.004888800144195557, 0.0048678722381591795, 0.0048410558700561525, 0.00493609619140625, 0.004890880107879639, 0.004846464157104493, 0.004957056045532227, 0.004919136047363281, 0.00488259220123291, 0.0048496642112731934, 0.004846911907196045, 0.004860608100891113, 0.004931839942932129, 0.004871712207794189, 0.004841695785522461, 0.004847904205322265, 0.004886240005493164, 0.004916607856750488, 0.004842175960540772, 0.004875199794769287, 0.0048585600852966305, 0.004925471782684326, 0.004946208000183106, 0.004877855777740478, 0.004931200027465821, 0.004750239849090576, 0.004900767803192139, 0.004933248043060303, 0.004868127822875976, 0.004897215843200684, 0.00499619197845459, 0.004928512096405029, 0.004887551784515381, 0.004848671913146973, 0.004904831886291504, 0.004836832046508789, 0.0049526081085205075, 0.0048558077812194825, 0.00491315221786499, 0.004868095874786377, 0.0049090561866760255, 0.004888576030731201, 0.0048492798805236815, 0.004854144096374512, 0.0048510398864746096, 0.004917632102966309, 0.004882719993591309, 0.004857855796813965, 0.004857855796813965, 0.004899007797241211, 0.004889855861663819, 0.00485433578491211, 0.004863264083862305, 0.0048544640541076664, 0.004913375854492187, 0.0048858880996704105, 0.005234784126281739, 0.004850016117095947, 0.00491315221786499, 0.004904640197753906, 0.005220928192138672, 0.004859519958496094, 0.004954239845275879, 0.004959360122680664, 0.0048213438987731935, 0.004849535942077637, 0.0048559679985046384, 0.004933119773864746, 0.004856927871704102, 0.004837279796600342, 0.0048282241821289065, 0.0048975682258605956, 0.0048846077919006345, 0.004953855991363525, 0.004864287853240967, 0.004865056037902832, 0.004922239780426025, 0.004953184127807617, 0.004851744174957275, 0.005379360198974609, 0.004961984157562256, 0.004875552177429199, 0.00489734411239624, 0.004896927833557129, 0.004964000225067139, 0.004909408092498779, 0.004892672061920166, 0.004976640224456787, 0.004764639854431153, 0.004867551803588867, 0.004960896015167237, 0.00489247989654541, 0.004849535942077637, 0.0048353919982910155, 0.004857151985168457, 0.004875040054321289, 0.004892416000366211, 0.004841792106628418, 0.004847424030303955, 0.004904511928558349, 0.004862720012664795, 0.004859776020050049, 0.004911104202270508, 0.004875487804412841, 0.004926368236541748, 0.004859007835388183, 0.0048504958152771, 0.004827072143554687, 0.004890624046325683, 0.00485094404220581, 0.00486240005493164, 0.004823200225830078, 0.004953375816345215, 0.004897664070129395, 0.004866367816925049, 0.004832575798034668, 0.004877920150756836, 0.0048726720809936525, 0.0048807039260864256, 0.004939775943756103, 0.004833280086517334, 0.004842495918273926, 0.004893695831298828, 0.004867712020874024, 0.004860415935516358, 0.004896639823913574, 0.004890624046325683, 0.004986879825592041, 0.004860064029693603, 0.004841311931610108, 0.004846784114837646, 0.004903359889984131, 0.004857215881347656, 0.004819968223571777, 0.004903039932250977, 0.004892543792724609, 0.004931583881378174, 0.004899871826171875, 0.004827328205108642, 0.004868959903717041, 0.004986815929412842, 0.00486195182800293, 0.004947968006134033, 0.0048603200912475586, 0.004911871910095214, 0.004930079936981201, 0.004872511863708496, 0.0049006080627441405, 0.0048494720458984375, 0.004915872097015381, 0.00487388801574707, 0.004855487823486328, 0.005958879947662353, 0.004990719795227051, 0.005257215976715088, 0.004878335952758789, 0.004888576030731201, 0.004878592014312744, 0.004943615913391113, 0.004931583881378174, 0.004902463912963867, 0.004860032081604004, 0.004934048175811768, 0.004864096164703369, 0.004861760139465332, 0.004868063926696777, 0.004982816219329834, 0.004952064037322998, 0.0048865280151367185, 0.0048558077812194825, 0.004849599838256836, 0.004927231788635254, 0.004894815921783448, 0.004892864227294922, 0.004866079807281494, 0.004853759765625, 0.004974495887756347, 0.004917056083679199, 0.004867775917053223, 0.004866655826568604, 0.0049357438087463375, 0.004879744052886963, 0.00485433578491211, 0.004857855796813965, 0.004859903812408447, 0.004921343803405762, 0.005033984184265137, 0.0049502401351928715, 0.004873792171478272, 0.004922624111175537, 0.00487283182144165, 0.004828800201416015, 0.0048295679092407225, 0.0048429441452026364, 0.0049155521392822265, 0.0048559679985046384, 0.004830783843994141, 0.004849535942077637, 0.0048867201805114745, 0.00485865592956543, 0.00488640022277832, 0.00483955192565918, 0.004830399990081787, 0.004911871910095214, 0.0048642239570617675, 0.00484335994720459, 0.004831232070922851, 0.004984640121459961, 0.00487443208694458, 0.004859903812408447, 0.0048520641326904295, 0.004849599838256836, 0.004912000179290771, 0.004868959903717041, 0.004833439826965332, 0.004857247829437256, 0.0048685441017150876, 0.004825088024139404, 0.004890624046325683, 0.004898816108703613, 0.004843103885650635, 0.004821407794952393, 0.004828927993774414, 0.0049584641456604005, 0.004863039970397949, 0.004848639965057373, 0.004867072105407715, 0.004924160003662109, 0.0048887357711791994, 0.004886688232421875, 0.004840447902679444, 0.004827712059020996, 0.004900576114654541, 0.004849535942077637, 0.00491593599319458, 0.004839424133300781, 0.004877696037292481, 0.004896512031555176, 0.00489356803894043, 0.004829184055328369, 0.00489625597000122, 0.004882815837860107, 0.004862080097198487, 0.0048438081741333005, 0.004841184139251709, 0.004837376117706299, 0.004911104202270508, 0.004893824100494385, 0.0048475837707519535, 0.004864352226257324, 0.004919871807098388, 0.004889984130859375, 0.0048789758682250975, 0.004851103782653809, 0.0048700799942016605, 0.004954559803009033, 0.0051833920478820805, 0.004998688220977783, 0.004903520107269287, 0.004933824062347412, 0.004966559886932373, 0.0049788479804992675, 0.004851647853851318, 0.004918687820434571, 0.004899136066436768, 0.004849696159362793, 0.00485811185836792, 0.004857600212097168, 0.004946144104003907, 0.004891679763793945, 0.0048830718994140624, 0.004870272159576416, 0.004988704204559326, 0.004925375938415528, 0.0048765759468078615, 0.004846975803375244, 0.004870656013488769, 0.0047511358261108395, 0.0049259839057922365, 0.004946432113647461, 0.004858943939208984, 0.0048514242172241215, 0.004862656116485595, 0.004942368030548096, 0.004863615989685059, 0.004861983776092529, 0.004835328102111816, 0.0049276800155639644, 0.004873856067657471, 0.0048397121429443355, 0.004855167865753174, 0.004842048168182373, 0.004939199924468994, 0.0048808960914611815, 0.004878719806671142, 0.004861599922180175, 0.004921120166778564, 0.004869599819183349, 0.004850431919097901, 0.004835328102111816, 0.004975711822509766, 0.004887104034423828, 0.004880832195281982, 0.004865151882171631, 0.004864607810974121, 0.004903135776519775, 0.004865983963012696, 0.004878719806671142, 0.004869791984558105, 0.0048373441696166995, 0.0049316477775573735, 0.004923359870910644, 0.004851712226867676, 0.0048455681800842285, 0.004880383968353271, 0.004882431983947754, 0.004915200233459473, 0.00486195182800293, 0.004822656154632569, 0.004917439937591553, 0.004862143993377686, 0.004872191905975342, 0.0048447041511535645, 0.0048362560272216795, 0.004953216075897217, 0.0048566398620605465, 0.004963647842407226, 0.004846271991729737, 0.005027743816375732, 0.0048787841796875, 0.0048689918518066404, 0.00484991979598999, 0.004882976055145264, 0.00491315221786499, 0.004882431983947754, 0.0048839359283447265, 0.004860447883605957, 0.004978687763214112, 0.004892096042633056, 0.00485865592956543, 0.004909023761749267, 0.0048475837707519535, 0.0048716158866882325, 0.00492796802520752, 0.004890399932861328, 0.004831679821014404, 0.004849567890167237, 0.004900896072387696, 0.004876287937164306, 0.004872191905975342, 0.004853248119354248, 0.004870399951934814, 0.005066688060760498, 0.004914624214172363, 0.005008255958557129, 0.004863071918487549, 0.005094016075134277, 0.0050301761627197265, 0.004882431983947754, 0.004893887996673584, 0.00505452823638916, 0.004903552055358887, 0.004886655807495117, 0.004850719928741455, 0.004836319923400879, 0.004898272037506104, 0.004863679885864258, 0.00484003210067749, 0.0048559999465942385, 0.004892735958099365, 0.0048518719673156735, 0.004857567787170411, 0.004851840019226074, 0.004824192047119141, 0.00492249584197998, 0.004867712020874024, 0.004822720050811768, 0.0048393278121948245, 0.004975135803222656, 0.004901088237762451, 0.0048537278175354, 0.0049313921928405766, 0.004834303855895996, 0.004914112091064453, 0.004866112232208252, 0.0048269758224487305, 0.00483958387374878, 0.004835328102111816, 0.004951615810394287, 0.004885119915008545, 0.004865407943725586, 0.004847455978393555, 0.004895328044891357, 0.004879807949066162, 0.00486684799194336, 0.004855584144592285, 0.004853856086730957, 0.0049284157752990726, 0.004860928058624267, 0.004843423843383789, 0.004840832233428955, 0.004958943843841553, 0.00487014389038086, 0.004818175792694092, 0.004866399765014648, 0.004850080013275146, 0.004843935966491699, 0.0048364481925964355, 0.004892799854278564, 0.004862527847290039, 0.004829504013061523, 0.004870016098022461, 0.004907872200012207, 0.0048831038475036625, 0.00488643217086792, 0.004865503787994384, 0.004851967811584473, 0.004920000076293945, 0.004898816108703613, 0.004851712226867676, 0.0048865280151367185, 0.005033984184265137, 0.004937727928161621, 0.0048651199340820316, 0.004891136169433594, 0.004854207992553711, 0.004932640075683593, 0.004854015827178955, 0.004876992225646973, 0.004849696159362793, 0.005011519908905029, 0.004878047943115234, 0.004849376201629639, 0.004841951847076416, 0.00487014389038086, 0.004953887939453125, 0.004868319988250732, 0.004859007835388183, 0.004841375827789307, 0.004895679950714112, 0.00486732816696167, 0.004973343849182129, 0.004840735912322998, 0.004847424030303955, 0.004965087890625, 0.004892831802368164, 0.004852960109710694, 0.004835904121398926, 0.004928031921386719, 0.004926208019256592, 0.004842048168182373, 0.004896480083465576, 0.004853631973266602, 0.004913504123687744, 0.004885151863098145, 0.004844480037689209, 0.004834176063537598, 0.005119967937469483, 0.004868127822875976, 0.004845439910888672, 0.004860032081604004, 0.004859776020050049, 0.0049168958663940426, 0.004858143806457519, 0.004850016117095947, 0.00484335994720459, 0.00473635196685791, 0.004838367938995361, 0.00490783977508545, 0.0048546562194824215, 0.004834688186645507, 0.004835040092468262, 0.00482806396484375, 0.00489404821395874, 0.004854432106018066, 0.004859903812408447, 0.004837376117706299, 0.005025792121887207, 0.004882431983947754, 0.0048784961700439455, 0.004872032165527344, 0.004843264102935791, 0.0050032639503479, 0.004960512161254883, 0.004872384071350097, 0.004854752063751221, 0.004933856010437012, 0.004896512031555176, 0.004850560188293457, 0.004857664108276367, 0.004836991786956787, 0.004899168014526367, 0.004851935863494873, 0.004841472148895264, 0.0048698558807373045, 0.004888864040374756, 0.005224448204040527, 0.004878592014312744, 0.004865056037902832, 0.004909183979034424, 0.004923999786376953, 0.004892672061920166, 0.004881696224212646, 0.004891488075256347, 0.00524889612197876, 0.005791744232177734, 0.005873663902282715, 0.005629951953887939, 0.005095680236816406, 0.005721343994140625, 0.00491161584854126, 0.004867231845855713, 0.0048932480812072755, 0.004991263866424561, 0.0049231362342834475, 0.004882847785949707, 0.004898655891418457, 0.00493126392364502, 0.004998688220977783, 0.004901663780212402, 0.0048447041511535645, 0.004888800144195557, 0.00498089599609375, 0.004891456127166748, 0.0049079999923706055, 0.004881087779998779, 0.004966047763824463, 0.004940127849578858, 0.004888576030731201, 0.005240511894226074, 0.0049015040397644045, 0.004937759876251221, 0.00488259220123291, 0.004908703804016114, 0.004878335952758789, 0.004919104099273682, 0.004912735939025879, 0.004858751773834228, 0.004853663921356201, 0.004890624046325683, 0.004914400100708008, 0.004856704235076904, 0.004855711936950683, 0.004932767868041992, 0.004908991813659668, 0.005355679988861084, 0.004873983860015869, 0.00487721586227417, 0.004935359954833985, 0.0048644161224365235, 0.0048496642112731934, 0.005135392189025879, 0.0056737599372863766, 0.004878528118133545, 0.004861792087554931, 0.0048596482276916505, 0.004948383808135987, 0.004907008171081543, 0.0048802242279052735, 0.00488486385345459, 0.0049147200584411625, 0.004910624027252198, 0.004870880126953125, 0.004847360134124756, 0.00486630392074585, 0.0049051837921142575, 0.004890399932861328, 0.004863999843597412, 0.00493174409866333, 0.004883391857147217, 0.005004191875457763, 0.004902912139892578, 0.004847616195678711, 0.004857439994812012, 0.004913504123687744, 0.004862016201019287, 0.004855519771575928, 0.004831552028656006, 0.004909023761749267, 0.00486195182800293, 0.004878335952758789, 0.004876287937164306, 0.004863999843597412, 0.004933631896972656, 0.004933407783508301, 0.004857855796813965, 0.0048949441909790035, 0.004943871974945068, 0.005029888153076172, 0.0048577280044555665, 0.004882336139678955, 0.004868319988250732, 0.004787968158721924, 0.004929823875427246, 0.004912447929382324, 0.004878015995025635, 0.004877280235290527, 0.00484716796875, 0.004923840045928955, 0.0048980159759521484, 0.004866911888122559, 0.004841119766235352, 0.004900320053100586, 0.004885312080383301, 0.004854015827178955, 0.004857120037078858, 0.004860383987426758, 0.005024096012115478, 0.00489846420288086, 0.004843391895294189, 0.004841599941253662, 0.004898079872131348, 0.0048666238784790036, 0.0048514242172241215, 0.0048681597709655765, 0.004851456165313721, 0.00493017578125, 0.00488150405883789, 0.004851744174957275, 0.0048447041511535645, 0.004885983943939209, 0.004921599864959717, 0.005138336181640625, 0.005271488189697265, 0.005001311779022217, 0.004997183799743652, 0.0050455999374389646, 0.005534687995910645, 0.004924863815307617, 0.004897119998931884, 0.004861311912536621, 0.0048576960563659665, 0.004924320220947266, 0.004906816005706787, 0.004869823932647705, 0.0048496642112731934, 0.004909120082855225, 0.00489731216430664, 0.00487497615814209, 0.004844096183776856, 0.004839104175567627, 0.004901408195495605, 0.004863264083862305, 0.00482806396484375, 0.004868063926696777, 0.004835360050201416, 0.004966400146484375, 0.00487824010848999, 0.004843008041381836, 0.004837632179260254, 0.004864352226257324, 0.004877984046936035, 0.004856160163879394, 0.004831232070922851, 0.004921343803405762, 0.004834752082824707, 0.004880864143371582, 0.004927231788635254, 0.004890495777130127, 0.004869311809539795, 0.004849376201629639, 0.004947968006134033, 0.0049049282073974606, 0.0048640317916870115, 0.0048455681800842285, 0.004896128177642822, 0.004912831783294678, 0.004865151882171631, 0.004855072021484375, 0.004858208179473877, 0.004947487831115723, 0.004893184185028076, 0.004849823951721191, 0.0048558077812194825, 0.004865024089813232, 0.004963327884674072, 0.004951456069946289, 0.004907423973083496, 0.004903135776519775, 0.00497046422958374, 0.004931359767913818, 0.004882688045501709, 0.004896063804626465, 0.00495900821685791, 0.004910848140716553, 0.00487340784072876, 0.004883135795593262, 0.0048707199096679685, 0.004943552017211914, 0.004866335868835449, 0.004854944229125977, 0.004874815940856933, 0.004925439834594727, 0.004888576030731201, 0.004866047859191895, 0.004839424133300781, 0.004923391819000244, 0.004943647861480713, 0.004909408092498779, 0.0048715839385986325, 0.00486243200302124, 0.004927487850189209, 0.004915200233459473, 0.004866047859191895, 0.004853759765625, 0.004836959838867188, 0.004917183876037598, 0.004851359844207764, 0.004834239959716797, 0.004878176212310791, 0.00489635181427002, 0.005007808208465576, 0.004873600006103516, 0.004841792106628418, 0.004838719844818116, 0.004899328231811524, 0.004874752044677734, 0.0048876161575317385, 0.004749663829803467, 0.004864128112792969, 0.004868319988250732, 0.0049357438087463375, 0.004865375995635987, 0.004863872051239014, 0.004834080219268799, 0.00481708812713623, 0.0049172801971435545, 0.00485152006149292, 0.004925407886505127, 0.004863999843597412, 0.004910975933074951, 0.004868224143981934, 0.004834688186645507, 0.004841824054718017, 0.004837823867797852, 0.0048802242279052735, 0.004907008171081543, 0.004843520164489746, 0.004839424133300781, 0.004886464118957519, 0.004886591911315918, 0.004863999843597412, 0.004852799892425537, 0.004848576068878173, 0.004906335830688477, 0.004862815856933594, 0.004857120037078858, 0.004860415935516358, 0.004853759765625, 0.004947999954223633, 0.004873824119567871, 0.004929855823516845, 0.004841567993164063, 0.004898208141326904, 0.005237696170806885, 0.005007359981536865, 0.005416416168212891, 0.005245120048522949, 0.005334432125091553, 0.004899424076080322, 0.00506060791015625, 0.005293856143951416, 0.005279967784881592, 0.005105311870574951, 0.004967840194702149, 0.004891583919525147, 0.00487014389038086, 0.004872191905975342, 0.004965472221374512, 0.004920224189758301, 0.004898816108703613, 0.0048635520935058595, 0.004946623802185059, 0.004924543857574463, 0.004887167930603027, 0.004867968082427979, 0.004918943881988525, 0.004938432216644287, 0.004875040054321289, 0.004844543933868409, 0.004871456146240234, 0.004811295986175537, 0.004902751922607422, 0.004927360057830811, 0.004872320175170898, 0.004855231761932373, 0.004833856105804443, 0.004917344093322754, 0.004881728172302246, 0.004884352207183838, 0.004862656116485595, 0.0048537921905517575, 0.004921055793762207, 0.004869664192199707, 0.004834080219268799, 0.004849823951721191, 0.004939008235931397, 0.004901440143585205, 0.0048455681800842285, 0.00483513593673706, 0.004835296154022217, 0.004912384033203125, 0.004887519836425781, 0.004856128215789795, 0.004843391895294189, 0.004849408149719238, 0.0048681597709655765, 0.00484991979598999, 0.0048429441452026364, 0.004937759876251221, 0.004919583797454834, 0.004887807846069336, 0.004852479934692383, 0.0048410239219665524, 0.004856256008148194, 0.004978432178497315, 0.004858272075653076, 0.004846784114837646, 0.0048455362319946285, 0.0049179520606994626, 0.004863999843597412, 0.004854015827178955, 0.0049417920112609865, 0.004895711898803711, 0.004885536193847656, 0.004849760055541992, 0.004929056167602539, 0.0048776321411132815, 0.004891488075256347, 0.004874239921569825, 0.004830304145812988, 0.004830239772796631, 0.004847487926483154, 0.0049309759140014646, 0.004940383911132813, 0.0048455681800842285, 0.004828671932220459, 0.004891136169433594, 0.0048863677978515626, 0.004848896026611328, 0.004830399990081787, 0.004846752166748047, 0.004895455837249756, 0.004924928188323975, 0.0048345279693603515, 0.004856575965881347, 0.0048405442237854, 0.004829440116882324, 0.004909759998321534, 0.004863935947418213, 0.004851456165313721, 0.0048642559051513675, 0.00485811185836792, 0.004933440208435059, 0.0048919677734375, 0.00502239990234375, 0.004892896175384522, 0.0049284157752990726, 0.004883327960968018, 0.0048559679985046384, 0.004854688167572022, 0.00484438419342041, 0.004926623821258545, 0.004876959800720215, 0.004843520164489746, 0.004858143806457519, 0.0048947839736938475, 0.004883552074432373, 0.004878367900848389, 0.004877120018005371, 0.0048534078598022464, 0.004927840232849121, 0.004884479999542236, 0.004853375911712646, 0.004863455772399903, 0.004916128158569336, 0.004890336036682129, 0.004866335868835449, 0.004866335868835449, 0.004865983963012696, 0.0049376959800720216, 0.005026624202728271, 0.004875199794769287, 0.004860000133514404, 0.004935647964477539, 0.004879392147064209, 0.00487721586227417, 0.004853983879089355, 0.004858719825744629, 0.004966400146484375, 0.004883456230163574, 0.004869408130645752, 0.004893119812011719, 0.004944064140319824, 0.004880767822265625, 0.0048657598495483395, 0.00486569595336914, 0.004892831802368164, 0.004972064018249512, 0.004872159957885742, 0.004863840103149414, 0.004859936237335205, 0.004944447994232178, 0.004902495861053467, 0.004853888034820557, 0.0048830718994140624, 0.0048715839385986325, 0.004759647846221924, 0.004935647964477539, 0.004886176109313965, 0.004858431816101075, 0.004849184036254883, 0.004839871883392334, 0.004912896156311035, 0.004861087799072266, 0.0048297600746154785, 0.004831456184387207, 0.004873439788818359, 0.004898784160614014, 0.004862720012664795, 0.004827328205108642, 0.004824480056762695, 0.004933631896972656, 0.004888192176818847, 0.004840352058410644, 0.004847936153411865, 0.004853119850158691, 0.004896512031555176, 0.004862527847290039, 0.004868288040161133, 0.004847424030303955, 0.004857855796813965, 0.004876512050628662, 0.004918975830078125, 0.004829216003417969, 0.004829247951507568, 0.004902783870697021, 0.004874144077301025, 0.004835552215576172, 0.004826879978179931, 0.004831776142120361, 0.004890111923217774, 0.004843776226043701, 0.004851647853851318, 0.004849696159362793, 0.004904960155487061, 0.004858975887298584, 0.004860288143157959, 0.004907711982727051, 0.004841311931610108, 0.004896768093109131, 0.004824895858764649, 0.004994400024414062, 0.004836160182952881, 0.004856031894683838, 0.004896575927734375, 0.004874239921569825, 0.004825088024139404, 0.004833280086517334, 0.00495036792755127, 0.004875936031341553, 0.004822815895080566, 0.004815072059631348, 0.004820991992950439, 0.004903103828430176, 0.004883840084075928, 0.004843967914581299, 0.004853919982910156, 0.004929408073425293, 0.00490067195892334, 0.00484496021270752, 0.004913760185241699, 0.0049030079841613766, 0.004878560066223145, 0.004906688213348389, 0.004873600006103516, 0.004957888126373291, 0.00490723180770874, 0.00488918399810791, 0.004950143814086914, 0.004906144142150879, 0.00488640022277832, 0.004873119831085205, 0.005005375862121582, 0.0049147200584411625, 0.004866528034210205, 0.004866047859191895, 0.004978687763214112, 0.004930560111999512, 0.0048855037689208985, 0.004859744071960449, 0.004888768196105957, 0.00495305585861206, 0.004919936180114746, 0.004891007900238037, 0.004875391960144043, 0.004932479858398437, 0.004918591976165771, 0.004883135795593262, 0.004865600109100342, 0.0048419198989868165, 0.004924736022949219, 0.004878464221954345, 0.004856383800506592, 0.004849760055541992, 0.004863232135772705, 0.004889503955841064, 0.004873631954193115, 0.004938079833984375, 0.00491315221786499, 0.004950079917907715, 0.004908895969390869, 0.0048529281616210935, 0.0048484477996826175, 0.004877471923828125, 0.004870463848114013, 0.004856448173522949, 0.004869631767272949, 0.004827648162841797, 0.004907008171081543, 0.004896768093109131, 0.0048661441802978515, 0.0048536000251770016, 0.004861087799072266, 0.0049407038688659664, 0.004857247829437256, 0.004849696159362793, 0.004862815856933594, 0.004921055793762207, 0.004883872032165527, 0.004878943920135498, 0.005155968189239502, 0.00515123176574707, 0.005212192058563232, 0.005036799907684326, 0.004914463996887207, 0.004877344131469726, 0.00493126392364502, 0.004896224021911621, 0.004862463951110839, 0.004853536128997802, 0.004905216217041016, 0.004896768093109131, 0.004882431983947754, 0.0048681597709655765, 0.0048512001037597655, 0.004915647983551026, 0.00489686393737793, 0.004861599922180175, 0.004869376182556152, 0.004903935909271241, 0.004912255764007568, 0.00487824010848999, 0.004850399971008301, 0.00484991979598999, 0.004920671939849854, 0.00513097620010376, 0.004863808155059815, 0.004855936050415039, 0.004900224208831787, 0.004964384078979492, 0.00487388801574707, 0.0048501439094543455, 0.00487062406539917, 0.004911104202270508, 0.004876287937164306, 0.004847263813018799, 0.004848159790039062, 0.004904160022735596, 0.004920000076293945, 0.004968544006347656, 0.004860735893249511, 0.004828159809112549, 0.004909311771392822, 0.004877696037292481, 0.004864575862884521, 0.004894527912139892, 0.0049192957878112795, 0.004902912139892578, 0.004889887809753418, 0.004860640048980713, 0.004868095874786377, 0.0050332479476928715, 0.004897503852844238, 0.0048784961700439455, 0.0048475518226623535, 0.004914080142974854, 0.004891647815704346, 0.004834943771362304, 0.0048559679985046384, 0.004847263813018799, 0.00505299186706543, 0.004911327838897705, 0.004887360095977783, 0.0048846077919006345, 0.004983424186706543, 0.004765727996826172, 0.004900063991546631, 0.004887296199798584, 0.004846879959106445, 0.004855743885040283, 0.004909952163696289, 0.004861408233642578, 0.004839871883392334, 0.00485584020614624, 0.004831200122833252, 0.0048887357711791994, 0.004872032165527344, 0.004843520164489746, 0.004847839832305908, 0.004890560150146484, 0.004912896156311035, 0.0048763837814331055, 0.004860928058624267, 0.004856895923614502, 0.004930784225463867, 0.004878079891204834, 0.004847712039947509, 0.004842368125915528, 0.004855584144592285, 0.004955840110778808, 0.004847936153411865, 0.004851935863494873, 0.004831232070922851, 0.004916959762573242, 0.004888864040374756, 0.004851391792297363, 0.004837696075439453, 0.0048429441452026364, 0.00492409610748291, 0.004880256175994873, 0.004855616092681885, 0.0048848319053649905, 0.004935520172119141, 0.0049183998107910154, 0.004883711814880371, 0.004882048130035401, 0.004904960155487061, 0.004964352130889893, 0.004904096126556397, 0.004850527763366699, 0.004842879772186279, 0.0048830718994140624, 0.004869599819183349, 0.004872255802154541, 0.004854559898376465, 0.004849120140075684, 0.004914463996887207, 0.00489577579498291, 0.005908639907836914, 0.005014272212982178, 0.004927552223205566, 0.004872992038726807, 0.004884640216827393, 0.004934656143188477, 0.004899871826171875, 0.0051233282089233395, 0.00491977596282959, 0.004884736061096191, 0.004759679794311524, 0.004925439834594727, 0.0049060797691345215, 0.004852640151977539, 0.004853568077087402, 0.004839615821838379, 0.004943039894104004, 0.0049795198440551755, 0.0048551359176635745, 0.004854015827178955, 0.004933311939239502, 0.004908063888549805, 0.00487388801574707, 0.004855264186859131, 0.0048707518577575685, 0.004929056167602539, 0.004893119812011719, 0.004887904167175293, 0.004883264064788818, 0.0049576001167297365, 0.004898431777954101, 0.0048587841987609865, 0.004881408214569092, 0.004854688167572022, 0.004917600154876709, 0.004875936031341553, 0.004852992057800293, 0.004852479934692383, 0.004907008171081543, 0.004874239921569825, 0.004859615802764892, 0.0048540477752685544, 0.004869760036468506, 0.0049565439224243165, 0.004939167976379394, 0.004919680118560791, 0.00488265609741211, 0.004933311939239502, 0.004896543979644776, 0.004852255821228027, 0.004837056159973144, 0.004854080200195313, 0.004927584171295166, 0.004867616176605224, 0.004848000049591065, 0.004839424133300781, 0.004857855796813965, 0.004880640029907226, 0.0048596482276916505, 0.004841087818145752, 0.004848127841949463, 0.004898240089416504, 0.00486240005493164, 0.0048240962028503415, 0.004834271907806396, 0.00483897590637207, 0.004905439853668213, 0.004857823848724365, 0.0048455362319946285, 0.004835360050201416, 0.00486579179763794, 0.004876800060272217, 0.004861695766448975]",tokens/s,204.04037442252584,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,7434.821632,8041.463808,0.0,7646.216192,7627.584,s,1,13.1314404296875,13.1314404296875,0.0,13.1314404296875,13.1314404296875,13.1314404296875,13.1314404296875,[13.1314404296875],,kWh,0.00017221434909583307,1.8989107224086042e-05,5.507671072799841e-05,0.0002462801670479175,,MB,1756.71296,8725.13536,0.0,8315.20768,8191.863296,s,10,3.325114532470703,0.33251145324707027,0.00033927029372321884,0.3324805603027344,0.3330387817382812,0.33309107666015625,0.3331329125976562,"[0.33262384033203124, 0.3321598205566406, 0.33248501586914064, 0.3324128112792969, 0.3324761047363281, 0.3325360107421875, 0.33198587036132815, 0.33302716064453125, 0.3322645263671875, 0.3331433715820312]",tokens/s,769.8982922244818,kWh,9.734977347083315e-06,1.0735828873529782e-06,6.439773670333278e-06,1.724833390476957e-05,tokens/kWh,14842013.229417477,MB,1763.782656,9039.70816,0.0,8629.78048,8480.067584,s,10,26.70110595703125,2.6701105957031253,0.0035851400564946515,2.6707076416015623,2.6737568847656252,2.6743437744140626,2.6748132861328124,"[2.663013671875, 2.666642333984375, 2.66614990234375, 2.67047509765625, 2.669856201171875, 2.673041748046875, 2.6724296875, 2.670940185546875, 2.67362646484375, 2.6749306640625]",tokens/s,23.59452829458927,kWh,7.812808360291664e-05,8.617620039500167e-06,5.196985639066686e-05,0.00013871556003308366,tokens/kWh,454166.7855067917,,s,630,26.691571811676045,0.04236757430424766,0.000393671327118452,0.0423721923828125,0.04286623229980469,0.042984235000610355,0.04324060020446777,"[0.041927009582519534, 0.04157680130004883, 0.041426399230957034, 0.0416278076171875, 0.0417143669128418, 0.041723838806152345, 0.04161856079101563, 0.04187599945068359, 0.041927009582519534, 0.04173110580444336, 0.04178969573974609, 0.04169180679321289, 0.04173830413818359, 0.041983039855957034, 0.041898239135742185, 0.041853633880615235, 0.04182342529296875, 0.04184352111816406, 0.04213555145263672, 0.04209664154052734, 0.042259681701660154, 0.04209539031982422, 0.04245913696289062, 0.04239974212646484, 0.04214374542236328, 0.04191641616821289, 0.04220278549194336, 0.041968990325927734, 0.04209151840209961, 0.042178558349609374, 0.042478622436523436, 0.04244102478027344, 0.04234675216674805, 0.04231209564208984, 0.042434558868408204, 0.04232720184326172, 0.042296161651611326, 0.04229683303833008, 0.04227462387084961, 0.04238380813598633, 0.04246268844604492, 0.04268316650390625, 0.04272470474243164, 0.04268304061889648, 0.04268409729003906, 0.04245945739746094, 0.042510337829589843, 0.042387454986572266, 0.04243395233154297, 0.04242639923095703, 0.04258041763305664, 0.04266201782226563, 0.04284995269775391, 0.042826080322265626, 0.042698047637939454, 0.04258272171020508, 0.04248086547851562, 0.04256857681274414, 0.04271503829956055, 0.04291123199462891, 0.0429156494140625, 0.04270560073852539, 0.04282720184326172, 0.04180511856079101, 0.041666366577148437, 0.041623615264892576, 0.04158342361450195, 0.041869312286376956, 0.041850879669189454, 0.041744384765625, 0.041562110900878906, 0.04169254302978516, 0.041775615692138675, 0.04173580932617187, 0.04190188980102539, 0.04201337432861328, 0.04211507034301758, 0.042031265258789065, 0.041944766998291014, 0.04196905517578125, 0.041888160705566405, 0.0421830062866211, 0.04215795135498047, 0.04209382247924805, 0.0421662712097168, 0.042275585174560544, 0.04227459335327149, 0.042252799987792966, 0.04200374221801758, 0.04205001449584961, 0.0421453742980957, 0.04223027038574219, 0.04225830459594727, 0.042229888916015625, 0.04231516647338867, 0.04233814239501953, 0.04233606338500977, 0.042516864776611325, 0.04276076889038086, 0.04254860687255859, 0.04248579025268555, 0.042396255493164066, 0.04244678497314453, 0.04245100784301758, 0.04271104049682617, 0.04272742462158203, 0.04276224136352539, 0.042575870513916016, 0.042842113494873046, 0.04261068725585938, 0.042487648010253905, 0.04245753479003906, 0.04244438552856445, 0.04295395278930664, 0.042678688049316404, 0.0429349136352539, 0.04279225540161133, 0.042709121704101564, 0.0425968017578125, 0.042665985107421874, 0.04289913558959961, 0.04272364807128906, 0.04276220703125, 0.04272335815429688, 0.04295270538330078, 0.04296633529663086, 0.042206401824951174, 0.04178425598144531, 0.041774528503417965, 0.04158303833007813, 0.04165631866455078, 0.04204748916625976, 0.04200243377685547, 0.041678848266601565, 0.04156415939331055, 0.041772289276123045, 0.041857791900634767, 0.04194918441772461, 0.041744384765625, 0.04239155197143555, 0.042246143341064454, 0.04211916732788086, 0.04206143951416016, 0.04201692962646485, 0.04198806381225586, 0.04207632064819336, 0.04202681732177734, 0.04201910400390625, 0.04217446517944336, 0.04223311996459961, 0.04225059127807617, 0.042113407135009766, 0.042057727813720705, 0.04208838272094727, 0.042196990966796875, 0.04205491256713867, 0.041995006561279295, 0.04205779266357422, 0.04202310562133789, 0.04218828964233398, 0.04222140884399414, 0.04227734375, 0.042681407928466794, 0.04279391860961914, 0.042597824096679685, 0.042528350830078124, 0.04249264144897461, 0.04236854553222656, 0.042638240814208986, 0.042686046600341795, 0.04260067367553711, 0.04252467346191406, 0.043038719177246096, 0.04281756973266602, 0.04265580749511719, 0.04258332824707031, 0.042621566772460935, 0.04274585723876953, 0.04293017578125, 0.042788864135742184, 0.04258377456665039, 0.04250377655029297, 0.04268233489990234, 0.04274454498291016, 0.0427803840637207, 0.04259161758422852, 0.04290876770019531, 0.042936126708984376, 0.04284592056274414, 0.04192160034179687, 0.04171846389770508, 0.041963905334472654, 0.041729759216308594, 0.04205583953857422, 0.04188275146484375, 0.04182720184326172, 0.041839839935302735, 0.04180252838134765, 0.04187136077880859, 0.04187136077880859, 0.041799678802490234, 0.042162174224853514, 0.04217036819458008, 0.04211916732788086, 0.04203519821166992, 0.04244275283813476, 0.04232396697998047, 0.042262527465820314, 0.042074111938476565, 0.04208003234863281, 0.04195145416259766, 0.042280960083007815, 0.04228300857543945, 0.04214169692993164, 0.04222540664672852, 0.04210918426513672, 0.042315006256103516, 0.04231654357910156, 0.04226588821411133, 0.04215267181396484, 0.04217446517944336, 0.042288192749023436, 0.042453567504882814, 0.04263734436035156, 0.0426295051574707, 0.042618846893310545, 0.04255539321899414, 0.042487777709960935, 0.042624095916748046, 0.04264441680908203, 0.0425346565246582, 0.04261814498901367, 0.042820575714111325, 0.042856449127197264, 0.04266368103027344, 0.04261065673828125, 0.0427542724609375, 0.042507392883300785, 0.04242345428466797, 0.042788192749023436, 0.04283843231201172, 0.04267625427246094, 0.04257398223876953, 0.042676063537597654, 0.04284396743774414, 0.042877120971679686, 0.04275404739379883, 0.04267929458618164, 0.04285702514648437, 0.04296748733520508, 0.04285161590576172, 0.043114559173583984, 0.04197580718994141, 0.041880672454833984, 0.041864097595214846, 0.041987808227539065, 0.04195923233032227, 0.04186710357666015, 0.041667198181152346, 0.041678367614746095, 0.04180748748779297, 0.04172208023071289, 0.04168374252319336, 0.04180774307250976, 0.042082271575927734, 0.04252057647705078, 0.04234204864501953, 0.042207584381103516, 0.0420285758972168, 0.042005985260009766, 0.042017345428466794, 0.04199468612670899, 0.04205344009399414, 0.04207360076904297, 0.04204105758666992, 0.04202364730834961, 0.04209910583496094, 0.042159969329833985, 0.04230963134765625, 0.042364158630371095, 0.04226284790039062, 0.0423328971862793, 0.042569377899169925, 0.04230368041992188, 0.04230131149291992, 0.04230758285522461, 0.04231782531738281, 0.0425241584777832, 0.042608448028564457, 0.04263324737548828, 0.04249196624755859, 0.042472000122070315, 0.04258544158935547, 0.04244140625, 0.042401790618896484, 0.042674175262451174, 0.042611839294433594, 0.042494911193847656, 0.04250137710571289, 0.04238528060913086, 0.042775360107421875, 0.042616832733154295, 0.042536609649658205, 0.04278665542602539, 0.04324169540405273, 0.042938495635986326, 0.04284630584716797, 0.042848033905029295, 0.04286288070678711, 0.04271104049682617, 0.04332748794555664, 0.04276633453369141, 0.04303436660766601, 0.043036415100097654, 0.04294844818115234, 0.041867008209228514, 0.04173574447631836, 0.041955486297607425, 0.04199603271484375, 0.04190902328491211, 0.04210883331298828, 0.04204553604125977, 0.041998336791992184, 0.042057727813720705, 0.04193894577026367, 0.041875583648681644, 0.04183395385742188, 0.04192524719238281, 0.04215727996826172, 0.042248767852783205, 0.042229759216308595, 0.04220723342895508, 0.04214726257324219, 0.042011070251464847, 0.04241420745849609, 0.04222908782958985, 0.042062496185302736, 0.04187347030639649, 0.041766849517822266, 0.0420843505859375, 0.04235059356689453, 0.042278911590576174, 0.04214988708496094, 0.0424898567199707, 0.04251004791259766, 0.04244438552856445, 0.04237107086181641, 0.04236470413208008, 0.042296127319335936, 0.04255267333984375, 0.042574592590332035, 0.042509761810302735, 0.042500606536865236, 0.04255478286743164, 0.04237955093383789, 0.042508544921875, 0.04239369583129883, 0.04259638214111328, 0.04272851181030273, 0.04280825424194336, 0.04259209442138672, 0.04305459213256836, 0.04279119873046875, 0.04281078338623047, 0.04254719924926758, 0.042554622650146486, 0.042774177551269534, 0.04287897491455078, 0.042831745147705075, 0.042870944976806644, 0.042729503631591795, 0.04327328109741211, 0.04318636703491211, 0.04281779098510742, 0.04299020767211914, 0.0431328010559082, 0.04307712173461914, 0.043028640747070315, 0.042335422515869144, 0.042154239654541015, 0.04211974334716797, 0.042049537658691405, 0.04212678527832031, 0.04160528182983399, 0.04165795135498047, 0.04182041549682617, 0.041779777526855466, 0.04172934341430664, 0.04185494232177735, 0.04206460952758789, 0.04210812759399414, 0.04244969558715821, 0.04226047897338867, 0.04216169738769531, 0.042016288757324216, 0.041927009582519534, 0.04183849716186523, 0.041984703063964846, 0.04212268829345703, 0.04195180892944336, 0.04214988708496094, 0.042240001678466796, 0.04215145492553711, 0.042590335845947264, 0.04241852951049805, 0.04220633697509766, 0.04223241424560547, 0.042152225494384764, 0.04214374542236328, 0.04222127914428711, 0.04233833694458008, 0.042467582702636716, 0.04269667053222656, 0.042729633331298825, 0.04262899017333984, 0.0430489616394043, 0.04265155029296875, 0.04245721435546875, 0.04231164932250977, 0.04263731384277344, 0.042659839630126956, 0.04257724761962891, 0.04266870498657226, 0.04298342514038086, 0.04278636932373047, 0.04257583999633789, 0.042498687744140624, 0.042675262451171876, 0.04284284973144531, 0.04288108825683594, 0.042644992828369144, 0.04269635009765625, 0.04328944015502929, 0.042947742462158205, 0.04269667053222656, 0.042853248596191405, 0.04299980926513672, 0.04298489761352539, 0.04282799911499023, 0.043294910430908204, 0.04306972885131836, 0.04217116928100586, 0.041768959045410156, 0.04166156768798828, 0.04189273452758789, 0.041783294677734374, 0.04159196853637695, 0.04169539260864258, 0.04176761627197265, 0.04173619079589844, 0.041760768890380856, 0.04199423980712891, 0.04200003051757813, 0.042133377075195315, 0.04237564849853516, 0.04209814453125, 0.04211334228515625, 0.0419730224609375, 0.04205049514770508, 0.04205545425415039, 0.042074337005615234, 0.041875232696533204, 0.04217164611816406, 0.042850753784179685, 0.042227745056152344, 0.042342910766601564, 0.042417247772216796, 0.04224911880493164, 0.04230348968505859, 0.04217446517944336, 0.0420906867980957, 0.04194300842285156, 0.04215792083740234, 0.04257318496704102, 0.04254294586181641, 0.04240806579589844, 0.04275820922851563, 0.042740318298339845, 0.04277657699584961, 0.042602497100830077, 0.04245280075073242, 0.04235225677490234, 0.042637630462646486, 0.04275580978393555, 0.04259280014038086, 0.04287078475952148, 0.04274176025390625, 0.0426761589050293, 0.04259436798095703, 0.04246252822875977, 0.04282371139526367, 0.042823806762695316, 0.042777118682861326, 0.042874496459960935, 0.04279715347290039, 0.04269903945922852, 0.04248112106323242, 0.04250672149658203, 0.042549312591552736, 0.04286572647094727, 0.043119552612304685, 0.04332284927368164, 0.043237918853759764, 0.04299980926513672, 0.04216915130615234, 0.04190537643432617, 0.041861919403076174, 0.04169321441650391, 0.042076126098632816, 0.042071361541748044, 0.04181472015380859, 0.04171798324584961, 0.041667903900146484, 0.04170595169067383, 0.041813087463378903, 0.042107807159423825, 0.042426368713378904, 0.04256697463989258, 0.04231647872924805, 0.042156032562255856, 0.04213324737548828, 0.04211328125, 0.04209664154052734, 0.04247065734863281, 0.04213772964477539, 0.04197849655151367, 0.04215750503540039, 0.04227129745483398, 0.04228915023803711, 0.042291393280029295, 0.04321859359741211, 0.04245110321044922, 0.04231167984008789, 0.04234035110473633, 0.04213759994506836, 0.042147838592529296, 0.04227686309814453, 0.042469375610351565, 0.042503646850585934, 0.04244089508056641, 0.04292643356323242, 0.043276287078857424, 0.042648990631103514, 0.0424884147644043, 0.04230144119262695, 0.04263033676147461, 0.04266067123413086, 0.04263724899291992, 0.04262508773803711, 0.042510337829589843, 0.04254848098754883, 0.04268518447875977, 0.04275404739379883, 0.04284620666503906, 0.04272537612915039, 0.04282108688354492, 0.04296707153320312, 0.04277936172485351, 0.042624801635742185, 0.04258998489379883, 0.0425588493347168, 0.04265865707397461, 0.04302438354492188, 0.043235328674316405, 0.04308377456665039, 0.04298342514038086, 0.0429189453125, 0.0421847038269043, 0.04186521530151367, 0.0417628173828125, 0.04191231918334961, 0.041975902557373046, 0.041996192932128903, 0.04210073471069336, 0.041744384765625, 0.04187059020996094, 0.04187827301025391, 0.04204544067382812, 0.04222956848144531, 0.042348735809326174, 0.042284641265869144, 0.04222995376586914, 0.04205590438842773, 0.041992416381835936, 0.04210979080200195, 0.042091457366943356, 0.04237331390380859, 0.04260787200927734, 0.04246291351318359, 0.04239011383056641, 0.04249446487426758, 0.04237443161010742, 0.042430912017822266, 0.04236038589477539, 0.04219084930419922, 0.042076576232910154, 0.042051681518554686, 0.04219062423706055, 0.042402015686035154, 0.0424898567199707, 0.042456192016601564, 0.04285440063476562, 0.04267433547973633, 0.04248649597167969, 0.042235008239746095, 0.04235968017578125, 0.0427883186340332, 0.042635807037353514, 0.042603679656982425, 0.042655902862548827, 0.04265251159667969, 0.04271638488769531, 0.04279769515991211, 0.0425984001159668, 0.04246112060546875, 0.04268230438232422, 0.042952831268310544, 0.04297299194335937, 0.04288735961914063, 0.04283087921142578, 0.04267827224731445, 0.04261526489257812, 0.04253747177124023, 0.04294246292114258, 0.043157215118408206, 0.04305692672729492, 0.04304470443725586, 0.0429595832824707, 0.04298854446411133, 0.042895870208740236]",tokens/s,23.602956185757904,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4293.541888,4878.958592,0.0,4483.710976,4465.672704,s,1,10.53728125,10.53728125,0.0,10.53728125,10.53728125,10.53728125,10.53728125,[10.53728125],,kWh,0.00010265646206668559,1.1316277597974052e-05,3.244585928999927e-05,0.00014641859895465892,,MB,2154.92608,5302.583296,0.0,4892.655616,4837.669376,s,10,1.806138107299805,0.18061381072998048,0.0003293052221499723,0.18058362579345705,0.18102312774658205,0.18117773971557619,0.1813014292907715,"[0.1805165710449219, 0.18033718872070312, 0.18065068054199218, 0.18019810485839843, 0.18073670959472657, 0.18069020080566406, 0.18098876953125, 0.18032659912109375, 0.18133235168457032, 0.18036093139648438]",tokens/s,1417.3888417797832,kWh,5.292656321875218e-06,5.83684918681336e-07,3.519010751714318e-06,9.395351992270872e-06,tokens/kWh,27247515.60245955,MB,2154.92608,5470.355456,0.0,5060.427776,5014.227968,s,10,15.812712036132812,1.5812712036132812,0.002739175781028118,1.5802742309570315,1.58424609375,1.5859874267578125,1.5873804931640627,"[1.577431884765625, 1.5804415283203126, 1.5797474365234374, 1.579446044921875, 1.5827811279296875, 1.58010693359375, 1.579886962890625, 1.583859130859375, 1.5812822265625, 1.587728759765625]",tokens/s,39.841362984440586,kWh,4.623907491687399e-05,5.0998846059126645e-06,3.0630627679086255e-05,8.19695872018729e-05,tokens/kWh,768577.739019778,,s,630,15.809436853408794,0.02509434421176002,0.0002683312272408559,0.025091216087341307,0.02539562587738037,0.02544892520904541,0.02562079782485962,"[0.02498044776916504, 0.024815391540527344, 0.024776927947998045, 0.024805376052856445, 0.024788991928100586, 0.024788991928100586, 0.02476348876953125, 0.024691295623779298, 0.02475449562072754, 0.02478489685058594, 0.024793088912963866, 0.024864767074584963, 0.024766464233398438, 0.0247459831237793, 0.024763839721679688, 0.024744384765625, 0.02489971160888672, 0.024831455230712892, 0.02490787124633789, 0.024795583724975586, 0.02489139175415039, 0.02500320053100586, 0.024898368835449217, 0.02482585525512695, 0.024792160034179687, 0.024869695663452148, 0.024821792602539063, 0.02477987289428711, 0.024884191513061524, 0.025010175704956054, 0.02507980728149414, 0.025064672470092773, 0.024938623428344728, 0.024996511459350584, 0.0251146240234375, 0.02512076759338379, 0.02505881690979004, 0.02513699150085449, 0.025188735961914063, 0.025165727615356445, 0.025176000595092774, 0.025184703826904298, 0.02513491249084473, 0.025129152297973634, 0.025194496154785157, 0.02534809684753418, 0.025310367584228517, 0.025208736419677736, 0.025102848052978514, 0.025165695190429688, 0.02533228874206543, 0.025389055252075195, 0.02526348876953125, 0.02523744010925293, 0.025434656143188475, 0.025280672073364256, 0.025202400207519533, 0.02540777587890625, 0.02535798454284668, 0.02527471923828125, 0.025361984252929688, 0.025620927810668947, 0.025276416778564452, 0.02510304069519043, 0.024698879241943358, 0.024653823852539062, 0.024667999267578126, 0.024707231521606445, 0.02466307258605957, 0.024621536254882812, 0.02473958396911621, 0.024779520034790038, 0.024803327560424804, 0.024825151443481446, 0.0247459831237793, 0.024807231903076172, 0.024838336944580076, 0.024850751876831053, 0.02490310478210449, 0.024869823455810548, 0.02487868881225586, 0.02479052734375, 0.024837024688720705, 0.02485043144226074, 0.024985599517822265, 0.02507776069641113, 0.025175615310668944, 0.025071231842041016, 0.02494041633605957, 0.024984159469604493, 0.02505353546142578, 0.025010175704956054, 0.025037055969238282, 0.025005151748657226, 0.02500204849243164, 0.02509020805358887, 0.025090496063232423, 0.02507776069641113, 0.025009727478027342, 0.0251396484375, 0.025190528869628907, 0.025227136611938476, 0.025161279678344726, 0.02514784049987793, 0.025153568267822266, 0.025163743972778322, 0.0252620792388916, 0.025384735107421875, 0.025440256118774415, 0.025311103820800783, 0.025268575668334962, 0.025337984085083008, 0.025268096923828125, 0.025223167419433593, 0.02549660873413086, 0.025320415496826173, 0.025372671127319335, 0.02544451141357422, 0.025354080200195313, 0.025376640319824218, 0.025380992889404298, 0.02560166358947754, 0.025423776626586913, 0.025455072402954103, 0.025442304611206053, 0.02549964714050293, 0.025324640274047853, 0.024912799835205078, 0.02489263916015625, 0.024666080474853514, 0.02470569610595703, 0.024719520568847655, 0.024807424545288087, 0.024729183197021484, 0.024676767349243164, 0.024769792556762694, 0.024742687225341797, 0.02475004768371582, 0.02478656005859375, 0.024909568786621095, 0.02491823959350586, 0.02493020820617676, 0.024833728790283203, 0.02486172866821289, 0.024846111297607422, 0.024788991928100586, 0.024795007705688477, 0.024967296600341797, 0.02500998306274414, 0.024968992233276366, 0.025135583877563476, 0.0250467529296875, 0.025036863327026367, 0.02502876853942871, 0.025028032302856447, 0.025047615051269533, 0.024993791580200195, 0.02495078468322754, 0.024993791580200195, 0.025069568634033205, 0.0251267204284668, 0.025097728729248047, 0.02506585693359375, 0.025198911666870116, 0.025208831787109375, 0.025210880279541017, 0.0252620792388916, 0.025167871475219726, 0.025531999588012694, 0.025235904693603515, 0.025192415237426758, 0.02517318344116211, 0.025172128677368164, 0.025209503173828127, 0.025118719100952147, 0.025312543869018555, 0.025449184417724608, 0.02535424041748047, 0.02528665542602539, 0.025351743698120117, 0.025340351104736328, 0.025362432479858397, 0.025332735061645507, 0.025278783798217772, 0.025374656677246095, 0.025445119857788086, 0.02533718490600586, 0.025295488357543944, 0.025346080780029298, 0.025178176879882812, 0.024930303573608398, 0.024844287872314453, 0.024825983047485352, 0.02469811248779297, 0.024636032104492188, 0.024805280685424806, 0.02510771179199219, 0.02479705619812012, 0.024687583923339845, 0.02479248046875, 0.024785503387451172, 0.025139104843139647, 0.024799327850341796, 0.02468659210205078, 0.0247459831237793, 0.024796703338623046, 0.024844608306884765, 0.024849952697753905, 0.024760480880737304, 0.02491628837585449, 0.024985759735107423, 0.02489331245422363, 0.024848512649536133, 0.02494588851928711, 0.024965919494628907, 0.024977407455444335, 0.02499939155578613, 0.025013856887817383, 0.02504390335083008, 0.025028831481933595, 0.024956703186035156, 0.02507776069641113, 0.025109535217285157, 0.025099231719970704, 0.025052480697631836, 0.025213632583618164, 0.02529484748840332, 0.025169919967651368, 0.025100288391113282, 0.025126911163330077, 0.025157632827758788, 0.02509404754638672, 0.025058496475219728, 0.025397184371948243, 0.025332799911499025, 0.02526812744140625, 0.025391040802001955, 0.025362495422363282, 0.0253308162689209, 0.025318271636962892, 0.025302751541137695, 0.02533945655822754, 0.025350879669189454, 0.025266176223754884, 0.025251840591430662, 0.02533782386779785, 0.025269952774047852, 0.025203039169311523, 0.025335264205932618, 0.02539369583129883, 0.025415679931640626, 0.02547203254699707, 0.025045759201049806, 0.024967424392700194, 0.02495871925354004, 0.024827903747558593, 0.024743871688842775, 0.02476608085632324, 0.027119232177734376, 0.0246812801361084, 0.024653728485107423, 0.02470307159423828, 0.02476144027709961, 0.024716127395629884, 0.02484230422973633, 0.02488319969177246, 0.024936447143554686, 0.02490572738647461, 0.02484841537475586, 0.02486182403564453, 0.02511296081542969, 0.025000415802001952, 0.024921184539794923, 0.024808351516723632, 0.024840320587158203, 0.02491200065612793, 0.02560111999511719, 0.024847007751464843, 0.02503232002258301, 0.025024223327636718, 0.02499456024169922, 0.02503593635559082, 0.025055999755859374, 0.02509414482116699, 0.02509574317932129, 0.025039295196533203, 0.025104255676269532, 0.025061023712158202, 0.02504934310913086, 0.02506729507446289, 0.025154016494750978, 0.025237472534179687, 0.025378816604614256, 0.0254486083984375, 0.025304927825927734, 0.025290752410888673, 0.02534809684753418, 0.025197568893432616, 0.025177087783813477, 0.025290048599243165, 0.025232063293457032, 0.025195968627929687, 0.025215551376342772, 0.0252126407623291, 0.025223455429077148, 0.025286848068237305, 0.025458303451538086, 0.025409215927124022, 0.025389440536499025, 0.025348127365112303, 0.025344095230102538, 0.025358335494995117, 0.025341920852661133, 0.025315359115600587, 0.025436159133911132, 0.025061952590942384, 0.02478060722351074, 0.02474015998840332, 0.024678047180175782, 0.024641759872436525, 0.024778816223144533, 0.024788351058959962, 0.024793855667114256, 0.02484000015258789, 0.024817663192749022, 0.024774560928344725, 0.02493552017211914, 0.02495795249938965, 0.024987648010253907, 0.02488934326171875, 0.024784383773803712, 0.02478665542602539, 0.024848480224609375, 0.024844991683959962, 0.024883359909057618, 0.024905759811401366, 0.024912864685058593, 0.02499875259399414, 0.024932512283325194, 0.024907455444335938, 0.024893760681152344, 0.025005184173583984, 0.02493881607055664, 0.025050880432128907, 0.02512348747253418, 0.025192287445068358, 0.02564534378051758, 0.025096063613891603, 0.025159679412841796, 0.02513100814819336, 0.025185823440551758, 0.025112607955932616, 0.02508956718444824, 0.02507254409790039, 0.025163743972778322, 0.025226848602294922, 0.02521513557434082, 0.02520297622680664, 0.025233407974243165, 0.02526380729675293, 0.02518252754211426, 0.025157632827758788, 0.025358335494995117, 0.025350208282470702, 0.025362464904785158, 0.025397151947021485, 0.02528678321838379, 0.02532748794555664, 0.025310783386230468, 0.025259647369384765, 0.025212959289550783, 0.02533184051513672, 0.025376800537109376, 0.025334272384643555, 0.02541360092163086, 0.025335968017578123, 0.025283967971801758, 0.025291391372680664, 0.024946720123291015, 0.02489792060852051, 0.024862720489501954, 0.024766464233398438, 0.024737247467041014, 0.02477519989013672, 0.024879104614257814, 0.0247172794342041, 0.024676383972167967, 0.024774656295776368, 0.024780799865722656, 0.024877056121826172, 0.024766464233398438, 0.02482585525512695, 0.024840415954589842, 0.024856351852416993, 0.0248702392578125, 0.02487772750854492, 0.02487295913696289, 0.02487071990966797, 0.024885440826416017, 0.02486832046508789, 0.024857120513916017, 0.02484646415710449, 0.024843231201171875, 0.024884128570556642, 0.025004032135009766, 0.024990751266479493, 0.02498771286010742, 0.025121248245239258, 0.02515011215209961, 0.02512067222595215, 0.025097536087036132, 0.02515551948547363, 0.025117311477661133, 0.025124128341674806, 0.0251759033203125, 0.025057600021362304, 0.02514579200744629, 0.025157760620117188, 0.025217023849487305, 0.025286367416381836, 0.025272607803344727, 0.025296287536621095, 0.02518671989440918, 0.025202880859375, 0.025280511856079102, 0.02527027130126953, 0.025218784332275392, 0.02524188804626465, 0.025322656631469726, 0.02536944007873535, 0.025332927703857422, 0.025400032043457033, 0.02541904067993164, 0.025489919662475585, 0.025479488372802735, 0.02539107131958008, 0.02543577575683594, 0.02540550422668457, 0.02530544090270996, 0.02535024070739746, 0.025327232360839842, 0.025350143432617187, 0.025231359481811523, 0.024922111511230468, 0.0248668155670166, 0.024771903991699217, 0.024724288940429686, 0.024729280471801757, 0.024785087585449218, 0.024769599914550782, 0.02481155204772949, 0.02489641571044922, 0.02478214454650879, 0.024769216537475585, 0.024805599212646485, 0.024812383651733397, 0.025000768661499022, 0.024940671920776366, 0.02498150444030762, 0.02495689582824707, 0.02501024055480957, 0.02505289649963379, 0.025000192642211913, 0.025026464462280275, 0.02510857582092285, 0.025062688827514647, 0.02500681686401367, 0.025026559829711914, 0.025040319442749023, 0.025036800384521486, 0.025024799346923827, 0.02495471954345703, 0.024924192428588867, 0.025049503326416016, 0.025115999221801757, 0.025189023971557617, 0.02507776069641113, 0.02513920021057129, 0.025124448776245117, 0.02516009521484375, 0.025161727905273438, 0.02518534469604492, 0.02521340751647949, 0.025237823486328127, 0.025189727783203126, 0.025966400146484374, 0.025248607635498046, 0.02521481513977051, 0.025506175994873048, 0.025456575393676757, 0.025458112716674804, 0.026091808319091796, 0.02537436866760254, 0.025410175323486328, 0.02536857604980469, 0.025267200469970705, 0.025291648864746094, 0.02543014335632324, 0.025317375183105468, 0.025357887268066405, 0.02545631980895996, 0.025430784225463868, 0.02547711944580078, 0.02544371223449707, 0.025239519119262695, 0.02485424041748047, 0.024719680786132812, 0.024645631790161132, 0.024723167419433593, 0.02477846336364746, 0.024811168670654297, 0.024689567565917968, 0.02469068717956543, 0.024816640853881834, 0.024837343215942383, 0.02473347282409668, 0.024751935958862305, 0.024774848937988283, 0.02487049674987793, 0.024833696365356445, 0.02489334487915039, 0.024916831970214843, 0.024980607986450194, 0.025033311843872072, 0.024895776748657228, 0.024885568618774414, 0.025027551651000977, 0.025084287643432616, 0.024983903884887696, 0.02485862350463867, 0.02491561508178711, 0.024953407287597658, 0.024999616622924804, 0.025059423446655273, 0.025083904266357423, 0.02510995292663574, 0.02510207939147949, 0.025187007904052733, 0.025214336395263673, 0.025197311401367186, 0.02514262390136719, 0.025148063659667968, 0.025215200424194336, 0.02516713523864746, 0.02511510467529297, 0.025304224014282225, 0.025383808135986327, 0.02526323127746582, 0.025262975692749025, 0.025444351196289062, 0.025427967071533202, 0.025316736221313477, 0.025113216400146486, 0.025069568634033205, 0.025174016952514647, 0.0252392635345459, 0.025213247299194337, 0.02536240005493164, 0.025448448181152345, 0.0255098876953125, 0.02527846336364746, 0.02535628890991211, 0.025374624252319337, 0.025417823791503907, 0.02554265594482422, 0.025620479583740235, 0.025617664337158202, 0.02533635139465332, 0.025091936111450195, 0.024928255081176756, 0.024829952239990235, 0.024666112899780275, 0.024731647491455077, 0.02483404731750488, 0.024821760177612305, 0.024909631729125976, 0.024788671493530274, 0.02480499267578125, 0.024864736557006835, 0.024998815536499023, 0.024868864059448242, 0.024860671997070313, 0.024877056121826172, 0.024925567626953124, 0.024805952072143554, 0.024891456604003905, 0.024870912551879884, 0.02506547164916992, 0.025038463592529297, 0.0250184326171875, 0.026261823654174805, 0.025176319122314453, 0.024999679565429686, 0.02505523109436035, 0.02509404754638672, 0.02510652732849121, 0.02508083152770996, 0.025178943634033203, 0.025163967132568358, 0.025081279754638672, 0.02509040069580078, 0.02530112075805664, 0.025276287078857422, 0.025278688430786133, 0.025372480392456053, 0.02558598327636719, 0.0252126407623291, 0.025338016510009765, 0.025261344909667968, 0.025240224838256838, 0.025306528091430663, 0.02534160041809082, 0.0252523193359375, 0.025303327560424804, 0.025395456314086913, 0.02547929573059082, 0.025489280700683594, 0.02540348815917969, 0.025413536071777345, 0.025413631439208984, 0.02534137535095215, 0.027045984268188477, 0.02526223945617676, 0.025290111541748046, 0.025348672866821288, 0.025389440536499025, 0.025466815948486328, 0.025411264419555664, 0.025413536071777345, 0.02561686325073242]",tokens/s,39.84961677266576,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1044.66432,904.855552,0.0,509.607936,491.434496,s,1,7.832982421875,7.832982421875,0.0,7.832982421875,7.832982421875,7.832982421875,7.832982421875,[7.832982421875],,kWh,2.3440985341665054e-05,2.5785837086470675e-06,7.252228023994778e-06,3.32717970743069e-05,,MB,1364.054016,1018.10176,0.0,608.17408,592.24832,s,10,0.19564134216308593,0.019564134216308596,0.0001360158079278712,0.019515311241149903,0.019726105117797852,0.01979231662750244,0.019845285835266114,"[0.01948374366760254, 0.01985852813720703, 0.01954537582397461, 0.019519615173339843, 0.019469696044921873, 0.019433792114257813, 0.019511007308959962, 0.019693599700927735, 0.01971139144897461, 0.01941459274291992]",tokens/s,13085.168869195308,kWh,5.661638348514217e-07,6.243810454996636e-08,3.5134718030232953e-07,9.799491197037176e-07,tokens/kWh,261238052.9280951,MB,1377.755136,1032.781824,0.0,622.854144,605.085696,s,10,10.322046630859376,1.0322046630859376,0.0030857666669471323,1.031349365234375,1.036057580566406,1.0378003967285157,1.0391946496582032,"[1.0313995361328125, 1.0314732666015625, 1.039543212890625, 1.029095947265625, 1.03034423828125, 1.0333880615234374, 1.0356702880859374, 1.0310013427734375, 1.0312991943359375, 1.02883154296875]",tokens/s,61.034407470754516,kWh,2.9547575426814806e-05,3.2583578491944143e-06,1.1555023455897596e-05,4.436095673190681e-05,tokens/kWh,1420167.747524863,,s,630,10.316964745521545,0.016376134516700867,0.00027373448692247595,0.01631972789764404,0.01657235870361328,0.01676669759750366,0.017506927680969238,"[0.01589008045196533, 0.01655571174621582, 0.016296735763549806, 0.016491935729980468, 0.016374048233032228, 0.016637279510498048, 0.016554975509643556, 0.01639423942565918, 0.016363519668579102, 0.016556032180786134, 0.0162938232421875, 0.01633286476135254, 0.016242687225341796, 0.016315616607666016, 0.016407487869262695, 0.01624662399291992, 0.016274656295776367, 0.016319263458251954, 0.016244735717773438, 0.016373760223388673, 0.016338943481445312, 0.016291839599609375, 0.01638387107849121, 0.01637366485595703, 0.01640470314025879, 0.016252927780151367, 0.016507999420166015, 0.016323680877685546, 0.016408479690551758, 0.016320415496826172, 0.01641881561279297, 0.016322208404541017, 0.016439008712768554, 0.016444032669067382, 0.016453632354736326, 0.016314367294311523, 0.01636092758178711, 0.016400800704956055, 0.016386016845703125, 0.01629427146911621, 0.016303903579711915, 0.01630780792236328, 0.016297664642333985, 0.016306655883789063, 0.016320512771606444, 0.01627996826171875, 0.01625657653808594, 0.016433120727539063, 0.016367679595947267, 0.016238847732543946, 0.01624678421020508, 0.01624678421020508, 0.016477279663085938, 0.016282527923583985, 0.01660211181640625, 0.016473087310791015, 0.016373760223388673, 0.0163155517578125, 0.016337696075439452, 0.016558143615722658, 0.01658608055114746, 0.016371488571166992, 0.01631558418273926, 0.01604812812805176, 0.01625075149536133, 0.016340511322021484, 0.01664044761657715, 0.016416927337646485, 0.016283647537231445, 0.016572128295898436, 0.016339231491088867, 0.01641414451599121, 0.016333375930786133, 0.01642518424987793, 0.016690975189208986, 0.016390016555786133, 0.016395488739013673, 0.016222240447998047, 0.016234912872314454, 0.016248319625854494, 0.016312768936157226, 0.01622275161743164, 0.016349184036254884, 0.016513023376464844, 0.016289791107177733, 0.01628329658508301, 0.016264896392822265, 0.016220832824707033, 0.016242687225341796, 0.01626300811767578, 0.016438688278198242, 0.01634377670288086, 0.01638198471069336, 0.016310272216796876, 0.016472095489501952, 0.01649843215942383, 0.01700009536743164, 0.016464448928833007, 0.016457120895385743, 0.016357152938842774, 0.01650281524658203, 0.016400800704956055, 0.016320863723754884, 0.016377344131469726, 0.016329216003417968, 0.016230432510375977, 0.016280895233154298, 0.01630009651184082, 0.01632057571411133, 0.016351808547973634, 0.016259071350097656, 0.016240640640258788, 0.016497888565063477, 0.01622505569458008, 0.016316415786743164, 0.01655129623413086, 0.01645427131652832, 0.016324031829833986, 0.01633951950073242, 0.01627136039733887, 0.016347040176391603, 0.01628988838195801, 0.016404127120971678, 0.016284000396728514, 0.016482080459594727, 0.0163350715637207, 0.01602457618713379, 0.016837631225585938, 0.01623859214782715, 0.01637990379333496, 0.016441503524780274, 0.016617311477661132, 0.016373151779174804, 0.016709503173828126, 0.016227039337158203, 0.016326656341552736, 0.016254655838012694, 0.016330463409423828, 0.01614499282836914, 0.01639958381652832, 0.01623734474182129, 0.016191488265991212, 0.01618943977355957, 0.016175104141235352, 0.01630975914001465, 0.016402944564819336, 0.0162795524597168, 0.017154048919677735, 0.016134143829345703, 0.017587839126586916, 0.016257408142089844, 0.01620732879638672, 0.016146976470947264, 0.01619558334350586, 0.016267263412475585, 0.01652236747741699, 0.016947967529296875, 0.01635545539855957, 0.016216064453125, 0.01618943977355957, 0.016186656951904296, 0.016251615524291992, 0.016574432373046875, 0.016181280136108398, 0.016242111206054687, 0.01633296012878418, 0.016350784301757813, 0.01618627166748047, 0.01646169662475586, 0.01634716796875, 0.016249887466430663, 0.016274431228637695, 0.01694099235534668, 0.017860832214355468, 0.016742240905761718, 0.016536703109741212, 0.01646860885620117, 0.016277631759643554, 0.01640665626525879, 0.016351232528686522, 0.016695295333862305, 0.017180192947387696, 0.01777302360534668, 0.017038976669311524, 0.016998783111572265, 0.016712959289550782, 0.01658470344543457, 0.01649126434326172, 0.016997983932495117, 0.016075679779052734, 0.01642214393615723, 0.016253440856933594, 0.01625894355773926, 0.01627564811706543, 0.01630182456970215, 0.016217920303344728, 0.016203296661376952, 0.016157503128051757, 0.016092992782592772, 0.016193824768066405, 0.0164388484954834, 0.016941215515136717, 0.016179487228393553, 0.016238176345825195, 0.01634739112854004, 0.0167794246673584, 0.016582592010498047, 0.01636070442199707, 0.016284032821655272, 0.01641721534729004, 0.016424959182739257, 0.01640233612060547, 0.016323936462402343, 0.016380672454833985, 0.01658880043029785, 0.016479711532592773, 0.016226783752441406, 0.016345151901245115, 0.016363264083862305, 0.01624892807006836, 0.01633296012878418, 0.016220159530639648, 0.016326528549194336, 0.016232576370239258, 0.016265216827392577, 0.016289535522460936, 0.01620992088317871, 0.016119487762451173, 0.016193376541137696, 0.01623520088195801, 0.016377887725830077, 0.016318464279174806, 0.01638604736328125, 0.016280736923217774, 0.01627440071105957, 0.016353151321411134, 0.016216064453125, 0.016242687225341796, 0.016270751953125, 0.01631702423095703, 0.01628483200073242, 0.016503648757934572, 0.016469856262207032, 0.016246208190917967, 0.0162390079498291, 0.016218431472778322, 0.01627136039733887, 0.016295936584472655, 0.0164138240814209, 0.016575359344482423, 0.016571487426757812, 0.0162224006652832, 0.015857919692993164, 0.01627369689941406, 0.016307296752929686, 0.0163110408782959, 0.01635305595397949, 0.016271743774414062, 0.016253183364868164, 0.016262912750244142, 0.016203647613525392, 0.016303903579711915, 0.016375200271606445, 0.01637606430053711, 0.016388799667358397, 0.01636944007873535, 0.016313568115234375, 0.016256000518798826, 0.016252607345581056, 0.016214111328125, 0.01622345542907715, 0.01620889663696289, 0.016166912078857423, 0.016326656341552736, 0.016154783248901367, 0.016232288360595704, 0.01617919921875, 0.01615667152404785, 0.016347135543823242, 0.01663599967956543, 0.01656412887573242, 0.016348224639892578, 0.01626755142211914, 0.01622697639465332, 0.016316255569458007, 0.01626128005981445, 0.016248832702636717, 0.016269088745117188, 0.016187360763549805, 0.01617945671081543, 0.01634819221496582, 0.01655894470214844, 0.016606592178344728, 0.017510528564453124, 0.016335487365722656, 0.016556032180786134, 0.016702816009521483, 0.016214687347412108, 0.016189407348632813, 0.016252639770507813, 0.016312128067016603, 0.016271871566772463, 0.016887807846069337, 0.016408512115478516, 0.016545055389404296, 0.016268064498901367, 0.016332799911499024, 0.016250879287719726, 0.01618636894226074, 0.01657980728149414, 0.016766239166259765, 0.016314495086669923, 0.01639846420288086, 0.016381343841552733, 0.016244895935058595, 0.018520992279052736, 0.01722947120666504, 0.016412832260131835, 0.016259008407592774, 0.016239999771118164, 0.01622515106201172, 0.01634662437438965, 0.01620774459838867, 0.01629644775390625, 0.016306655883789063, 0.016248096466064454, 0.016199071884155272, 0.016337888717651367, 0.016306175231933593, 0.016447200775146484, 0.016314655303955077, 0.016250879287719726, 0.016244735717773438, 0.016303936004638673, 0.016203968048095704, 0.016262880325317385, 0.016266592025756837, 0.016364479064941408, 0.016258655548095705, 0.01655049514770508, 0.016504287719726562, 0.016623968124389647, 0.01660495948791504, 0.016408159255981446, 0.016162464141845703, 0.01623334312438965, 0.016248672485351563, 0.016337247848510743, 0.016368671417236327, 0.016246816635131837, 0.016353311538696288, 0.016419647216796875, 0.016324607849121094, 0.016305856704711914, 0.016437568664550782, 0.016519168853759765, 0.01631023979187012, 0.016250911712646483, 0.016211360931396485, 0.01629654312133789, 0.01633452796936035, 0.016767072677612304, 0.01632896041870117, 0.016334815979003905, 0.01635327911376953, 0.01632383918762207, 0.01625369644165039, 0.016264863967895508, 0.016615776062011717, 0.01641267204284668, 0.016892032623291017, 0.016344959259033204, 0.01645903968811035, 0.01633875274658203, 0.016511903762817384, 0.01617683219909668, 0.016224479675292967, 0.01620591926574707, 0.0163852481842041, 0.01625894355773926, 0.016591808319091798, 0.016443359375, 0.016144384384155275, 0.01630745506286621, 0.016548608779907225, 0.01622220802307129, 0.016281600952148437, 0.016416959762573242, 0.016254751205444336, 0.01635740852355957, 0.016512960433959962, 0.016254688262939455, 0.016246463775634764, 0.016423583984375, 0.016416671752929688, 0.016226400375366212, 0.016375423431396485, 0.0163056640625, 0.0162938232421875, 0.016248895645141603, 0.01622105598449707, 0.016354400634765624, 0.016357376098632814, 0.016382879257202148, 0.016231712341308595, 0.016202207565307616, 0.01618092727661133, 0.016265024185180665, 0.016388864517211915, 0.016293600082397462, 0.01627779197692871, 0.016590848922729492, 0.016390144348144533, 0.01621196746826172, 0.016416160583496094, 0.016392383575439453, 0.01628816032409668, 0.016332799911499024, 0.016311391830444336, 0.016442144393920898, 0.016467136383056642, 0.016359359741210937, 0.016570783615112303, 0.016382015228271485, 0.016247360229492188, 0.016204992294311524, 0.016526016235351562, 0.016527456283569338, 0.01643929672241211, 0.01626316833496094, 0.016924127578735352, 0.016529951095581055, 0.01961369514465332, 0.017346559524536134, 0.01659459114074707, 0.016368095397949218, 0.016355039596557618, 0.01629404830932617, 0.01638105583190918, 0.016532352447509766, 0.01622220802307129, 0.016263391494750975, 0.016357919692993165, 0.016408575057983397, 0.016643743515014648, 0.016209375381469725, 0.016196479797363283, 0.01621401596069336, 0.016199680328369142, 0.016236543655395508, 0.01635308837890625, 0.01636751937866211, 0.016435232162475586, 0.0163371524810791, 0.016259071350097656, 0.016373760223388673, 0.016330623626708986, 0.016523391723632812, 0.016474111557006836, 0.01640243148803711, 0.016467903137207033, 0.01656972885131836, 0.01637984085083008, 0.016373855590820312, 0.01620240020751953, 0.016184640884399415, 0.01617990493774414, 0.01625212860107422, 0.016125823974609373, 0.016212352752685545, 0.016275999069213867, 0.016324480056762694, 0.0162346248626709, 0.016244735717773438, 0.01637580871582031, 0.016385440826416017, 0.01636751937866211, 0.016353343963623045, 0.01625766372680664, 0.016248863220214845, 0.01627280044555664, 0.01637843132019043, 0.016358400344848634, 0.016325632095336915, 0.01625823974609375, 0.016172096252441405, 0.016190240859985352, 0.016317216873168946, 0.016234111785888673, 0.01633683204650879, 0.0163571834564209, 0.01659782409667969, 0.0164003849029541, 0.016320512771606444, 0.016383392333984375, 0.01626576042175293, 0.016162879943847658, 0.016193119049072266, 0.016302431106567383, 0.01624275207519531, 0.0162729606628418, 0.016296384811401367, 0.01695088005065918, 0.018268928527832032, 0.01609004783630371, 0.016308223724365235, 0.016156063079833985, 0.01612041664123535, 0.01613350486755371, 0.016205759048461915, 0.01619811248779297, 0.016141632080078124, 0.01615555191040039, 0.01615683174133301, 0.016176511764526367, 0.016169439315795897, 0.016236543655395508, 0.016541696548461913, 0.01623619270324707, 0.01618569564819336, 0.01621811294555664, 0.016250656127929686, 0.016176671981811525, 0.01622604751586914, 0.016236959457397462, 0.016587295532226563, 0.016570367813110352, 0.016358816146850585, 0.016244512557983398, 0.016318399429321288, 0.016292192459106444, 0.016290336608886718, 0.0163154239654541, 0.01647305679321289, 0.01642291259765625, 0.016312288284301757, 0.016246816635131837, 0.016232448577880858, 0.016268800735473633, 0.016189952850341797, 0.016320192337036132, 0.017247936248779298, 0.016769664764404297, 0.016990207672119142, 0.016428800582885743, 0.016400224685668947, 0.01636761665344238, 0.016562271118164062, 0.016336223602294923, 0.016427999496459962, 0.016953344345092772, 0.017498111724853514, 0.01648988723754883, 0.016499296188354492, 0.0162093448638916, 0.01622038459777832, 0.01622256088256836, 0.016285696029663087, 0.0162857608795166, 0.016400096893310546, 0.01634867286682129, 0.016214303970336914, 0.016326271057128906, 0.016264320373535156, 0.01639516830444336, 0.01653651237487793, 0.01633059120178223, 0.016312896728515627, 0.016328256607055665, 0.01617910385131836, 0.016161216735839843, 0.016201183319091796, 0.0162289924621582, 0.01623859214782715, 0.016260448455810546, 0.01638262367248535, 0.016347135543823242, 0.016467872619628905, 0.016500255584716798, 0.016267744064331055, 0.01633417510986328, 0.01645792007446289, 0.016740928649902342, 0.016668415069580077, 0.01642288017272949, 0.0163056640625, 0.01615542411804199, 0.01616022491455078, 0.016254720687866212, 0.016337696075439452, 0.01641372871398926, 0.016260032653808595, 0.016267295837402343, 0.016277503967285157, 0.01619126319885254, 0.016209888458251952, 0.01616307258605957, 0.016166208267211914, 0.016222911834716795, 0.016313600540161132, 0.017076128005981444, 0.01637977600097656, 0.01621295928955078, 0.01621196746826172, 0.016236223220825196, 0.016322080612182616, 0.016201663970947265, 0.016188255310058595, 0.016215999603271483, 0.0163656005859375, 0.016230432510375977, 0.01618534469604492, 0.016867136001586912, 0.01631007957458496, 0.016283615112304688, 0.016465599060058594, 0.016384960174560547, 0.016362560272216796, 0.01633353614807129, 0.0162478084564209, 0.016260095596313476, 0.016390144348144533, 0.016504831314086914, 0.016248512268066406, 0.016345407485961912, 0.01637171173095703, 0.01635647964477539, 0.016089984893798828, 0.016295679092407228, 0.016170751571655272]",tokens/s,61.064471532043804,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4967.366656,7338.917888,0.0,6943.670272,6539.1744,s,1,11.2944716796875,11.2944716796875,0.0,11.2944716796875,11.2944716796875,11.2944716796875,11.2944716796875,[11.2944716796875],,kWh,0.00012866641170834327,1.4180290562249682e-05,4.057586579400696e-05,0.0001834225680645999,,MB,5049.356288,7634.61632,0.0,7224.68864,6917.39904,s,10,1.9967895507812499,0.199678955078125,0.0007747060688834615,0.19981849670410157,0.20028613281250002,0.20068047332763672,0.20099594573974608,"[0.19812553405761718, 0.19894613647460938, 0.19987551879882812, 0.19898886108398436, 0.19967721557617188, 0.199761474609375, 0.200023193359375, 0.20019850158691407, 0.20011830139160156, 0.20107481384277343]",tokens/s,1282.05799103786,kWh,5.856164737500043e-06,6.455097372657867e-07,3.867208649319942e-06,1.036888312408577e-05,tokens/kWh,24689255.046702214,MB,5053.059072,7636.713472,0.0,7226.785792,6917.4016,s,10,19.06018884277344,1.9060188842773438,0.010296499028534297,1.9040180053710938,1.9154139160156252,1.922641162109375,1.928422958984375,"[1.929868408203125, 1.9029803466796875, 1.89453857421875, 1.9039404296875, 1.906664306640625, 1.913807861328125, 1.892323974609375, 1.8991402587890625, 1.9040955810546876, 1.9128291015625]",tokens/s,33.05318773055394,kWh,5.549881273124834e-05,6.121207348230365e-06,3.697640735888019e-05,9.859642743835888e-05,tokens/kWh,638968.3849284167,,s,630,19.05779961586,0.03025047558073014,0.00047673951892125124,0.03013876724243164,0.03063316173553467,0.03107121591567993,0.03180391098022461,"[0.03129859161376953, 0.030673088073730467, 0.031146303176879882, 0.03107683181762695, 0.03062326431274414, 0.030982624053955077, 0.030506240844726563, 0.030615903854370116, 0.030566816329956056, 0.030770944595336913, 0.031137439727783205, 0.030509599685668944, 0.030431295394897463, 0.030519296646118164, 0.03037798309326172, 0.03042918395996094, 0.030146080017089842, 0.03040239906311035, 0.03081484794616699, 0.03061759948730469, 0.030752288818359376, 0.030439456939697265, 0.030501312255859375, 0.030496768951416016, 0.030338495254516602, 0.03172614479064941, 0.03254886245727539, 0.031055231094360352, 0.030732927322387697, 0.0305798397064209, 0.03080691146850586, 0.0314202880859375, 0.030592575073242187, 0.030406879425048827, 0.03052783966064453, 0.030463199615478515, 0.030421791076660157, 0.030592063903808593, 0.030530496597290038, 0.030561344146728515, 0.0306426887512207, 0.03071996879577637, 0.031687135696411135, 0.030390272140502928, 0.030363071441650392, 0.03035100746154785, 0.030586944580078126, 0.030501535415649414, 0.030496959686279298, 0.030238399505615233, 0.03043177604675293, 0.0306296329498291, 0.030708959579467773, 0.030554815292358397, 0.03055628776550293, 0.030447616577148437, 0.03038822364807129, 0.030095359802246095, 0.03027519989013672, 0.03030393600463867, 0.030103872299194336, 0.030042112350463866, 0.029989248275756837, 0.0314582405090332, 0.030508384704589844, 0.03055174446105957, 0.03043414306640625, 0.03021536064147949, 0.03033580780029297, 0.030102943420410155, 0.03015331268310547, 0.030193727493286134, 0.030291904449462892, 0.031477407455444334, 0.03134499168395996, 0.03028700828552246, 0.03023548889160156, 0.030345216751098632, 0.03040460777282715, 0.03014067268371582, 0.030095104217529298, 0.029926431655883788, 0.03021308708190918, 0.030006464004516602, 0.030372575759887697, 0.032732513427734374, 0.030339359283447265, 0.030513023376464842, 0.030187328338623046, 0.030294815063476564, 0.030454912185668946, 0.030013952255249023, 0.02992086410522461, 0.029970495223999024, 0.029944543838500978, 0.02987238311767578, 0.030137216567993164, 0.02994166374206543, 0.029778911590576173, 0.02973695945739746, 0.02992313575744629, 0.030015296936035156, 0.030003583908081055, 0.029841535568237303, 0.029795679092407226, 0.029800832748413084, 0.02985795211791992, 0.029811872482299804, 0.02978895950317383, 0.02984457588195801, 0.02999385643005371, 0.03011996841430664, 0.030484575271606446, 0.030021440505981444, 0.030058080673217774, 0.029975103378295898, 0.030066688537597655, 0.030068288803100585, 0.030136159896850586, 0.029958751678466795, 0.029927167892456055, 0.029927200317382812, 0.029923807144165038, 0.03038003158569336, 0.02999465560913086, 0.030079328536987304, 0.03134668731689453, 0.03058073616027832, 0.03002787208557129, 0.029870336532592773, 0.029870880126953124, 0.02986892890930176, 0.02982659149169922, 0.030126560211181642, 0.03019164848327637, 0.030375904083251953, 0.03038934326171875, 0.0300677433013916, 0.030160512924194336, 0.029890815734863282, 0.030056671142578126, 0.02994767951965332, 0.029908992767333983, 0.030062591552734375, 0.030203903198242187, 0.030042335510253905, 0.030232351303100587, 0.029921152114868163, 0.02990662384033203, 0.03006892776489258, 0.030767168045043945, 0.02984940719604492, 0.0299237117767334, 0.030117664337158203, 0.03027292823791504, 0.030085952758789062, 0.030187231063842773, 0.03385782241821289, 0.030023679733276368, 0.02983443260192871, 0.02987273597717285, 0.029943552017211914, 0.030114336013793944, 0.030416831970214844, 0.02996227264404297, 0.029786079406738282, 0.029722335815429688, 0.02996169662475586, 0.02999193572998047, 0.029967327117919922, 0.029780832290649414, 0.02987606430053711, 0.029664640426635743, 0.02976028823852539, 0.02977177619934082, 0.02975334358215332, 0.029771520614624025, 0.030120288848876953, 0.029984031677246094, 0.0298604793548584, 0.02973695945739746, 0.02977382469177246, 0.02976972770690918, 0.030029247283935547, 0.02978054428100586, 0.02981622314453125, 0.02970844841003418, 0.029781919479370117, 0.029979167938232423, 0.03127779197692871, 0.030313440322875976, 0.030029951095581056, 0.029896575927734374, 0.02984934425354004, 0.029720191955566407, 0.02984204864501953, 0.029945375442504883, 0.030240671157836914, 0.030122592926025392, 0.029882144927978516, 0.029956287384033203, 0.029824384689331053, 0.02993404769897461, 0.029838911056518556, 0.030179935455322264, 0.02980611228942871, 0.02988902473449707, 0.029867040634155274, 0.02986899185180664, 0.029949535369873048, 0.03181609535217285, 0.03151615905761719, 0.030721920013427734, 0.030300256729125976, 0.030118431091308594, 0.030154624938964845, 0.029976703643798827, 0.029916608810424804, 0.030039871215820312, 0.030098175048828123, 0.029851648330688478, 0.02980463981628418, 0.029986976623535156, 0.03002956771850586, 0.03019161605834961, 0.029995008468627928, 0.02992153549194336, 0.02994268798828125, 0.030077791213989256, 0.030488576889038086, 0.03014041519165039, 0.030037311553955077, 0.030073055267333983, 0.030243295669555664, 0.03009292793273926, 0.02993814468383789, 0.030149951934814453, 0.031111135482788085, 0.03076995277404785, 0.03083353614807129, 0.030483327865600585, 0.03050931167602539, 0.030560096740722655, 0.03033497619628906, 0.030422304153442385, 0.03006057548522949, 0.030173120498657228, 0.030089984893798827, 0.03158835220336914, 0.030263296127319338, 0.030294015884399415, 0.03035116767883301, 0.030283615112304686, 0.0302127685546875, 0.030044063568115235, 0.029954271316528322, 0.029872127532958984, 0.030061792373657227, 0.030417695999145507, 0.030330368041992187, 0.030175552368164063, 0.030232736587524414, 0.02997865676879883, 0.03003331184387207, 0.030079296112060547, 0.029929344177246093, 0.030191776275634765, 0.0303819522857666, 0.030412767410278322, 0.03064463996887207, 0.030516416549682616, 0.03091244888305664, 0.03106435203552246, 0.030654144287109376, 0.030440128326416016, 0.03063216018676758, 0.03038003158569336, 0.030208000183105467, 0.030146495819091797, 0.030076992034912108, 0.029937664031982423, 0.02993561553955078, 0.02998624038696289, 0.030069311141967772, 0.029997055053710937, 0.03018454360961914, 0.030229408264160155, 0.030243839263916016, 0.030075904846191406, 0.02996156883239746, 0.03003664016723633, 0.029925376892089843, 0.029923295974731444, 0.030095392227172852, 0.030107648849487304, 0.03008892822265625, 0.030141984939575196, 0.030161376953125, 0.030243104934692382, 0.03025222396850586, 0.03034547233581543, 0.03033964729309082, 0.030948736190795897, 0.030835264205932616, 0.030393951416015624, 0.030439327239990235, 0.030407136917114257, 0.03040880012512207, 0.030279680252075194, 0.03032268714904785, 0.03037295913696289, 0.030321535110473634, 0.03030633544921875, 0.03055014419555664, 0.030279552459716797, 0.031188671112060546, 0.030441791534423827, 0.030107135772705077, 0.030621856689453126, 0.03038857650756836, 0.030642175674438478, 0.030537248611450196, 0.031631839752197265, 0.03040460777282715, 0.03137091255187988, 0.03005251121520996, 0.02997228813171387, 0.030007680892944335, 0.03055615997314453, 0.03082057571411133, 0.0305611515045166, 0.030538623809814452, 0.03056630325317383, 0.030550079345703127, 0.030353471755981444, 0.03060940742492676, 0.030556095123291015, 0.030343231201171876, 0.030060415267944337, 0.030159231185913085, 0.030228416442871095, 0.029913087844848633, 0.03017046356201172, 0.030073312759399413, 0.03034316825866699, 0.030430816650390626, 0.03053401565551758, 0.030408544540405272, 0.03039174461364746, 0.030246912002563478, 0.030294015884399415, 0.029952127456665038, 0.029970655441284178, 0.029894880294799805, 0.029890016555786134, 0.029890399932861328, 0.029889408111572265, 0.0299683837890625, 0.030014816284179686, 0.030849472045898437, 0.03034339141845703, 0.03051683235168457, 0.030314048767089843, 0.03025200080871582, 0.030181343078613282, 0.030070688247680662, 0.03010291290283203, 0.0309736328125, 0.030395263671875, 0.03004800033569336, 0.030218559265136717, 0.030455135345458986, 0.03018169593811035, 0.030140127182006836, 0.03191849517822266, 0.03042460823059082, 0.030165119171142576, 0.03045609664916992, 0.03101750373840332, 0.030507232666015623, 0.03056025505065918, 0.03038585662841797, 0.03057695960998535, 0.030148479461669923, 0.030130271911621095, 0.03000476837158203, 0.029847488403320313, 0.029998975753784178, 0.030148479461669923, 0.029969215393066406, 0.02988822364807129, 0.03003343963623047, 0.02985241508483887, 0.030066015243530274, 0.029794975280761717, 0.02985958480834961, 0.029802240371704102, 0.029825056076049804, 0.029839839935302735, 0.02975446319580078, 0.02974812889099121, 0.0297524471282959, 0.029846399307250977, 0.029747200012207032, 0.029717824935913087, 0.02983919906616211, 0.029868896484375, 0.02977996826171875, 0.030078975677490235, 0.030448896408081055, 0.030288576126098633, 0.029879871368408202, 0.02991360092163086, 0.02977177619934082, 0.029781536102294923, 0.030060800552368164, 0.02974332809448242, 0.02977961540222168, 0.02971683120727539, 0.029886463165283202, 0.02974211120605469, 0.03030729675292969, 0.029982336044311525, 0.02989913558959961, 0.029829248428344727, 0.029757312774658203, 0.02993152046203613, 0.030043743133544923, 0.029858207702636717, 0.030466047286987305, 0.030365695953369142, 0.030257152557373046, 0.030093311309814453, 0.030107648849487304, 0.03097599983215332, 0.03033497619628906, 0.03039232063293457, 0.030115840911865234, 0.02995199966430664, 0.030086847305297853, 0.029913408279418945, 0.030811840057373047, 0.030533632278442382, 0.030552831649780274, 0.030233983993530274, 0.030122623443603516, 0.030205215454101562, 0.030100191116333008, 0.03040412712097168, 0.029970912933349608, 0.03018067169189453, 0.029921663284301757, 0.030062816619873048, 0.030090335845947266, 0.03045084762573242, 0.030275423049926756, 0.030496351242065428, 0.030402816772460938, 0.03033103942871094, 0.03009903907775879, 0.030301952362060548, 0.030081695556640625, 0.030116064071655273, 0.030000064849853517, 0.029823423385620117, 0.029866399765014647, 0.029917184829711913, 0.029921279907226563, 0.03038617515563965, 0.030154367446899415, 0.030320608139038085, 0.029987232208251953, 0.030007295608520508, 0.02989206314086914, 0.029903392791748046, 0.03001753616333008, 0.029808000564575197, 0.02987071990966797, 0.0299204158782959, 0.02983612823486328, 0.02981068801879883, 0.03013222312927246, 0.03017932891845703, 0.03006163215637207, 0.03017375946044922, 0.03005404853820801, 0.029890335083007813, 0.02989148712158203, 0.029914655685424806, 0.02988287925720215, 0.029867040634155274, 0.030338016510009766, 0.029924543380737304, 0.03156870460510254, 0.03017728042602539, 0.030584640502929687, 0.03043756866455078, 0.03020595169067383, 0.030066688537597655, 0.03054182434082031, 0.029912128448486328, 0.030067007064819337, 0.0298338565826416, 0.030023679733276368, 0.030578655242919923, 0.030278591156005858, 0.030046207427978516, 0.029929471969604493, 0.0317071361541748, 0.0305248966217041, 0.029912704467773436, 0.03014672088623047, 0.02995916748046875, 0.03166921615600586, 0.029852447509765626, 0.02991321563720703, 0.0305511360168457, 0.030367679595947265, 0.030507871627807617, 0.030484672546386718, 0.031165855407714844, 0.030007711410522463, 0.0299718074798584, 0.029878944396972657, 0.03018137550354004, 0.03014860725402832, 0.029990976333618163, 0.02982700729370117, 0.029738624572753905, 0.03020841598510742, 0.03008665657043457, 0.030452192306518553, 0.03043328094482422, 0.03030624008178711, 0.03030431938171387, 0.030345216751098632, 0.030031871795654298, 0.029886463165283202, 0.02999513626098633, 0.02978332710266113, 0.030052959442138674, 0.029742143630981446, 0.029961151123046877, 0.030121984481811522, 0.030188831329345703, 0.030193471908569337, 0.030485408782958984, 0.030726144790649414, 0.03041663932800293, 0.029877504348754882, 0.02998284721374512, 0.029931711196899413, 0.030446271896362304, 0.029997055053710937, 0.030027584075927736, 0.03006892776489258, 0.030292064666748046, 0.03055779266357422, 0.030587200164794923, 0.030398176193237304, 0.0304597110748291, 0.030101984024047852, 0.03023052787780762, 0.029999359130859375, 0.029894399642944335, 0.030021631240844726, 0.02993152046203613, 0.03174355125427246, 0.030837568283081054, 0.030349311828613282, 0.030137407302856446, 0.030045120239257813, 0.029968671798706055, 0.030154464721679687, 0.030324735641479493, 0.029997055053710937, 0.03034716796875, 0.030263391494750977, 0.03030793571472168, 0.030294240951538084, 0.03177408027648926, 0.03032761573791504, 0.030089151382446288, 0.03006591987609863, 0.030472959518432617, 0.029880096435546875, 0.030283199310302735, 0.029752159118652345, 0.02980454444885254, 0.029884416580200194, 0.03009328079223633, 0.029855775833129882, 0.030046207427978516, 0.029988000869750977, 0.030093631744384765, 0.029975072860717773, 0.030078592300415038, 0.030038335800170898, 0.029921344757080078, 0.03014566421508789, 0.0304169921875, 0.030487039566040038, 0.030277824401855467, 0.030306400299072264, 0.030508287429809572, 0.030558687210083008, 0.033962272644042966, 0.030544992446899413, 0.030407583236694336, 0.03018288040161133, 0.03015292739868164, 0.030736576080322264, 0.030195775985717772, 0.030109888076782228, 0.029957952499389647, 0.029958208084106444, 0.030044160842895507, 0.02999087905883789, 0.030283456802368165, 0.0304268798828125, 0.03010982322692871, 0.02992313575744629, 0.029978624343872072, 0.029932191848754883, 0.02995167922973633, 0.030418495178222656, 0.02991961669921875, 0.03160623931884766, 0.033751617431640624, 0.03011961555480957]",tokens/s,33.057331522979766,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,11136.79872,12227.3792,0.0,11848.9088,11814.752256,s,1,16.58408203125,16.58408203125,0.0,16.58408203125,16.58408203125,16.58408203125,16.58408203125,[16.58408203125],,kWh,0.00027038696720004126,2.9818376568283732e-05,8.865979315003658e-05,0.0003888651369183616,,MB,2071.98208,14033.027072,0.0,13625.196544,13297.870848,s,10,22.904132568359376,2.2904132568359374,0.0012868454753217756,2.2905863037109375,2.2922088623046877,2.292209411621094,2.292209851074219,"[2.292208740234375, 2.2922099609375, 2.29136376953125, 2.291201171875, 2.29030224609375, 2.288611328125, 2.28920458984375, 2.290870361328125, 2.288856201171875, 2.28930419921875]",tokens/s,111.77022279099448,kWh,6.670982737708072e-05,7.357757209983291e-06,4.435417437220202e-05,0.00011842175895926602,tokens/kWh,2161764.8838340365,MB,2079.465472,14335.01696,0.0,13927.186432,13689.870848,s,10,1355.52684375,135.55268437499998,0.057629119548384934,135.5256875,135.6300109375,135.65389609375,135.67300421875,"[135.67778125, 135.624703125, 135.585671875, 135.569046875, 135.532953125, 135.497828125, 135.507578125, 135.518421875, 135.51459375, 135.498265625]",tokens/s,0.4647639424514348,kWh,0.003951603366722094,0.0004358923515490394,0.0026285220194825986,0.0070160177377537325,tokens/kWh,8979.452782878832,,s,630,1355.5206533203132,2.151620084635417,0.0010979530220220387,2.1514691162109374,2.153191381835937,2.1536974487304685,2.15430625,"[2.15374072265625, 2.152707763671875, 2.152853271484375, 2.152304443359375, 2.15255126953125, 2.15317822265625, 2.15230126953125, 2.15374462890625, 2.152818603515625, 2.153167724609375, 2.15337890625, 2.1532265625, 2.153262939453125, 2.153539794921875, 2.153477294921875, 2.152826904296875, 2.15331640625, 2.153724609375, 2.15341259765625, 2.153799560546875, 2.153301513671875, 2.15342529296875, 2.152824951171875, 2.1533818359375, 2.1532939453125, 2.153029052734375, 2.153637939453125, 2.15375732421875, 2.153396240234375, 2.154084228515625, 2.15372607421875, 2.154080322265625, 2.153596923828125, 2.15418798828125, 2.153638671875, 2.153900146484375, 2.15345556640625, 2.1538623046875, 2.1537548828125, 2.153672607421875, 2.15450830078125, 2.153498779296875, 2.15490625, 2.1540546875, 2.154407958984375, 2.154281982421875, 2.153531005859375, 2.1537177734375, 2.153956787109375, 2.15450927734375, 2.153934814453125, 2.15406591796875, 2.15435888671875, 2.1535478515625, 2.154036376953125, 2.1539912109375, 2.1544140625, 2.1534453125, 2.153170166015625, 2.154316162109375, 2.154031494140625, 2.1533955078125, 2.15377197265625, 2.153185302734375, 2.15213427734375, 2.152380126953125, 2.152184326171875, 2.1523232421875, 2.152303955078125, 2.151925537109375, 2.152924072265625, 2.15286083984375, 2.152084228515625, 2.1526240234375, 2.151804931640625, 2.15241943359375, 2.1530869140625, 2.152595458984375, 2.15252392578125, 2.152662841796875, 2.152728759765625, 2.152658935546875, 2.15320361328125, 2.1518603515625, 2.152887451171875, 2.152725341796875, 2.15288427734375, 2.15361767578125, 2.1521552734375, 2.152619873046875, 2.153019287109375, 2.15226171875, 2.1537685546875, 2.152908935546875, 2.152489990234375, 2.152644775390625, 2.15259326171875, 2.152498046875, 2.152840576171875, 2.152521728515625, 2.152732666015625, 2.153362060546875, 2.153743896484375, 2.152993408203125, 2.152506591796875, 2.153020263671875, 2.154104736328125, 2.152980712890625, 2.152964111328125, 2.152489990234375, 2.15295458984375, 2.152462646484375, 2.153101318359375, 2.15288818359375, 2.152739990234375, 2.153175537109375, 2.152466796875, 2.153329833984375, 2.152919921875, 2.152263671875, 2.15319091796875, 2.15310595703125, 2.153195556640625, 2.152091552734375, 2.15292919921875, 2.153471923828125, 2.152052734375, 2.15093359375, 2.151443603515625, 2.151208740234375, 2.151665771484375, 2.15092431640625, 2.151182373046875, 2.151501953125, 2.151745361328125, 2.151505859375, 2.151245849609375, 2.15233251953125, 2.151381103515625, 2.1523515625, 2.1514228515625, 2.151843017578125, 2.15215576171875, 2.15196484375, 2.151256103515625, 2.15206494140625, 2.1517880859375, 2.1520634765625, 2.1513359375, 2.152428466796875, 2.15237939453125, 2.152940673828125, 2.151484375, 2.15225537109375, 2.1527265625, 2.152265625, 2.153132080078125, 2.15225244140625, 2.152393798828125, 2.152676513671875, 2.152208984375, 2.152499267578125, 2.15231884765625, 2.151991455078125, 2.152485107421875, 2.152724365234375, 2.152110107421875, 2.1523330078125, 2.15228466796875, 2.15233544921875, 2.15267919921875, 2.152990966796875, 2.1522646484375, 2.15244921875, 2.152156982421875, 2.153568359375, 2.15230419921875, 2.152249755859375, 2.151930908203125, 2.15242138671875, 2.152317138671875, 2.153120361328125, 2.152474609375, 2.152212646484375, 2.152177001953125, 2.152445556640625, 2.152672119140625, 2.1532548828125, 2.15179052734375, 2.150914794921875, 2.1508173828125, 2.151113037109375, 2.15136474609375, 2.151604248046875, 2.151395263671875, 2.15161767578125, 2.15109716796875, 2.151607421875, 2.150910888671875, 2.15164306640625, 2.151921630859375, 2.15119775390625, 2.151859130859375, 2.1525478515625, 2.1510517578125, 2.15236376953125, 2.151751220703125, 2.151856689453125, 2.15140966796875, 2.1511865234375, 2.153145751953125, 2.151104736328125, 2.151987548828125, 2.15233251953125, 2.1515537109375, 2.150688720703125, 2.150803466796875, 2.15117822265625, 2.152405029296875, 2.152108154296875, 2.151814697265625, 2.1515673828125, 2.15140625, 2.15215478515625, 2.151510009765625, 2.15209521484375, 2.152355712890625, 2.152592041015625, 2.152163330078125, 2.15205859375, 2.15209375, 2.15196484375, 2.152599853515625, 2.151763427734375, 2.151579345703125, 2.152060791015625, 2.15278662109375, 2.1517724609375, 2.153413818359375, 2.151795654296875, 2.152584716796875, 2.152, 2.15275537109375, 2.152795654296875, 2.151948486328125, 2.152388671875, 2.15271533203125, 2.151862060546875, 2.1522646484375, 2.152122314453125, 2.152468505859375, 2.152443359375, 2.15089306640625, 2.150482177734375, 2.15049267578125, 2.15028125, 2.150667236328125, 2.151060546875, 2.15079052734375, 2.15144873046875, 2.150859130859375, 2.1505966796875, 2.15177001953125, 2.15014404296875, 2.151184326171875, 2.1510185546875, 2.1508076171875, 2.151145751953125, 2.15081103515625, 2.1512626953125, 2.150821044921875, 2.1516171875, 2.150609130859375, 2.15122900390625, 2.15109326171875, 2.1516748046875, 2.15079931640625, 2.151235595703125, 2.150504150390625, 2.151947998046875, 2.15126904296875, 2.15168408203125, 2.15206103515625, 2.151129150390625, 2.15129248046875, 2.15198046875, 2.151365478515625, 2.151548583984375, 2.15148291015625, 2.1516533203125, 2.1513544921875, 2.151612548828125, 2.150863525390625, 2.15126123046875, 2.15179052734375, 2.1515458984375, 2.151701904296875, 2.151739990234375, 2.15112109375, 2.15173876953125, 2.151557861328125, 2.1519248046875, 2.1510234375, 2.15153662109375, 2.151571533203125, 2.15143212890625, 2.152637939453125, 2.151794677734375, 2.1523251953125, 2.15185400390625, 2.151250244140625, 2.1512763671875, 2.151165771484375, 2.15204638671875, 2.15148388671875, 2.150702392578125, 2.14983154296875, 2.15018896484375, 2.149712158203125, 2.150517578125, 2.149858154296875, 2.150455322265625, 2.14996484375, 2.149432373046875, 2.150497802734375, 2.149911865234375, 2.150378662109375, 2.14996923828125, 2.150060302734375, 2.14969140625, 2.150126708984375, 2.150521728515625, 2.15058837890625, 2.149822265625, 2.149945556640625, 2.150328369140625, 2.15119677734375, 2.149961669921875, 2.15074609375, 2.15079931640625, 2.15058642578125, 2.150466796875, 2.15084619140625, 2.150916748046875, 2.15092041015625, 2.151034912109375, 2.150868896484375, 2.151144775390625, 2.151258544921875, 2.15111474609375, 2.15045556640625, 2.150823974609375, 2.150533203125, 2.1515546875, 2.1513095703125, 2.151034912109375, 2.15058837890625, 2.15149560546875, 2.151301025390625, 2.150927978515625, 2.151443115234375, 2.15052294921875, 2.15045654296875, 2.15022265625, 2.152161376953125, 2.1504658203125, 2.15101416015625, 2.15065185546875, 2.151403076171875, 2.1523974609375, 2.151395263671875, 2.150956787109375, 2.152105224609375, 2.150964111328125, 2.152171630859375, 2.151329833984375, 2.151540771484375, 2.151630615234375, 2.14989013671875, 2.14916650390625, 2.149771728515625, 2.14993310546875, 2.149523681640625, 2.15041357421875, 2.149125, 2.150731689453125, 2.15006982421875, 2.150005126953125, 2.149689453125, 2.15046728515625, 2.150459228515625, 2.150856689453125, 2.150032958984375, 2.151127197265625, 2.150333251953125, 2.150701171875, 2.14982568359375, 2.150210205078125, 2.15022412109375, 2.1509560546875, 2.15025439453125, 2.151168701171875, 2.15073583984375, 2.15011328125, 2.15008203125, 2.1519951171875, 2.150269775390625, 2.1510556640625, 2.150285400390625, 2.151147216796875, 2.150312255859375, 2.151153564453125, 2.151604248046875, 2.151036865234375, 2.15113330078125, 2.151172119140625, 2.15152978515625, 2.15193408203125, 2.151918212890625, 2.150645751953125, 2.15139111328125, 2.1517958984375, 2.1515087890625, 2.151620849609375, 2.151088134765625, 2.151255126953125, 2.150869873046875, 2.152009765625, 2.151751708984375, 2.151941650390625, 2.15211962890625, 2.152193115234375, 2.15191748046875, 2.151174072265625, 2.151095458984375, 2.15147412109375, 2.1513125, 2.1514921875, 2.152072998046875, 2.152081787109375, 2.151716796875, 2.15088427734375, 2.149719482421875, 2.150300048828125, 2.150454833984375, 2.15006640625, 2.151052734375, 2.149905029296875, 2.15017822265625, 2.1502412109375, 2.15087451171875, 2.15023193359375, 2.15002783203125, 2.150787109375, 2.150412353515625, 2.150989501953125, 2.150674560546875, 2.15045947265625, 2.15073974609375, 2.150287109375, 2.150994140625, 2.151113037109375, 2.15100830078125, 2.15099365234375, 2.150598876953125, 2.151919677734375, 2.151110595703125, 2.150681884765625, 2.15150634765625, 2.15130908203125, 2.1512744140625, 2.152123046875, 2.151403564453125, 2.15124609375, 2.15190087890625, 2.15092626953125, 2.151630126953125, 2.15122412109375, 2.151163818359375, 2.150731201171875, 2.151129150390625, 2.151237548828125, 2.15116259765625, 2.151464111328125, 2.150979248046875, 2.1516767578125, 2.15100830078125, 2.151354248046875, 2.151202880859375, 2.15159716796875, 2.152220703125, 2.151686279296875, 2.1517109375, 2.151391845703125, 2.151088134765625, 2.151636962890625, 2.15196875, 2.151333984375, 2.151794677734375, 2.151206787109375, 2.151443359375, 2.151432373046875, 2.151592529296875, 2.151311279296875, 2.1513984375, 2.150262939453125, 2.1506396484375, 2.149322021484375, 2.15015283203125, 2.150506103515625, 2.149909912109375, 2.15073681640625, 2.150552734375, 2.150275146484375, 2.15019189453125, 2.150582275390625, 2.1506826171875, 2.15127978515625, 2.150322998046875, 2.150883544921875, 2.150467529296875, 2.151138916015625, 2.15074658203125, 2.150599853515625, 2.149941650390625, 2.151123291015625, 2.151288818359375, 2.151434326171875, 2.1514072265625, 2.15140380859375, 2.15039794921875, 2.1509931640625, 2.150472412109375, 2.15136669921875, 2.150916015625, 2.151755859375, 2.15052685546875, 2.150698974609375, 2.151047119140625, 2.150866943359375, 2.15036474609375, 2.150756591796875, 2.1507783203125, 2.1514296875, 2.151457275390625, 2.15137451171875, 2.1515224609375, 2.151106201171875, 2.151357421875, 2.15172509765625, 2.150919189453125, 2.151572509765625, 2.151522216796875, 2.152494140625, 2.15128125, 2.1516044921875, 2.151712646484375, 2.151427978515625, 2.151321044921875, 2.151582275390625, 2.1514423828125, 2.15172412109375, 2.15140625, 2.152030517578125, 2.1506416015625, 2.1513359375, 2.151771484375, 2.150775390625, 2.149087158203125, 2.149661865234375, 2.149651123046875, 2.14935888671875, 2.149644287109375, 2.1498623046875, 2.15006103515625, 2.14955615234375, 2.150403076171875, 2.1497666015625, 2.149818359375, 2.14995556640625, 2.150998291015625, 2.150135986328125, 2.150268310546875, 2.150007080078125, 2.149869873046875, 2.151012451171875, 2.150572021484375, 2.149473876953125, 2.150074462890625, 2.15087353515625, 2.15081884765625, 2.149972900390625, 2.1505576171875, 2.150240234375, 2.15158984375, 2.150319580078125, 2.150472412109375, 2.1510146484375, 2.1510009765625, 2.151279541015625, 2.15128857421875, 2.150300048828125, 2.15108203125, 2.150709228515625, 2.15055322265625, 2.151600341796875, 2.1515654296875, 2.151026611328125, 2.151, 2.151370849609375, 2.151364501953125, 2.1511015625, 2.15116259765625, 2.1517353515625, 2.1517578125, 2.1517373046875, 2.15187451171875, 2.15133349609375, 2.151178466796875, 2.151184326171875, 2.1522880859375, 2.152058349609375, 2.151327880859375, 2.1508779296875, 2.151151611328125, 2.151152587890625, 2.15120166015625, 2.151810791015625, 2.15129736328125, 2.15137255859375]",tokens/s,0.464766064948425,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,6768.418816,7762.542592,0.0,7367.294976,7351.94368,s,1,12.4044169921875,12.4044169921875,0.0,12.4044169921875,12.4044169921875,12.4044169921875,12.4044169921875,[12.4044169921875],,kWh,0.00015872177171666712,1.7501032018332932e-05,5.042504033999848e-05,0.00022664784407499852,,MB,1417.826304,8404.271104,0.0,7994.343424,7863.794176,s,10,2.982906372070313,0.29829063720703125,0.00042369488986336985,0.29844981384277347,0.2986946716308594,0.298739990234375,0.2987762451171875,"[0.29835421752929686, 0.298471435546875, 0.29781222534179685, 0.2973498840332031, 0.2985828857421875, 0.2979638671875, 0.2987853088378906, 0.2984737548828125, 0.29868460083007814, 0.2984281921386719]",tokens/s,858.2233837340357,kWh,8.727604025857624e-06,9.621517366482535e-07,5.779473577823583e-06,1.546922934032946e-05,tokens/kWh,16548982.135301886,MB,1438.72,8676.900864,0.0,8266.973184,8120.408064,s,10,24.584218749999998,2.458421875,0.0029808773235690616,2.459900634765625,2.4606286865234375,2.4616724975585935,2.462507546386719,"[2.452980712890625, 2.454088134765625, 2.455698974609375, 2.45816455078125, 2.460396728515625, 2.45989404296875, 2.4599072265625, 2.460341064453125, 2.460031005859375, 2.46271630859375]",tokens/s,25.626195666681497,kWh,7.195771981330942e-05,7.937285538448352e-06,4.791437493277619e-05,0.00012780938028453392,tokens/kWh,492921.56694404664,,s,630,24.580845401763934,0.03901721492343479,0.000344952758432959,0.03898783874511719,0.0394716007232666,0.03956559257507324,0.03973260978698731,"[0.03861248016357422, 0.03829539108276367, 0.03821443176269531, 0.03829779052734375, 0.03813715362548828, 0.03831273651123047, 0.03855257415771484, 0.03852585601806641, 0.038358047485351564, 0.03833673477172852, 0.03850726318359375, 0.03876169586181641, 0.038717952728271485, 0.03879759979248047, 0.03879935836791992, 0.03861094284057617, 0.03860070419311523, 0.03877068710327149, 0.03867407989501953, 0.03870896148681641, 0.038890113830566404, 0.038834175109863284, 0.038780033111572264, 0.038701313018798825, 0.038986366271972654, 0.0389918098449707, 0.03897932815551758, 0.03889593505859375, 0.0387665901184082, 0.0386448974609375, 0.038695743560791016, 0.03877020645141602, 0.03877289581298828, 0.038809951782226564, 0.038801185607910155, 0.0389073600769043, 0.03910294342041016, 0.03914115142822266, 0.03913356781005859, 0.039319679260253905, 0.03939328002929687, 0.039329792022705076, 0.0392674560546875, 0.039203712463378906, 0.0392086067199707, 0.039346527099609375, 0.03924790573120117, 0.03914070510864258, 0.03931523132324219, 0.03948531341552734, 0.0394024658203125, 0.039255840301513675, 0.03922723388671875, 0.03942643356323242, 0.03933171081542969, 0.03926796722412109, 0.039246337890625, 0.0392171516418457, 0.039272449493408204, 0.03922323226928711, 0.03929884719848633, 0.03952041625976563, 0.03955513763427734, 0.038827072143554686, 0.03851753616333008, 0.03855091094970703, 0.038583072662353515, 0.03852492904663086, 0.03839299011230469, 0.038617759704589846, 0.038627231597900394, 0.038451297760009766, 0.03856150436401367, 0.03861516952514649, 0.03841878509521485, 0.0384532470703125, 0.03838908767700195, 0.03837020874023438, 0.038631168365478516, 0.03880550384521484, 0.03878870391845703, 0.03872604751586914, 0.038714752197265626, 0.03894745635986328, 0.0390041618347168, 0.03880361557006836, 0.03894255828857422, 0.03891404724121094, 0.0388403205871582, 0.0389119987487793, 0.038801406860351564, 0.03885055923461914, 0.03902582550048828, 0.039082817077636715, 0.03902211380004883, 0.03895347213745117, 0.038891166687011716, 0.03887926483154297, 0.03924720001220703, 0.03915673446655273, 0.038903423309326175, 0.03881961441040039, 0.038906143188476565, 0.039137569427490235, 0.03899987030029297, 0.039051456451416014, 0.039292160034179686, 0.03930393600463867, 0.03919257736206055, 0.03913667297363281, 0.03911945724487305, 0.039049217224121094, 0.03936870574951172, 0.03941904067993164, 0.03942627334594727, 0.03941798400878906, 0.039391742706298825, 0.039346176147460936, 0.03925196838378906, 0.03952435302734375, 0.03949318313598633, 0.039307712554931644, 0.03919462585449219, 0.03927859115600586, 0.039299072265625, 0.03924905776977539, 0.038626625061035154, 0.038763198852539066, 0.03858163070678711, 0.03854985427856445, 0.03858233642578125, 0.038663585662841796, 0.03869779205322266, 0.03858169555664062, 0.038343231201171876, 0.03857779312133789, 0.038680320739746095, 0.03871603012084961, 0.03865190505981445, 0.03864371109008789, 0.03881132888793945, 0.03872998428344727, 0.03859462356567383, 0.0385986557006836, 0.03855155181884766, 0.03850649642944336, 0.03859443283081055, 0.038905982971191404, 0.038817790985107424, 0.038778881072998046, 0.038978912353515624, 0.038981441497802735, 0.0388043212890625, 0.038760448455810545, 0.03880755233764648, 0.03896713638305664, 0.038965408325195315, 0.03894668960571289, 0.03908607864379883, 0.03936249542236328, 0.03899571228027344, 0.03882438278198242, 0.038895584106445315, 0.03898076629638672, 0.03914012908935547, 0.03916400146484375, 0.039182464599609376, 0.0390695686340332, 0.0390203857421875, 0.03896950531005859, 0.03929292678833008, 0.03948086547851563, 0.03934163284301758, 0.03939420700073242, 0.03938508987426758, 0.039346176147460936, 0.039354366302490236, 0.039376449584960935, 0.039239425659179684, 0.039158462524414066, 0.03902668762207031, 0.039139102935791016, 0.03956694412231445, 0.03963881683349609, 0.039430335998535154, 0.0395015983581543, 0.03937750244140625, 0.03935043334960937, 0.03955904006958008, 0.03853311920166016, 0.03847577667236328, 0.03842863845825195, 0.03855791854858399, 0.03859151840209961, 0.03849929428100586, 0.03844281768798828, 0.03857619094848633, 0.03845113754272461, 0.038703102111816406, 0.038694911956787106, 0.03857161712646484, 0.0385577278137207, 0.038689216613769534, 0.038739902496337894, 0.03869900894165039, 0.03885465621948242, 0.03862720108032226, 0.038645313262939456, 0.03885113525390625, 0.03873532867431641, 0.038713886260986326, 0.03894796752929688, 0.03891811370849609, 0.03890473556518555, 0.03889152145385742, 0.03890991973876953, 0.03883625411987305, 0.039034881591796876, 0.03887513732910156, 0.03882393646240234, 0.03878092956542969, 0.03893657684326172, 0.039204864501953124, 0.039041023254394534, 0.039051136016845706, 0.03925619125366211, 0.03938051223754883, 0.039223041534423825, 0.03907043075561523, 0.03951001739501953, 0.03932950210571289, 0.03937516784667969, 0.039411582946777345, 0.039241825103759766, 0.03940156936645508, 0.039444385528564455, 0.039241825103759766, 0.03925187301635742, 0.03925763320922852, 0.0390865592956543, 0.03913318252563477, 0.03952230453491211, 0.039354366302490236, 0.03937257766723633, 0.039276737213134766, 0.03941584014892578, 0.039534591674804685, 0.03957356643676758, 0.03943008041381836, 0.039632190704345704, 0.0396479377746582, 0.03960543823242187, 0.039279361724853516, 0.038668449401855466, 0.038520862579345706, 0.03839740753173828, 0.03834726333618164, 0.038634719848632815, 0.0387305908203125, 0.03861004638671875, 0.038561729431152346, 0.03854415893554688, 0.038735904693603516, 0.0391550407409668, 0.03881817626953125, 0.03862563323974609, 0.03878092956542969, 0.039002113342285157, 0.03884236907958984, 0.03881564712524414, 0.03890528106689453, 0.03897529602050781, 0.03894768142700195, 0.03896121597290039, 0.03897235107421875, 0.03884134292602539, 0.03871705627441406, 0.038954910278320314, 0.03894102478027344, 0.038885505676269534, 0.038852222442626955, 0.038873374938964846, 0.0389571533203125, 0.03891167831420898, 0.039134719848632815, 0.039058238983154296, 0.03891814422607422, 0.039099681854248045, 0.03903948974609375, 0.03905110549926758, 0.039325759887695315, 0.03927219009399414, 0.03918700790405273, 0.03935612869262695, 0.03938742446899414, 0.03935356903076172, 0.03924614334106445, 0.0391602897644043, 0.03917168045043945, 0.03911721420288086, 0.03921100616455078, 0.03916595077514649, 0.0393994255065918, 0.0394439697265625, 0.03930777740478516, 0.03929235076904297, 0.03925459289550781, 0.03939123153686523, 0.039462913513183595, 0.039376895904541014, 0.03956531143188476, 0.039702529907226565, 0.03959807968139648, 0.039669761657714846, 0.03957715225219727, 0.03886896133422851, 0.03856921768188477, 0.03834969711303711, 0.03845951843261719, 0.03861830520629883, 0.03855817413330078, 0.03854275131225586, 0.03844112014770508, 0.038855457305908205, 0.03879267120361328, 0.0388265266418457, 0.03873791885375977, 0.03864950561523438, 0.03856118392944336, 0.03865103912353516, 0.03884009552001953, 0.03874816131591797, 0.03859008026123047, 0.038805343627929687, 0.03889539337158203, 0.038808319091796876, 0.03893779373168945, 0.03915449523925781, 0.03909222412109375, 0.038950912475585936, 0.03888742446899414, 0.0389172477722168, 0.03879328155517578, 0.038770561218261716, 0.03885782241821289, 0.03895280075073242, 0.0388485107421875, 0.03905507278442383, 0.03899820709228516, 0.03895036697387695, 0.03907551956176758, 0.039140289306640624, 0.03908198547363281, 0.039139102935791016, 0.039233470916748045, 0.03922358322143555, 0.0392171516418457, 0.03928799819946289, 0.03935702514648438, 0.039321823120117186, 0.03929087829589844, 0.03918745422363281, 0.039330814361572264, 0.039327743530273435, 0.039317089080810545, 0.03942031860351562, 0.03946905517578125, 0.03938889694213867, 0.03929116821289062, 0.03955712127685547, 0.03947510528564453, 0.039497825622558595, 0.03927449417114258, 0.03978035354614258, 0.039702529907226565, 0.03962166213989258, 0.03956582260131836, 0.03964156723022461, 0.0387740478515625, 0.03865468978881836, 0.03848515319824219, 0.0384903678894043, 0.03848259353637695, 0.03833139038085937, 0.03831084823608399, 0.03867238235473633, 0.038963359832763673, 0.03888470458984375, 0.03877529525756836, 0.03855974578857422, 0.03846259307861328, 0.03853612899780273, 0.03865593719482422, 0.03863532638549805, 0.03879539108276367, 0.03892025756835937, 0.038899711608886715, 0.03879935836791992, 0.03883827209472656, 0.03911884689331055, 0.03889583969116211, 0.038849857330322264, 0.03883055877685547, 0.039013504028320316, 0.03883712005615234, 0.038983680725097655, 0.03895296096801758, 0.038829345703125, 0.038793952941894534, 0.03890176010131836, 0.03916799926757813, 0.0391044807434082, 0.03905235290527344, 0.03948992156982422, 0.039219806671142575, 0.03920444869995117, 0.03913532638549805, 0.03897993469238281, 0.039061473846435546, 0.039256065368652344, 0.03911065673828125, 0.03908403015136719, 0.03925571060180664, 0.03928940963745117, 0.03920054244995117, 0.03917737579345703, 0.03952931213378906, 0.039411712646484375, 0.03940505599975586, 0.03939718246459961, 0.03936735916137695, 0.03938304138183594, 0.039396991729736326, 0.039857887268066404, 0.03961718368530273, 0.03955913543701172, 0.039511199951171874, 0.03949606323242188, 0.039352832794189455, 0.03987251281738281, 0.039744895935058595, 0.03879305648803711, 0.038383838653564456, 0.03863929748535156, 0.038570240020751954, 0.03851446533203125, 0.03897366333007812, 0.038870849609375, 0.038674625396728515, 0.03870851135253906, 0.038645633697509764, 0.03857084655761719, 0.038662143707275394, 0.038746208190917966, 0.03861222457885742, 0.038547199249267576, 0.0387694091796875, 0.03891238403320312, 0.03880527877807617, 0.03866419219970703, 0.03882572937011719, 0.03885696029663086, 0.03892351913452148, 0.03892844772338867, 0.03887142562866211, 0.038959423065185544, 0.03874745559692383, 0.03873452758789062, 0.03881369781494141, 0.039008255004882815, 0.03901030349731445, 0.03892428970336914, 0.03927859115600586, 0.039142494201660154, 0.03909856033325195, 0.03904608154296875, 0.03909609603881836, 0.03922681427001953, 0.03950678253173828, 0.039323360443115234, 0.03938508987426758, 0.039090175628662106, 0.03908198547363281, 0.03912499237060547, 0.03924991989135742, 0.03923164749145508, 0.039182079315185546, 0.03915164947509766, 0.03938515090942383, 0.039362560272216796, 0.039479297637939455, 0.039446529388427735, 0.039384735107421874, 0.039368030548095706, 0.03925484848022461, 0.03967830276489258, 0.039626590728759764, 0.03948339080810547, 0.03938620758056641, 0.03933638381958008, 0.03926883316040039, 0.03943971252441406, 0.03948716735839844, 0.03966432189941406, 0.038912448883056644, 0.03842047882080078, 0.03872742462158203, 0.03859072113037109, 0.038569854736328124, 0.03854355239868164, 0.03854713439941406, 0.03867212677001953, 0.03849615859985352, 0.038480480194091796, 0.03863740921020508, 0.03857424163818359, 0.038563838958740236, 0.03868057632446289, 0.03870230484008789, 0.038683425903320315, 0.038965248107910154, 0.038860321044921875, 0.03895548629760742, 0.038983680725097655, 0.03871088027954102, 0.03858451080322266, 0.038713569641113284, 0.03868880081176758, 0.03864476776123047, 0.03899488067626953, 0.03907788848876953, 0.038948863983154294, 0.03892838287353516, 0.03907788848876953, 0.03898931121826172, 0.03939583969116211, 0.039403518676757815, 0.03932364654541016, 0.03915776062011719, 0.039203937530517576, 0.03899417495727539, 0.038847137451171875, 0.038978816986083985, 0.03901708984375, 0.039118785858154294, 0.039233409881591796, 0.03934828948974609, 0.03916825485229492, 0.03950732803344727, 0.0393570556640625, 0.03930316925048828, 0.039634944915771485, 0.03928473663330078, 0.039137279510498044, 0.03946080017089844, 0.039446590423583984, 0.03945209503173828, 0.03939395141601563, 0.039411617279052735, 0.03942399978637695, 0.039577598571777346, 0.039585792541503906, 0.03958169555664062, 0.03951599884033203, 0.03954643249511719, 0.03947148895263672, 0.039472606658935545, 0.038924415588378905, 0.03868239974975586, 0.03857827377319336, 0.038459007263183596, 0.03850243377685547, 0.03862972640991211, 0.03869510269165039, 0.038467391967773434, 0.038682174682617185, 0.03880799865722656, 0.038703102111816406, 0.0388403205871582, 0.03902668762207031, 0.0388485107421875, 0.03883404922485351, 0.038856510162353516, 0.03890950393676758, 0.038855422973632814, 0.03883747100830078, 0.038722335815429686, 0.03912086486816406, 0.03922332763671875, 0.0388935661315918, 0.038982719421386716, 0.0388474235534668, 0.038808895111083985, 0.03883078384399414, 0.038787071228027346, 0.03878297424316406, 0.038973438262939454, 0.03902054214477539, 0.03886899185180664, 0.039419902801513675, 0.039411712646484375, 0.03919257736206055, 0.03927014541625977, 0.03912054443359375, 0.03913584136962891, 0.0389911994934082, 0.03899868774414063, 0.03917391967773438, 0.03915711975097656, 0.03905593490600586, 0.03911231994628906, 0.03919529724121094, 0.03926220703125, 0.03926806259155274, 0.039200958251953126, 0.03953468704223633, 0.0394048957824707, 0.039430816650390624, 0.039419902801513675, 0.039282047271728515, 0.0397973747253418, 0.03960319900512695, 0.03955542373657227, 0.03957827377319336, 0.03954035186767578, 0.03997119903564453, 0.039751201629638674, 0.03964483261108399, 0.03944736099243164, 0.039436286926269534]",tokens/s,25.629712473387563,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,874.1888,655.294464,0.0,260.046848,258.555392,s,1,7.527779296875,7.527779296875,0.0,7.527779296875,7.527779296875,7.527779296875,7.527779296875,[7.527779296875],,kWh,1.5538597287504293e-05,1.7067869787336107e-06,4.514170277997165e-06,2.175955454423507e-05,,MB,1325.068288,751.763456,0.0,341.835776,317.950464,s,18,0.19514825820922851,0.010841569900512694,0.00033796102924892106,0.010710544109344482,0.011126953697204591,0.011620157051086424,0.011872703132629394,"[0.01093945598602295, 0.010771424293518066, 0.011935839653015137, 0.010841279983520509, 0.010702048301696777, 0.010719039916992187, 0.010690400123596192, 0.011564448356628418, 0.010691391944885253, 0.010722208023071288, 0.010649632453918458, 0.010690239906311036, 0.010890432357788086, 0.010601568222045898, 0.010757984161376953, 0.010633760452270508, 0.010651840209960937, 0.010695263862609864]",tokens/s,23612.81644163857,kWh,3.115932021611639e-07,3.4363449575720296e-08,1.607406716969019e-07,5.066973234337861e-07,tokens/kWh,505232587.8991019,MB,1338.540032,779.026432,0.0,369.098752,317.953024,s,18,9.933052001953124,0.5518362223307292,0.003266523007112156,0.5515629272460938,0.5566544311523438,0.5573135284423828,0.5585013287353516,"[0.5587982788085938, 0.5515595703125, 0.5522174682617188, 0.5484296875, 0.5528018798828125, 0.5511383056640625, 0.553289794921875, 0.5540931396484375, 0.5515662841796874, 0.5504417724609375, 0.54669091796875, 0.5496655883789062, 0.5470558471679687, 0.5498707885742188, 0.5484144287109375, 0.5534824829101562, 0.5564842529296875, 0.557051513671875]",tokens/s,114.16430718142045,kWh,1.5852757085558006e-05,1.7481872435484924e-06,5.955272993040292e-06,2.355621732214679e-05,tokens/kWh,2674453.1661613365,,s,1134,9.924552287101738,0.008751809776985668,0.0003252445187168874,0.008687439918518067,0.008831110382080079,0.009003175783157348,0.010744747161865239,"[0.008410528182983398, 0.008704959869384766, 0.00870809555053711, 0.008684736251831054, 0.008617055892944337, 0.008650176048278809, 0.008689951896667481, 0.008640512466430664, 0.008675104141235351, 0.00862611198425293, 0.008635711669921876, 0.008633024215698242, 0.008689727783203125, 0.008628447532653809, 0.008964096069335938, 0.008736767768859864, 0.009592831611633301, 0.009575551986694335, 0.009444255828857422, 0.009559840202331542, 0.011028672218322754, 0.00880025577545166, 0.008738816261291504, 0.008927231788635253, 0.008736576080322266, 0.008711520195007325, 0.008969056129455566, 0.008691072463989258, 0.00872208023071289, 0.00866198444366455, 0.008670880317687988, 0.008667488098144532, 0.008658944129943847, 0.008759296417236329, 0.008751040458679199, 0.008730688095092774, 0.008720383644104004, 0.00875276756286621, 0.008653183937072755, 0.008721823692321778, 0.008669792175292968, 0.008647999763488769, 0.008652928352355958, 0.008636992454528808, 0.008693663597106934, 0.008814208030700684, 0.009508831977844238, 0.011827199935913087, 0.008761119842529298, 0.008714976310729981, 0.008761216163635253, 0.008652704238891602, 0.008713855743408203, 0.008681599617004394, 0.008720864295959472, 0.008720383644104004, 0.008732319831848145, 0.008982848167419434, 0.008707584381103516, 0.008663328170776367, 0.008683775901794434, 0.00870809555053711, 0.008721792221069335, 0.008603039741516114, 0.008776000022888183, 0.008753439903259278, 0.008742719650268556, 0.008751296043395996, 0.008822943687438965, 0.008744799613952636, 0.008659999847412109, 0.008684543609619141, 0.008664352416992187, 0.008722111701965332, 0.008749600410461425, 0.008677151679992676, 0.00866096019744873, 0.008661151885986328, 0.008780351638793945, 0.008807999610900879, 0.008706496238708497, 0.008681471824645997, 0.00897439956665039, 0.008707136154174804, 0.008711039543151855, 0.0087193603515625, 0.008627200126647949, 0.0086746244430542, 0.00867807960510254, 0.008650752067565918, 0.008802304267883301, 0.008678624153137207, 0.008741472244262695, 0.008755295753479005, 0.008710240364074707, 0.00868070411682129, 0.008758015632629394, 0.008734463691711426, 0.008681728363037109, 0.008689663887023925, 0.008668224334716796, 0.008659296035766602, 0.009030240058898926, 0.008706048011779785, 0.008669183731079102, 0.00881868839263916, 0.008722432136535644, 0.008806400299072266, 0.009395456314086914, 0.009048447608947754, 0.008855936050415038, 0.00883683204650879, 0.0087042875289917, 0.008748224258422851, 0.00862451171875, 0.008656543731689453, 0.008732895851135253, 0.009234047889709473, 0.008680383682250976, 0.008744959831237792, 0.008643744468688964, 0.008688159942626953, 0.008644895553588867, 0.008675104141235351, 0.00866329574584961, 0.008769536018371582, 0.008550463676452636, 0.0087259521484375, 0.008737536430358886, 0.00868729591369629, 0.008735199928283692, 0.008725631713867187, 0.00874790382385254, 0.008679424285888672, 0.008654656410217286, 0.008818880081176757, 0.00866006374359131, 0.008743840217590332, 0.008634367942810058, 0.008631744384765626, 0.008622655868530274, 0.008643903732299806, 0.008633024215698242, 0.00865875244140625, 0.008769248008728027, 0.008633983612060548, 0.008735584259033204, 0.008654848098754882, 0.008644288063049316, 0.008679327964782714, 0.008689760208129883, 0.00866540813446045, 0.008644576072692872, 0.008615967750549316, 0.008599552154541015, 0.008660991668701172, 0.008806400299072266, 0.008935423851013183, 0.00873846435546875, 0.008763744354248046, 0.008689663887023925, 0.008898048400878907, 0.011575776100158692, 0.009235712051391601, 0.008720319747924804, 0.008779871940612792, 0.008719103813171387, 0.00871833610534668, 0.008669183731079102, 0.008771391868591308, 0.008683327674865723, 0.008687999725341797, 0.00871628761291504, 0.008673279762268067, 0.00864787197113037, 0.008708928108215332, 0.008816160202026368, 0.008691455841064453, 0.008749792098999024, 0.008720383644104004, 0.008758463859558106, 0.008842047691345214, 0.00873862361907959, 0.008675519943237304, 0.00870809555053711, 0.008660191535949708, 0.008661791801452637, 0.008638463973999023, 0.008660991668701172, 0.008565664291381836, 0.008704000473022461, 0.008828927993774414, 0.008704000473022461, 0.008669183731079102, 0.008689663887023925, 0.00862822437286377, 0.008651935577392578, 0.008610655784606933, 0.00861184024810791, 0.008667136192321777, 0.008665087699890137, 0.008624032020568847, 0.009020768165588378, 0.008626912117004394, 0.008637855529785157, 0.008649344444274903, 0.00866703987121582, 0.008617343902587891, 0.008707839965820313, 0.008645600318908691, 0.00859340763092041, 0.008667136192321777, 0.0086179838180542, 0.008751104354858399, 0.008948927879333496, 0.008657183647155762, 0.008600064277648926, 0.008654208183288574, 0.008611680030822754, 0.008667807579040527, 0.009181344032287597, 0.008695808410644532, 0.008624128341674805, 0.008713536262512207, 0.008602304458618164, 0.008790016174316406, 0.008629792213439942, 0.008622079849243165, 0.00868556785583496, 0.008618080139160156, 0.00862451171875, 0.008685407638549804, 0.008612000465393066, 0.008639616012573242, 0.009003487586975098, 0.008678848266601563, 0.008655360221862793, 0.008827360153198242, 0.008787967681884766, 0.008769472122192383, 0.008738880157470702, 0.00872652816772461, 0.008728063583374024, 0.008671008110046386, 0.008665823936462402, 0.008615712165832519, 0.008705792427062988, 0.008679840087890625, 0.008978495597839356, 0.008747008323669434, 0.008638463973999023, 0.008663040161132812, 0.008397439956665038, 0.008652223587036132, 0.008642175674438476, 0.008737728118896485, 0.008840895652770997, 0.008790335655212402, 0.008671232223510742, 0.008790016174316406, 0.008761343955993652, 0.008689663887023925, 0.008712191581726075, 0.008720383644104004, 0.008705471992492676, 0.008665663719177246, 0.008683135986328125, 0.00864089584350586, 0.008667136192321777, 0.00870736026763916, 0.008677568435668945, 0.008574624061584473, 0.008674176216125488, 0.00862822437286377, 0.008619039535522462, 0.008809408187866212, 0.008736800193786622, 0.01102569580078125, 0.010760640144348145, 0.008789567947387696, 0.008778464317321778, 0.008930399894714355, 0.008815520286560059, 0.008742752075195313, 0.008671392440795898, 0.008683520317077637, 0.008675328254699707, 0.008665087699890137, 0.008744959831237792, 0.008674752235412598, 0.008605631828308105, 0.008612480163574219, 0.008664896011352539, 0.008831168174743652, 0.008818271636962891, 0.008817055702209472, 0.008714271545410155, 0.008603615760803223, 0.008769184112548829, 0.00867363166809082, 0.008631584167480468, 0.00862822437286377, 0.00868230438232422, 0.008705183982849122, 0.008835935592651367, 0.008695743560791015, 0.008617024421691894, 0.008717344284057618, 0.00865398406982422, 0.008665184020996093, 0.008648736000061035, 0.008692064285278321, 0.008620287895202637, 0.008664511680603027, 0.008626751899719239, 0.008533856391906739, 0.008638015747070312, 0.008674912452697754, 0.008698240280151367, 0.008710783958435058, 0.008754688262939453, 0.008650495529174804, 0.008651424407958984, 0.008674400329589844, 0.008764191627502442, 0.00882096004486084, 0.008935327529907227, 0.008781696319580078, 0.008741087913513183, 0.008830975532531739, 0.008703488349914551, 0.008729087829589843, 0.009273344039916993, 0.008756832122802734, 0.008765503883361817, 0.008792415618896484, 0.008676863670349122, 0.008695679664611817, 0.008716927528381348, 0.008768511772155761, 0.008690624237060547, 0.008673343658447265, 0.008630240440368652, 0.00865283203125, 0.008632320404052735, 0.008695808410644532, 0.008648192405700684, 0.008686016082763672, 0.008575039863586426, 0.008695167541503906, 0.008757887840270996, 0.008674304008483886, 0.008653504371643066, 0.008685888290405274, 0.008690752029418946, 0.008649503707885742, 0.008673439979553223, 0.008726304054260253, 0.008624064445495605, 0.008642848014831544, 0.008670623779296876, 0.008614208221435547, 0.008548640251159667, 0.008630271911621093, 0.008667136192321777, 0.008632320404052735, 0.008833024024963379, 0.00970751953125, 0.009828351974487304, 0.008673279762268067, 0.008683520317077637, 0.008853504180908203, 0.008689663887023925, 0.008625247955322265, 0.008612768173217773, 0.008864895820617676, 0.008700192451477051, 0.00872822380065918, 0.00843558406829834, 0.00876966381072998, 0.008711615562438964, 0.008778112411499023, 0.00866323184967041, 0.008644319534301758, 0.008671520233154296, 0.008712191581726075, 0.00875046443939209, 0.008737279891967773, 0.008740991592407226, 0.008642560005187988, 0.008883584022521972, 0.008657535552978516, 0.009713120460510254, 0.01159222412109375, 0.008740863800048827, 0.008828031539916991, 0.008681471824645997, 0.008671839714050293, 0.008648799896240235, 0.008616127967834473, 0.0086179838180542, 0.00862992000579834, 0.008675040245056153, 0.008642880439758301, 0.00864083194732666, 0.00872447967529297, 0.008638463973999023, 0.0086179838180542, 0.008792032241821289, 0.008695263862609864, 0.008682047843933106, 0.008812543869018554, 0.008713727951049804, 0.008790528297424317, 0.008861696243286133, 0.008673279762268067, 0.00872447967529297, 0.00869705581665039, 0.008729375839233399, 0.008880127906799316, 0.008801440238952636, 0.008843520164489745, 0.008741472244262695, 0.00870576000213623, 0.008701408386230469, 0.008698687553405762, 0.008750176429748536, 0.008725055694580078, 0.008718272209167481, 0.008749471664428712, 0.00867251205444336, 0.00867199993133545, 0.008785920143127441, 0.008736800193786622, 0.008709407806396485, 0.008743616104125976, 0.008771583557128907, 0.008642560005187988, 0.008769536018371582, 0.008673279762268067, 0.008681023597717285, 0.010270719528198241, 0.009801280021667481, 0.00894159984588623, 0.009328767776489258, 0.009259296417236327, 0.009842687606811524, 0.00870809555053711, 0.008674719810485839, 0.008651359558105469, 0.00873193645477295, 0.008659680366516114, 0.008605600357055664, 0.008627296447753906, 0.008645631790161134, 0.008630271911621093, 0.008709247589111329, 0.008729472160339355, 0.008665087699890137, 0.008634048461914063, 0.00877952003479004, 0.008706591606140136, 0.009287712097167968, 0.009011199951171875, 0.00874015998840332, 0.00876204776763916, 0.008787967681884766, 0.008761119842529298, 0.00899443244934082, 0.008749664306640625, 0.008787487983703613, 0.008800736427307129, 0.008746272087097167, 0.008686304092407227, 0.008697855949401855, 0.008656895637512207, 0.008615936279296875, 0.00868556785583496, 0.008632320404052735, 0.008607487678527832, 0.00863644790649414, 0.008652159690856934, 0.008606559753417968, 0.008754816055297852, 0.008777536392211915, 0.008606271743774414, 0.008578463554382324, 0.008637056350708008, 0.008666080474853516, 0.008706336021423339, 0.008714847564697266, 0.00879967975616455, 0.008630975723266602, 0.008677375793457032, 0.008650752067565918, 0.008664959907531739, 0.008693920135498048, 0.00864019203186035, 0.008632608413696289, 0.008606752395629884, 0.008647647857666016, 0.008699263572692871, 0.008661631584167481, 0.008683520317077637, 0.00841932773590088, 0.008814304351806641, 0.008677663803100586, 0.010979328155517578, 0.010343808174133301, 0.008735072135925294, 0.008696096420288086, 0.008650752067565918, 0.008642560005187988, 0.00874015998840332, 0.008747072219848632, 0.008690303802490234, 0.008742912292480469, 0.00868556785583496, 0.008699040412902832, 0.008700063705444336, 0.008761055946350097, 0.008682463645935059, 0.008622079849243165, 0.008750176429748536, 0.008753151893615722, 0.008840096473693848, 0.008642560005187988, 0.008627936363220215, 0.00863599967956543, 0.008628928184509277, 0.00868556785583496, 0.008728096008300781, 0.008712672233581542, 0.008621184349060059, 0.00864083194732666, 0.008614463806152344, 0.008633440017700195, 0.00868006420135498, 0.008664480209350586, 0.008571776390075683, 0.008707327842712402, 0.008563296318054199, 0.008601632118225098, 0.00867136001586914, 0.008671232223510742, 0.00865449619293213, 0.008650912284851073, 0.00875334358215332, 0.008632320404052735, 0.008783871650695801, 0.00859545612335205, 0.008641632080078124, 0.008704416275024414, 0.008650655746459962, 0.008643168449401856, 0.00862822437286377, 0.008912896156311035, 0.008679424285888672, 0.00876527976989746, 0.008773823738098145, 0.008632287979125977, 0.008690752029418946, 0.008723391532897948, 0.008695808410644532, 0.008736127853393555, 0.008713919639587403, 0.008749695777893066, 0.008411007881164551, 0.008696031570434571, 0.0087575044631958, 0.008655263900756835, 0.008660927772521972, 0.008734527587890626, 0.008867391586303711, 0.00866374397277832, 0.008768959999084473, 0.008673855781555176, 0.008654848098754882, 0.008667136192321777, 0.008756640434265137, 0.008655232429504394, 0.00863366413116455, 0.008663968086242676, 0.008623456001281738, 0.008589983940124512, 0.00869375991821289, 0.008652799606323243, 0.008664287567138673, 0.008610400199890136, 0.008710335731506348, 0.00860159969329834, 0.008632320404052735, 0.008757247924804687, 0.008589311599731446, 0.00861184024810791, 0.008615263938903809, 0.008665568351745605, 0.008620223999023437, 0.008681471824645997, 0.008613887786865235, 0.008584544181823731, 0.00857699203491211, 0.008616640090942382, 0.008652416229248047, 0.00883743953704834, 0.008807488441467285, 0.008690688133239746, 0.008635456085205079, 0.008638912200927735, 0.008657407760620118, 0.008679264068603516, 0.008670432090759277, 0.00861075210571289, 0.008654303550720215, 0.008634911537170411, 0.008777376174926757, 0.008652735710144042, 0.008659135818481446, 0.008630496025085449, 0.008656895637512207, 0.008615936279296875, 0.008615936279296875, 0.008851455688476563, 0.008662079811096192, 0.009878463745117187, 0.01113049602508545, 0.008735103607177734, 0.008691712379455567, 0.008763392448425293, 0.0088570556640625, 0.008449728012084962, 0.008680031776428223, 0.008659104347229003, 0.008761343955993652, 0.008624128341674805, 0.008693216323852539, 0.00864691162109375, 0.008702239990234374, 0.008636320114135742, 0.008605792045593261, 0.00861184024810791, 0.008644543647766113, 0.008675392150878907, 0.008627679824829102, 0.008607423782348633, 0.008632224082946777, 0.00862713623046875, 0.008622079849243165, 0.008675328254699707, 0.008704000473022461, 0.008681471824645997, 0.008693120002746583, 0.008691935539245606, 0.008747424125671387, 0.008642080307006837, 0.008626655578613281, 0.00862169647216797, 0.008589471817016602, 0.008646880149841309, 0.008656160354614258, 0.008849696159362793, 0.008720831871032715, 0.008780960083007813, 0.008737536430358886, 0.00868553638458252, 0.008715935707092285, 0.008636223793029784, 0.00862070369720459, 0.008605695724487305, 0.008773632049560547, 0.008623871803283691, 0.008808064460754394, 0.008734527587890626, 0.008600383758544923, 0.00858726406097412, 0.00858460807800293, 0.008611455917358398, 0.008698847770690918, 0.008583168029785156, 0.008640512466430664, 0.00860700798034668, 0.008727264404296876, 0.008644607543945313, 0.008704000473022461, 0.00865884780883789, 0.00860153579711914, 0.008702112197875976, 0.008603520393371582, 0.008685695648193359, 0.00920576000213623, 0.008722432136535644, 0.008672896385192872, 0.00862451171875, 0.008382752418518066, 0.008638463973999023, 0.008623295783996583, 0.008736831665039062, 0.008596192359924317, 0.008610943794250488, 0.008597439765930175, 0.008637408256530761, 0.00869375991821289, 0.008719807624816894, 0.0086943359375, 0.008623935699462891, 0.008638655662536621, 0.008589311599731446, 0.0086179838180542, 0.008730624198913574, 0.008774687767028808, 0.008655839920043946, 0.008588895797729493, 0.008612256050109863, 0.008707712173461914, 0.008665375709533692, 0.008648863792419434, 0.008664640426635742, 0.008595840454101562, 0.008744192123413087, 0.00865328025817871, 0.008691360473632812, 0.008677727699279785, 0.008642848014831544, 0.008642560005187988, 0.008652192115783691, 0.00862224006652832, 0.008630208015441895, 0.00870246410369873, 0.008730624198913574, 0.008658944129943847, 0.008677375793457032, 0.008634367942810058, 0.008652799606323243, 0.008644607543945313, 0.0086364164352417, 0.008589311599731446, 0.00860364818572998, 0.008574624061584473, 0.008721920013427734, 0.008711008071899414, 0.009003007888793945, 0.011773632049560548, 0.009081151962280274, 0.008738816261291504, 0.00871833610534668, 0.008773632049560547, 0.008656895637512207, 0.00870809555053711, 0.008646464347839356, 0.008622271537780762, 0.0086113920211792, 0.008751551628112792, 0.008674719810485839, 0.008615839958190917, 0.008643263816833497, 0.008642560005187988, 0.008503199577331543, 0.0086757755279541, 0.008736736297607422, 0.008742400169372559, 0.008670975685119629, 0.008659744262695312, 0.008597215652465821, 0.00859945583343506, 0.008679807662963867, 0.008656895637512207, 0.00862822437286377, 0.00859340763092041, 0.008617376327514649, 0.008704607963562011, 0.008646559715270997, 0.00862217617034912, 0.008809696197509766, 0.008631072044372558, 0.008705408096313476, 0.008639039993286133, 0.00879526424407959, 0.008641471862792969, 0.008615936279296875, 0.008599552154541015, 0.008652000427246094, 0.008846112251281738, 0.008671232223510742, 0.008662176132202149, 0.008737567901611329, 0.008667200088500977, 0.008601471900939942, 0.008627679824829102, 0.008735391616821289, 0.008703807830810546, 0.008707839965820313, 0.008609439849853516, 0.00860649585723877, 0.00862003231048584, 0.0087326717376709, 0.008719455718994141, 0.008618047714233398, 0.00859222412109375, 0.008697855949401855, 0.008984576225280762, 0.00892518424987793, 0.008756511688232422, 0.008690400123596191, 0.008691712379455567, 0.008650752067565918, 0.008696895599365234, 0.00866812801361084, 0.008687583923339844, 0.008624128341674805, 0.008594911575317382, 0.008610336303710938, 0.008704000473022461, 0.008646656036376953, 0.008687616348266602, 0.008796159744262694, 0.00862822437286377, 0.00862822437286377, 0.008663040161132812, 0.008687616348266602, 0.008454815864562988, 0.008647999763488769, 0.008633024215698242, 0.008710080146789551, 0.008990176200866699, 0.008708703994750976, 0.008658944129943847, 0.008650752067565918, 0.008667136192321777, 0.008613887786865235, 0.008677056312561035, 0.008811840057373047, 0.008704319953918457, 0.008647359848022462, 0.008684736251831054, 0.00860857582092285, 0.008630271911621093, 0.008691712379455567, 0.008626175880432128, 0.008646656036376953, 0.008621408462524413, 0.008704671859741211, 0.008607744216918945, 0.008650752067565918, 0.008568832397460938, 0.008617247581481934, 0.008638976097106933, 0.008628447532653809, 0.008625568389892578, 0.008790623664855958, 0.008703743934631348, 0.008652031898498535, 0.008619008064270019, 0.00862822437286377, 0.008605695724487305, 0.00880844783782959, 0.00873408031463623, 0.009247360229492187, 0.01175551986694336, 0.00871833610534668, 0.008676639556884766, 0.008720607757568359, 0.008816448211669922, 0.008676032066345214, 0.008666303634643555, 0.008677375793457032, 0.008616415977478028, 0.008640864372253417, 0.008650752067565918, 0.008699904441833496, 0.008617856025695802, 0.008619296073913573, 0.008586079597473144, 0.00859340763092041, 0.008665087699890137, 0.008644415855407714, 0.008577216148376464, 0.00867024040222168, 0.008614879608154297, 0.00861184024810791, 0.008673215866088867, 0.008640576362609863, 0.008671232223510742, 0.008470080375671386, 0.008636704444885254, 0.008687968254089356, 0.008746944427490234, 0.008859744071960449, 0.008699904441833496, 0.008654656410217286, 0.008679167747497558, 0.008657343864440918, 0.008650239944458007, 0.008769472122192383, 0.008663616180419921, 0.008671232223510742, 0.008671232223510742, 0.008871392250061035, 0.008736448287963867, 0.008815456390380859, 0.008710080146789551, 0.008691776275634765, 0.0087010555267334, 0.008713088035583495, 0.008734463691711426, 0.008802559852600098, 0.008632320404052735, 0.00863593578338623, 0.008663519859313965, 0.008679424285888672, 0.008749055862426757, 0.008761343955993652, 0.008701184272766112, 0.00866585636138916, 0.008910847663879394, 0.00894976043701172, 0.008689663887023925, 0.008654560089111328, 0.008634592056274414, 0.008624159812927246, 0.008678879737854004, 0.008708383560180664, 0.008648991584777832, 0.00863599967956543, 0.008706463813781738, 0.008632320404052735, 0.008589311599731446, 0.008699904441833496, 0.008708064079284667, 0.008642592430114747, 0.008656895637512207, 0.008671232223510742, 0.008714271545410155, 0.008695743560791015, 0.008687647819519043, 0.008675328254699707, 0.0086364164352417, 0.008642560005187988, 0.008734720230102539, 0.008701312065124511, 0.008671808242797851, 0.008814111709594726, 0.008612159729003907, 0.008685215950012207, 0.00868000030517578, 0.008767168045043945, 0.008486911773681641, 0.008734720230102539, 0.008697855949401855, 0.008671232223510742, 0.008712191581726075, 0.008683520317077637, 0.008691712379455567, 0.008740863800048827, 0.008697855949401855, 0.008609248161315917, 0.008624575614929198, 0.008648799896240235, 0.00867091178894043, 0.008681247711181641, 0.00871887969970703, 0.008678976058959962, 0.00868396759033203, 0.008660991668701172, 0.008683520317077637, 0.008677375793457032, 0.008599552154541015, 0.008650015830993653, 0.00872713565826416, 0.008636544227600098, 0.008687616348266602, 0.008894463539123536, 0.008759103775024413, 0.011014335632324219, 0.010712479591369629, 0.00892579174041748, 0.00880947208404541, 0.008778752326965332, 0.00872447967529297, 0.00881385612487793, 0.008746815681457519, 0.00880732822418213, 0.008701151847839355, 0.008760095596313477, 0.008646656036376953, 0.008860735893249512, 0.008731583595275878, 0.008686911582946778, 0.008716992378234863, 0.008671232223510742, 0.008773632049560547, 0.0086909761428833, 0.008729056358337402, 0.008681728363037109, 0.00860159969329834, 0.00861184024810791, 0.008695808410644532, 0.008656703948974609, 0.0086179838180542, 0.008674783706665039, 0.00883785629272461, 0.008736063957214355, 0.008782336235046387, 0.008732864379882813, 0.00872985553741455, 0.008659711837768555, 0.00864031982421875, 0.008696000099182128, 0.008947263717651368, 0.008737279891967773, 0.008682911872863769, 0.00872447967529297, 0.008794719696044923, 0.00875887966156006, 0.008790431976318359, 0.008749055862426757, 0.008740511894226075, 0.008720735549926757, 0.008761343955993652, 0.008790016174316406, 0.008675040245056153, 0.008740192413330078, 0.00864352035522461, 0.008796159744262694, 0.00902143955230713, 0.008756704330444336, 0.008933759689331055, 0.008790176391601562, 0.00872652816772461, 0.008760319709777833, 0.008749343872070313, 0.008766176223754883, 0.008802304267883301, 0.008734720230102539, 0.008728575706481934, 0.008767264366149902, 0.008699295997619629, 0.008694592475891114, 0.008704000473022461, 0.008828927993774414, 0.008826272010803222, 0.00871894359588623, 0.00871014404296875, 0.008706111907958985, 0.008672991752624511, 0.008695903778076173, 0.008667263984680176, 0.008650431632995606, 0.008624064445495605, 0.008670944213867188, 0.008757951736450196, 0.008764639854431152, 0.00867199993133545, 0.008796159744262694, 0.008857600212097168, 0.008812543869018554, 0.009191424369812011, 0.00911081600189209, 0.008905376434326172, 0.008755264282226562, 0.008748736381530762, 0.00868937587738037, 0.008684127807617188, 0.008732192039489746, 0.009120223999023437, 0.009965567588806153, 0.010010623931884765, 0.009639936447143555, 0.008843263626098634, 0.008804351806640624, 0.008798208236694336, 0.008799296379089355, 0.00840176010131836, 0.00872652816772461, 0.008724448204040527, 0.008697376251220704, 0.009023008346557617, 0.008861727714538574, 0.00891744041442871, 0.009011712074279785, 0.008828191757202149, 0.009063136100769044, 0.009390080451965332, 0.009346816062927246, 0.009027839660644531, 0.00900879955291748, 0.008747008323669434, 0.009939295768737793, 0.011491328239440919, 0.008796159744262694, 0.008741888046264648, 0.00872755241394043, 0.00872447967529297, 0.008707615852355957, 0.00872492790222168, 0.0089334077835083, 0.008904576301574707, 0.008796256065368652, 0.008849120140075684, 0.008710463523864747, 0.008712191581726075, 0.008753151893615722, 0.008689663887023925, 0.008654848098754882, 0.00866220760345459, 0.00862825584411621, 0.008644960403442382, 0.00869215965270996, 0.008695136070251465, 0.008651424407958984, 0.008711872100830078, 0.008675583839416504, 0.008720447540283203, 0.008744864463806153, 0.008689760208129883, 0.008732288360595704, 0.008655232429504394, 0.008621760368347168, 0.008691455841064453, 0.008790047645568847, 0.008641056060791016, 0.008828927993774414, 0.008756511688232422, 0.008960448265075683, 0.008759455680847168, 0.008785375595092773, 0.008706720352172851, 0.008685407638549804, 0.008671392440795898, 0.008758848190307617, 0.008673376083374023, 0.008640864372253417, 0.008658623695373536, 0.008722399711608887, 0.008636575698852539]",tokens/s,114.26208127028372,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,8219.242496,11243.814912,0.0,10848.567296,10616.027648,s,1,14.3545263671875,14.3545263671875,0.0,14.3545263671875,14.3545263671875,14.3545263671875,14.3545263671875,[14.3545263671875],,kWh,0.0002154615354791531,2.3759469206828034e-05,6.835061023599542e-05,0.00030757161492197654,,MB,3966.40256,11665.342464,0.0,11255.414784,11070.470656,s,10,3.729839172363282,0.3729839172363281,0.0009508679458567862,0.3731391906738281,0.3740673522949219,0.3741419219970703,0.37420157775878904,"[0.37110870361328124, 0.37287899780273437, 0.37146514892578125, 0.37303924560546875, 0.3732391357421875, 0.37294482421875, 0.3742164916992187, 0.37360546875, 0.37329037475585936, 0.37405078125]",tokens/s,686.3566716143276,kWh,1.0907724441358089e-05,1.2028850010034015e-06,7.236518134889388e-06,1.9347127577250877e-05,tokens/kWh,13231938.38350531,MB,3970.727936,11667.439616,0.0,11257.511936,11070.473216,s,10,28.761244873046877,2.876124487304687,0.005087828976131349,2.875763671875,2.882142236328125,2.8829097412109377,2.8835237451171873,"[2.86629638671875, 2.871433349609375, 2.873718994140625, 2.872728271484375, 2.87521826171875, 2.87630908203125, 2.879038330078125, 2.880853271484375, 2.8819716796875, 2.88367724609375]",tokens/s,21.90447606773774,kWh,8.428156574822338e-05,9.29480960613096e-06,5.6135504784910435e-05,0.00014971188013926482,tokens/kWh,420808.2881692235,,s,630,28.75854958343503,0.04564849140227787,0.0004311421835084933,0.0456529598236084,0.04601856193542481,0.04610665893554687,0.04772453594207764,"[0.04760335922241211, 0.045615966796875, 0.04535631942749024, 0.044825313568115234, 0.04515020751953125, 0.044977664947509766, 0.04483955383300781, 0.045158206939697264, 0.04504336166381836, 0.04497411346435547, 0.04489379119873047, 0.04549302291870117, 0.045245983123779296, 0.04515862274169922, 0.04527471923828125, 0.04521769714355469, 0.04527763366699219, 0.04541062545776367, 0.04560076904296875, 0.04552703857421875, 0.04550630569458008, 0.04552524948120117, 0.04588339233398438, 0.04562041473388672, 0.045222721099853515, 0.045174785614013675, 0.04522761535644531, 0.04529916763305664, 0.045203487396240236, 0.04520166397094726, 0.04525923156738281, 0.045241985321044925, 0.04537936019897461, 0.04537942504882812, 0.045644737243652346, 0.045486080169677735, 0.04538127899169922, 0.04561955261230469, 0.04570851135253906, 0.04561548614501953, 0.045870849609375, 0.0460681266784668, 0.04603110504150391, 0.04592844772338867, 0.045848320007324216, 0.04579734420776367, 0.04549871826171875, 0.045389759063720704, 0.045774848937988284, 0.04569462585449219, 0.0454447021484375, 0.045333248138427734, 0.045505569458007815, 0.04549731063842773, 0.045658111572265625, 0.04544921493530273, 0.04547923278808594, 0.0457383041381836, 0.045658462524414065, 0.04564585494995117, 0.04575020980834961, 0.0458770866394043, 0.04589385604858399, 0.04733542251586914, 0.04528742218017578, 0.045034656524658205, 0.044890975952148436, 0.0447498893737793, 0.04465964889526367, 0.04481568145751953, 0.04517055892944336, 0.045396800994873046, 0.045139968872070314, 0.04511948776245117, 0.045401313781738284, 0.04517977523803711, 0.04521084976196289, 0.04517561721801758, 0.045480865478515625, 0.04585980987548828, 0.045565185546875, 0.045166912078857424, 0.04543532943725586, 0.04574031829833984, 0.04568239974975586, 0.045330432891845705, 0.04571043014526367, 0.04566438293457031, 0.04535507202148437, 0.045283649444580076, 0.045344287872314454, 0.04534912109375, 0.04536380767822266, 0.04549407958984375, 0.04563516616821289, 0.045507198333740236, 0.04547379302978516, 0.04568841552734375, 0.04569708633422852, 0.04581568145751953, 0.04599350357055664, 0.04608710479736328, 0.04589507293701172, 0.04575718307495117, 0.04588937759399414, 0.046018558502197264, 0.04591772842407227, 0.04580969619750976, 0.04578323364257812, 0.045875167846679686, 0.045506847381591796, 0.045461505889892576, 0.045641281127929687, 0.045736480712890625, 0.04570102310180664, 0.04552294540405273, 0.0454769287109375, 0.04580819320678711, 0.045717281341552736, 0.04570377731323242, 0.045827167510986325, 0.045964351654052736, 0.04587628936767578, 0.04589648056030273, 0.045975006103515625, 0.04611747360229492, 0.047839168548583985, 0.04606982421875, 0.045096958160400394, 0.04497200012207031, 0.04487734222412109, 0.04507644653320313, 0.04497615814208984, 0.04492134475708008, 0.04503731155395508, 0.045309505462646484, 0.045294559478759766, 0.04520489501953125, 0.045459712982177734, 0.04526496124267578, 0.045225311279296875, 0.04523686218261719, 0.045578559875488284, 0.04570697784423828, 0.04534067153930664, 0.045256671905517576, 0.04546073532104492, 0.04593494415283203, 0.045695423126220706, 0.04553318405151367, 0.045553665161132816, 0.04539542388916016, 0.04547174453735352, 0.04521014404296875, 0.04517817687988281, 0.045480640411376956, 0.0454205436706543, 0.04539587020874023, 0.045486175537109375, 0.04557561492919922, 0.045752864837646484, 0.04561103820800781, 0.04580707168579102, 0.04586918258666992, 0.04581008148193359, 0.04590387344360351, 0.045676673889160156, 0.046161441802978515, 0.045807968139648436, 0.04590591812133789, 0.04604313659667969, 0.04586905670166016, 0.04562739181518555, 0.04578713607788086, 0.04570924758911133, 0.045588542938232425, 0.04560809707641601, 0.045837150573730466, 0.04568681716918945, 0.04555977630615234, 0.04554912185668945, 0.04594473648071289, 0.04610710525512695, 0.04574816131591797, 0.04585075378417969, 0.04595507049560547, 0.045794654846191406, 0.04628473663330078, 0.046069793701171875, 0.0483836784362793, 0.04588102340698242, 0.045115230560302734, 0.044816287994384765, 0.044901313781738283, 0.04505388641357422, 0.045227710723876956, 0.045107391357421874, 0.04504800033569336, 0.045421695709228514, 0.04532912063598633, 0.045236385345458985, 0.04526694488525391, 0.045502079010009765, 0.04525094223022461, 0.04525590515136719, 0.04548303985595703, 0.04568857574462891, 0.045692928314208986, 0.04550841522216797, 0.04584262466430664, 0.0462224006652832, 0.045939777374267576, 0.045524417877197264, 0.04530598449707031, 0.0452426872253418, 0.045338558197021483, 0.04514575958251953, 0.04518953704833984, 0.04542464065551758, 0.04552908706665039, 0.045246463775634765, 0.04531814575195312, 0.04545232009887695, 0.045378528594970706, 0.04560076904296875, 0.04572323226928711, 0.045609375, 0.04568438339233399, 0.045480480194091795, 0.04571855926513672, 0.046007072448730466, 0.04592025756835937, 0.04605132675170898, 0.045948928833007815, 0.04579942321777344, 0.045471839904785157, 0.04552080154418945, 0.04568819046020508, 0.04560550308227539, 0.04549148941040039, 0.04568534469604492, 0.0455865592956543, 0.0455551986694336, 0.04589328002929687, 0.04581568145751953, 0.045616096496582034, 0.04569497680664063, 0.04605747222900391, 0.046104576110839846, 0.046036991119384765, 0.04572918319702148, 0.04608060836791992, 0.047745471954345704, 0.04548198318481445, 0.04513382339477539, 0.044799999237060545, 0.04491775894165039, 0.04507340621948242, 0.04506131362915039, 0.045090911865234375, 0.045160255432128905, 0.04551897430419922, 0.045443550109863284, 0.04543315124511719, 0.04522137451171875, 0.045400577545166014, 0.04558643341064453, 0.045461505889892576, 0.045418014526367186, 0.04550403213500977, 0.04581372833251953, 0.0455463981628418, 0.04578656005859375, 0.04580825424194336, 0.045742080688476565, 0.04555084609985351, 0.04518169784545899, 0.04542611312866211, 0.04529926300048828, 0.04504886245727539, 0.045305824279785155, 0.04558233642578125, 0.04563558578491211, 0.04558812713623047, 0.04554991912841797, 0.04550239944458008, 0.045776958465576174, 0.04573583984375, 0.04575446319580078, 0.045963264465332034, 0.04575641632080078, 0.045445121765136716, 0.04604108810424805, 0.0458158073425293, 0.045721408843994144, 0.04583033752441406, 0.045995105743408204, 0.045846912384033205, 0.04574019241333008, 0.04579366302490234, 0.04557574462890625, 0.045792766571044925, 0.04588035202026367, 0.04589052963256836, 0.04584339141845703, 0.04555980682373047, 0.0456888313293457, 0.04586918258666992, 0.04571942520141602, 0.045666305541992185, 0.04597711944580078, 0.04592601776123047, 0.04611568069458008, 0.04613119888305664, 0.046290111541748044, 0.04823040008544922, 0.04608787155151367, 0.04502764892578125, 0.04483686447143555, 0.04501251220703125, 0.04497884750366211, 0.0447916145324707, 0.04482252883911133, 0.04498636627197266, 0.04543203353881836, 0.045555648803710935, 0.04541641616821289, 0.0454071044921875, 0.04536524963378906, 0.04528057479858399, 0.04525897598266602, 0.04538748931884766, 0.04570608139038086, 0.04566006469726563, 0.0453851203918457, 0.04580822372436524, 0.04593407821655274, 0.045928958892822266, 0.04550361633300781, 0.045347297668457034, 0.045528961181640626, 0.04536348724365234, 0.04529507064819336, 0.04534348678588867, 0.045373470306396484, 0.04544211196899414, 0.04528838348388672, 0.04566425704956055, 0.04571955108642578, 0.04566233444213867, 0.04564476776123047, 0.04593961715698242, 0.045846080780029295, 0.04582233428955078, 0.04570880126953125, 0.04592697525024414, 0.045849727630615233, 0.045992832183837894, 0.04610611343383789, 0.04597148895263672, 0.04557257461547851, 0.04592156982421875, 0.04586979293823242, 0.0456328010559082, 0.045607646942138674, 0.04578227233886719, 0.04577497482299805, 0.045652286529541015, 0.04588521575927734, 0.04578937530517578, 0.045809761047363284, 0.045961471557617185, 0.045907936096191405, 0.04603692626953125, 0.04594195175170898, 0.04586761474609375, 0.04618172836303711, 0.04620387268066406, 0.04806150436401367, 0.045575103759765624, 0.04521152114868164, 0.04496192169189453, 0.04497532653808594, 0.04480694580078125, 0.044918495178222655, 0.04500905609130859, 0.04532396697998047, 0.04518713760375977, 0.04530601501464844, 0.045811168670654295, 0.04565068817138672, 0.04555286407470703, 0.04525955200195313, 0.04559462356567383, 0.04587724685668945, 0.045617057800292966, 0.04535919952392578, 0.04550204849243164, 0.0461082878112793, 0.04602140808105469, 0.04570025634765625, 0.04557043075561523, 0.04552479934692383, 0.045369598388671876, 0.04519180679321289, 0.04520460891723633, 0.045546142578125, 0.045559585571289064, 0.0454268798828125, 0.04563766479492187, 0.04558774566650391, 0.04547369766235351, 0.04564051055908203, 0.04596464157104492, 0.04585539245605469, 0.04554060745239258, 0.045742561340332034, 0.046026878356933594, 0.045913761138916015, 0.04588784027099609, 0.04623807907104492, 0.045960544586181644, 0.0459554557800293, 0.04597884750366211, 0.0460849609375, 0.04577212905883789, 0.04560863876342774, 0.0455055046081543, 0.04562739181518555, 0.04568617630004883, 0.045647808074951175, 0.045892257690429684, 0.046007999420166014, 0.04592876815795898, 0.0458271369934082, 0.04597856140136719, 0.045882785797119144, 0.04601712036132812, 0.04672716903686523, 0.046170112609863284, 0.04615068817138672, 0.04795024108886719, 0.0455392951965332, 0.04531817626953125, 0.04518707275390625, 0.045013057708740235, 0.04490598297119141, 0.045264640808105466, 0.04542329788208008, 0.0454389762878418, 0.04513177490234375, 0.04543078231811523, 0.04558956909179687, 0.045523582458496095, 0.045313793182373045, 0.04563183975219726, 0.045850112915039064, 0.045772705078125, 0.04546438217163086, 0.04550796890258789, 0.04568332672119141, 0.04575436782836914, 0.04568848037719726, 0.04580124664306641, 0.04567097473144531, 0.0457154541015625, 0.045561569213867184, 0.04549660873413086, 0.045328254699707034, 0.045492351531982424, 0.045696575164794924, 0.04549004745483398, 0.04570966339111328, 0.04568652725219727, 0.04573769760131836, 0.04578531265258789, 0.0457564811706543, 0.04587158584594726, 0.046020606994628906, 0.04590172958374023, 0.04573964691162109, 0.04609641647338867, 0.04605305480957031, 0.04588399887084961, 0.04551286315917969, 0.04581990432739258, 0.04595225524902344, 0.04578937530517578, 0.04565049743652344, 0.04605132675170898, 0.04588339233398438, 0.045553665161132816, 0.045701087951660155, 0.046018592834472655, 0.04592844772338867, 0.04563353729248047, 0.04583388900756836, 0.0460926399230957, 0.046129150390625, 0.04593664169311523, 0.04595916748046875, 0.046086143493652344, 0.045929759979248044, 0.04623977661132812, 0.04767327880859375, 0.04568502426147461, 0.04534889602661133, 0.04512697601318359, 0.04500547027587891, 0.04538982391357422, 0.04541439819335937, 0.04526489639282227, 0.045412353515625, 0.045618335723876954, 0.045484897613525394, 0.045238273620605465, 0.045592575073242186, 0.045502464294433595, 0.04568473434448242, 0.04558393478393555, 0.04560140609741211, 0.045967166900634765, 0.04570425415039062, 0.04545836639404297, 0.045932544708251956, 0.045835777282714846, 0.04581631851196289, 0.04565343856811523, 0.04571807861328125, 0.04562636947631836, 0.04571043014526367, 0.045617057800292966, 0.045879295349121094, 0.04570316696166992, 0.045682689666748044, 0.045676544189453126, 0.04567244720458984, 0.04562684631347656, 0.045529407501220705, 0.0456317138671875, 0.04590739059448242, 0.04571503829956055, 0.045783870697021486, 0.04570326232910156, 0.045793342590332034, 0.045752513885498045, 0.045755233764648434, 0.045977760314941406, 0.045880126953125, 0.045809120178222654, 0.045860542297363284, 0.0460184326171875, 0.045954017639160155, 0.04563497543334961, 0.04581846237182617, 0.045795169830322266, 0.045969566345214846, 0.04601241683959961, 0.04604108810424805, 0.0458620491027832, 0.045820766448974606, 0.045840385437011716, 0.046080001831054686, 0.04590703964233398, 0.04588864135742188, 0.046058624267578126, 0.04602521514892578, 0.04845353698730469, 0.04565804672241211, 0.04511385726928711, 0.04543932723999024, 0.04522390365600586, 0.0451297607421875, 0.04523209762573242, 0.045426239013671876, 0.04569955062866211, 0.04552291107177735, 0.04518300628662109, 0.04547113418579102, 0.045492351531982424, 0.04529404830932617, 0.04549856185913086, 0.04547564697265625, 0.04580556869506836, 0.045690879821777344, 0.04538163375854492, 0.04548710250854492, 0.0457237434387207, 0.04587971115112305, 0.045697536468505856, 0.04582918548583984, 0.045760929107666014, 0.04557619094848633, 0.045518367767333985, 0.045456382751464845, 0.045817119598388675, 0.04554620742797852, 0.04563148880004883, 0.045803680419921874, 0.045803329467773435, 0.04577196884155273, 0.04571017456054687, 0.045795326232910154, 0.04589878463745117, 0.04565248107910156, 0.045697502136230465, 0.04589478302001953, 0.04597849655151367, 0.04588544082641602, 0.04610867309570312, 0.04597555160522461, 0.04595507049560547, 0.045954334259033204, 0.04607577514648437, 0.04598806381225586, 0.04584307098388672, 0.045873153686523435, 0.04605952072143555, 0.045725696563720705, 0.04570521545410156, 0.04614963150024414, 0.04597455978393555, 0.0457287368774414, 0.04589068984985351, 0.0462611198425293, 0.045939777374267576, 0.04581049728393555, 0.0462583999633789, 0.046153343200683594, 0.045943073272705075]",tokens/s,21.906528984440868,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1844.375552,2760.835072,0.0,2365.587456,2314.318336,s,1,8.9506689453125,8.9506689453125,0.0,8.9506689453125,8.9506689453125,8.9506689453125,8.9506689453125,[8.9506689453125],,kWh,5.476549709167102e-05,6.033410756598026e-06,1.7303069397997528e-05,7.810197724626658e-05,,MB,1901.416448,3092.185088,0.0,2682.257408,2607.60832,s,10,0.4811466560363769,0.04811466560363769,0.0001687004770132298,0.04807537651062012,0.04819355430603028,0.04839336986541748,0.04855322231292725,"[0.04859318542480469, 0.048093952178955075, 0.048094879150390624, 0.047963359832763675, 0.048149150848388673, 0.047989856719970705, 0.048056800842285155, 0.048127326965332035, 0.04802908706665039, 0.04804905700683594]",tokens/s,5320.623073823155,kWh,1.4723514423158077e-06,1.6237270339468906e-07,9.705856452562412e-07,2.605309790966738e-06,tokens/kWh,98260867.4360401,MB,1901.416448,3092.185088,0.0,2682.257408,2607.61088,s,10,13.3271533203125,1.33271533203125,0.007290476577824268,1.3307625732421875,1.3393217407226563,1.344705975341797,1.3490133630371095,"[1.338125244140625, 1.3302781982421874, 1.3379046630859375, 1.3288638916015625, 1.3312469482421876, 1.333383544921875, 1.3261055908203125, 1.3270718994140625, 1.3240831298828124, 1.3500902099609375]",tokens/s,47.27191057671629,kWh,3.910087619434966e-05,4.312441178818341e-06,1.927501388454316e-05,6.268833125771117e-05,tokens/kWh,1004971.7185963615,,s,630,13.32509829330445,0.021150949671911817,0.0003596681577085467,0.021049039840698242,0.021470634269714357,0.021678290939331053,0.022570490989685058,"[0.021683935165405274, 0.021206464767456055, 0.02124880027770996, 0.021204704284667968, 0.021231903076171874, 0.02125833511352539, 0.02138313674926758, 0.021178367614746094, 0.021525983810424806, 0.021155712127685546, 0.02108624076843262, 0.021266847610473632, 0.021016799926757812, 0.020956672668457032, 0.020959999084472655, 0.021022464752197264, 0.022714368820190428, 0.022293983459472658, 0.021531167984008788, 0.02164249610900879, 0.021764768600463866, 0.02130544090270996, 0.02149580764770508, 0.021295103073120117, 0.021142911911010743, 0.02130803108215332, 0.02105548858642578, 0.02101862335205078, 0.0209562873840332, 0.020994239807128907, 0.020945024490356446, 0.020905792236328127, 0.02089241600036621, 0.020883455276489257, 0.0209322566986084, 0.020883295059204103, 0.02093721580505371, 0.021604352951049805, 0.02146713638305664, 0.021315231323242187, 0.021356800079345702, 0.021243999481201172, 0.02118592071533203, 0.02099468803405762, 0.02139321517944336, 0.020942304611206056, 0.020894432067871095, 0.021184095382690428, 0.020996511459350584, 0.02100614356994629, 0.021072063446044922, 0.021020671844482423, 0.0210098876953125, 0.02096774482727051, 0.021186784744262697, 0.021255647659301758, 0.021690847396850586, 0.021300544738769533, 0.021616512298583985, 0.02122550392150879, 0.02123673629760742, 0.021303136825561522, 0.021175680160522462, 0.021351423263549805, 0.021388288497924804, 0.021223424911499023, 0.021172224044799806, 0.021262048721313476, 0.021409568786621095, 0.021019136428833008, 0.021110048294067384, 0.021056127548217774, 0.02092451286315918, 0.020985343933105468, 0.021078367233276368, 0.02091801643371582, 0.02082601547241211, 0.020976127624511717, 0.020908031463623047, 0.0209256649017334, 0.02082896041870117, 0.02099363136291504, 0.02108457565307617, 0.020977216720581053, 0.020840448379516603, 0.020984224319458008, 0.021071903228759764, 0.021108448028564455, 0.02097952079772949, 0.021221855163574218, 0.021131103515625, 0.02119910430908203, 0.02099600028991699, 0.02105958366394043, 0.021161888122558595, 0.02102012825012207, 0.020988767623901367, 0.021112607955932616, 0.02101862335205078, 0.02091619110107422, 0.02096131134033203, 0.021352224349975586, 0.025118080139160157, 0.021371360778808593, 0.02103036880493164, 0.02111123275756836, 0.021114751815795897, 0.021002847671508788, 0.02104934310913086, 0.02125619125366211, 0.020975616455078124, 0.020948991775512696, 0.021059423446655273, 0.02112335968017578, 0.020950912475585937, 0.021027040481567384, 0.020948768615722656, 0.020968448638916014, 0.020888576507568358, 0.020824064254760744, 0.020909952163696288, 0.02105523109436035, 0.020967008590698243, 0.02085126495361328, 0.020930976867675782, 0.021014368057250977, 0.021209087371826172, 0.021170175552368165, 0.021370880126953123, 0.02274620819091797, 0.021441408157348633, 0.021121055603027343, 0.021016576766967773, 0.021237695693969726, 0.02104751968383789, 0.02087715148925781, 0.020996095657348633, 0.021440511703491212, 0.021059488296508787, 0.020946399688720703, 0.02107980728149414, 0.021041759490966795, 0.020995967864990233, 0.02090025520324707, 0.02108006477355957, 0.02111267280578613, 0.02102697563171387, 0.02101558494567871, 0.022539520263671876, 0.021525472640991212, 0.02142393684387207, 0.021211360931396483, 0.021266847610473632, 0.02128108787536621, 0.021073087692260743, 0.02092051124572754, 0.02096143913269043, 0.020989984512329102, 0.020974016189575194, 0.02087321662902832, 0.02230067253112793, 0.021985279083251954, 0.0210882568359375, 0.02115123176574707, 0.021488224029541016, 0.021500864028930665, 0.021269472122192382, 0.02106777572631836, 0.022112255096435548, 0.0212541446685791, 0.022235136032104492, 0.02112828826904297, 0.020974496841430663, 0.020942848205566408, 0.02084966468811035, 0.021081087112426757, 0.021159936904907226, 0.0208855037689209, 0.021048992156982423, 0.020982112884521485, 0.020999807357788086, 0.020928415298461914, 0.021186304092407227, 0.021109344482421875, 0.021237728118896484, 0.0213209285736084, 0.02124076843261719, 0.021123071670532227, 0.021068000793457033, 0.021809535980224608, 0.022754783630371093, 0.021852640151977538, 0.021133279800415038, 0.021121248245239258, 0.02104662322998047, 0.0211976318359375, 0.021431711196899413, 0.021158079147338867, 0.021104543685913087, 0.021090303421020508, 0.021021087646484374, 0.02124928092956543, 0.0209334716796875, 0.02102272033691406, 0.021276351928710937, 0.021279327392578123, 0.021108448028564455, 0.021145599365234375, 0.021149919509887694, 0.020999488830566407, 0.020941280364990236, 0.021099967956542967, 0.02105606460571289, 0.020965375900268556, 0.020805631637573242, 0.02100223922729492, 0.020930559158325195, 0.020930240631103516, 0.020810047149658204, 0.020987903594970703, 0.021016576766967773, 0.020985855102539062, 0.020908031463623047, 0.021006336212158205, 0.021071840286254882, 0.02105731201171875, 0.02088310432434082, 0.0211212158203125, 0.020952735900878906, 0.020994335174560546, 0.02083683204650879, 0.020922367095947265, 0.020987520217895506, 0.02103334426879883, 0.02103910446166992, 0.02100249671936035, 0.020944639205932616, 0.020940000534057618, 0.021008352279663085, 0.020939584732055663, 0.021089696884155275, 0.02110678482055664, 0.020943359375, 0.021019872665405274, 0.02127952003479004, 0.021228799819946288, 0.02094095993041992, 0.021054048538208008, 0.021009727478027342, 0.021037759780883788, 0.020764671325683593, 0.0211190071105957, 0.021360639572143555, 0.020975616455078124, 0.020975616455078124, 0.021026336669921875, 0.02103548812866211, 0.02083951950073242, 0.02108233642578125, 0.021283519744873046, 0.021049087524414062, 0.020885759353637696, 0.02105548858642578, 0.020998144149780275, 0.020957183837890626, 0.020792415618896484, 0.023914400100708007, 0.02098259162902832, 0.020998016357421875, 0.021020992279052735, 0.02107187271118164, 0.0208855037689209, 0.021028287887573244, 0.02091641616821289, 0.021022815704345704, 0.02091651153564453, 0.02103910446166992, 0.021156959533691407, 0.021140256881713868, 0.021112384796142577, 0.021151872634887697, 0.021078720092773437, 0.02103500747680664, 0.021144800186157227, 0.021092256546020507, 0.020900224685668944, 0.0210762882232666, 0.02106883239746094, 0.02106051254272461, 0.020960384368896485, 0.02107846450805664, 0.021174720764160156, 0.02105936050415039, 0.020888063430786134, 0.02099171257019043, 0.02108415985107422, 0.02188697624206543, 0.022574527740478516, 0.022542911529541014, 0.021349632263183593, 0.02104707145690918, 0.02090902328491211, 0.020998144149780275, 0.020989023208618163, 0.020960159301757812, 0.020807680130004884, 0.020809728622436522, 0.021016576766967773, 0.021040447235107423, 0.020818111419677734, 0.02088150405883789, 0.020994367599487303, 0.021131359100341796, 0.020991167068481444, 0.020939680099487306, 0.02143436813354492, 0.02119081687927246, 0.021217119216918944, 0.021139007568359375, 0.021168575286865235, 0.020936704635620116, 0.02105753517150879, 0.020964704513549804, 0.021026880264282226, 0.02079190444946289, 0.021009759902954103, 0.02097171211242676, 0.02103343963623047, 0.02230271911621094, 0.021005727767944335, 0.021027423858642577, 0.02127667236328125, 0.021020671844482423, 0.02115932846069336, 0.022270559310913086, 0.022675455093383787, 0.02198259162902832, 0.021295040130615235, 0.021258464813232424, 0.021251680374145508, 0.02118124771118164, 0.021495872497558594, 0.02204038429260254, 0.0214704647064209, 0.021316768646240235, 0.021540319442749024, 0.02116640090942383, 0.02102681541442871, 0.020985952377319338, 0.021159839630126954, 0.020981760025024415, 0.020914176940917968, 0.02108006477355957, 0.02107961654663086, 0.02098953628540039, 0.02095939254760742, 0.020949440002441408, 0.021072128295898437, 0.020946943283081054, 0.020975168228149415, 0.020976064682006836, 0.021000192642211913, 0.020903200149536134, 0.020820703506469727, 0.02086499214172363, 0.021019775390625, 0.020962207794189454, 0.02091632080078125, 0.020940704345703123, 0.020975008010864257, 0.02093116760253906, 0.020998016357421875, 0.020899967193603517, 0.02111894416809082, 0.021081920623779296, 0.021043424606323243, 0.020899839401245117, 0.021040576934814453, 0.021463552474975587, 0.021179712295532227, 0.021365440368652344, 0.02119171142578125, 0.02103183937072754, 0.02104252815246582, 0.021159648895263672, 0.021104991912841795, 0.021232288360595705, 0.02104934310913086, 0.021086208343505858, 0.020973567962646485, 0.02104473686218262, 0.02106825637817383, 0.02119398307800293, 0.02102992057800293, 0.021130752563476563, 0.02101683235168457, 0.020985855102539062, 0.02086502456665039, 0.020941951751708984, 0.020902687072753907, 0.020918560028076173, 0.020952896118164064, 0.020899839401245117, 0.02091823959350586, 0.021702688217163087, 0.02095871925354004, 0.02096588706970215, 0.020874528884887694, 0.02094304084777832, 0.020895679473876952, 0.020959840774536134, 0.021014528274536134, 0.02099945640563965, 0.02125270462036133, 0.020947071075439454, 0.0208855037689209, 0.020951040267944337, 0.02108598327636719, 0.021186784744262697, 0.020963327407836914, 0.02090291213989258, 0.02091667175292969, 0.020874048233032228, 0.02094259262084961, 0.021046848297119142, 0.021121471405029298, 0.020953088760375976, 0.02104934310913086, 0.02104662322998047, 0.020925088882446288, 0.020985408782958983, 0.020895200729370116, 0.021035455703735353, 0.021194528579711915, 0.02128086471557617, 0.021559968948364257, 0.02105548858642578, 0.021051008224487303, 0.020961664199829103, 0.020847904205322267, 0.020933055877685548, 0.021200767517089845, 0.021102592468261717, 0.021024032592773436, 0.020973695755004882, 0.02101433563232422, 0.020919071197509766, 0.02093427276611328, 0.020928895950317383, 0.021088512420654296, 0.020919776916503905, 0.020966976165771485, 0.02092076873779297, 0.020875551223754882, 0.02098588752746582, 0.021211360931396483, 0.020856576919555662, 0.020971359252929686, 0.02104867172241211, 0.0209866886138916, 0.020864639282226562, 0.020969247817993163, 0.02100079917907715, 0.020973567962646485, 0.020926464080810548, 0.020969472885131835, 0.02097942352294922, 0.021012767791748047, 0.020981760025024415, 0.020950239181518556, 0.021551904678344728, 0.02137628746032715, 0.021301984786987305, 0.02116329574584961, 0.020929248809814453, 0.020996095657348633, 0.02112719917297363, 0.021382911682128906, 0.021155424118041992, 0.021484159469604493, 0.021294527053833008, 0.021353023529052734, 0.02128486442565918, 0.02123980712890625, 0.02094486427307129, 0.020942527770996092, 0.02100259208679199, 0.021112224578857423, 0.02189516830444336, 0.02100079917907715, 0.021018112182617187, 0.021066240310668945, 0.021000192642211913, 0.020983007431030272, 0.02093484878540039, 0.020987743377685546, 0.021060352325439454, 0.021024768829345702, 0.020938751220703124, 0.020932607650756836, 0.02087731170654297, 0.020888864517211916, 0.021097152709960938, 0.02095088005065918, 0.021437984466552734, 0.021333471298217773, 0.021268768310546873, 0.021111520767211914, 0.021052480697631836, 0.020923328399658204, 0.020934431076049805, 0.020934879302978517, 0.021182464599609374, 0.02102079963684082, 0.021214176177978515, 0.0210482234954834, 0.02145894432067871, 0.0209017276763916, 0.021030399322509767, 0.02097587203979492, 0.020945215225219728, 0.020842592239379884, 0.020908031463623047, 0.02091606330871582, 0.020882911682128906, 0.021318336486816407, 0.020987903594970703, 0.021063135147094725, 0.02122127914428711, 0.020899520874023438, 0.02084550476074219, 0.020959232330322267, 0.02101161575317383, 0.020874080657958986, 0.0209039363861084, 0.02090188789367676, 0.020880544662475586, 0.020898624420166014, 0.02087062454223633, 0.02078982353210449, 0.02091366386413574, 0.020868608474731445, 0.020956159591674805, 0.020944896697998046, 0.02108415985107422, 0.020944000244140625, 0.02110348892211914, 0.02087731170654297, 0.02109644889831543, 0.020872800827026368, 0.021029279708862304, 0.020868928909301757, 0.02077510452270508, 0.020840448379516603, 0.021372928619384765, 0.020832256317138673, 0.020841760635375975, 0.020842752456665038, 0.020924896240234376, 0.021010112762451173, 0.020829919815063477, 0.020877920150756835, 0.020948991775512696, 0.02104729652404785, 0.021415519714355468, 0.021307775497436524, 0.021671392440795897, 0.021772480010986327, 0.021323680877685547, 0.021288415908813477, 0.021453344345092773, 0.02129817581176758, 0.02123673629760742, 0.02155731201171875, 0.021603872299194336, 0.021340576171875, 0.021356512069702148, 0.02140310478210449, 0.021496416091918946, 0.021446624755859376, 0.02147545623779297, 0.02146236801147461, 0.02148796844482422, 0.02154719924926758, 0.021433984756469727, 0.021477760314941405, 0.021921760559082033, 0.022394912719726563, 0.021501184463500977, 0.021463808059692384, 0.021348352432250976, 0.02125619125366211, 0.021331039428710938, 0.021472160339355468, 0.021202943801879884, 0.021177759170532228, 0.021168479919433592, 0.02114995193481445, 0.021137407302856445, 0.021170080184936522, 0.02106787109375, 0.021196800231933592, 0.021366527557373047, 0.02121855926513672, 0.02107084846496582, 0.021282623291015625, 0.021136959075927733, 0.02116057586669922, 0.021227487564086912, 0.02138889694213867, 0.021249759674072267, 0.021232351303100586, 0.021336063385009766, 0.02115932846069336, 0.02119536018371582, 0.021168127059936523, 0.021202943801879884, 0.02256060791015625, 0.022495391845703126, 0.02163705635070801, 0.021458272933959962, 0.02161123275756836, 0.021817344665527344, 0.02160220718383789, 0.02152569580078125, 0.021584064483642577, 0.021575775146484375, 0.021580703735351564, 0.021397344589233397, 0.021231487274169923]",tokens/s,47.27920095843199,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,2226.5856,2551.119872,0.0,2155.872256,2032.413184,s,1,8.91062890625,8.91062890625,0.0,8.91062890625,8.91062890625,8.91062890625,8.91062890625,[8.91062890625],,kWh,4.962559017501083e-05,5.466919062269274e-06,1.5655012524005973e-05,7.074752176128608e-05,,MB,2275.807232,2827.943936,0.0,2418.016256,2279.563776,s,10,0.7760554885864258,0.07760554885864257,0.0001963902127203726,0.07763959884643555,0.07780231704711914,0.07785509605407714,0.07789731925964355,"[0.07790787506103515, 0.07766345977783203, 0.07763129425048829, 0.07724739074707031, 0.07762963104248047, 0.07771437072753906, 0.07764790344238282, 0.07727324676513672, 0.07754972839355469, 0.07779058837890625]",tokens/s,3298.733193244989,kWh,2.319681841898155e-06,2.558206105176512e-07,1.5470757526507914e-06,4.122578205066597e-06,tokens/kWh,62097063.358404994,MB,2283.020288,2911.830016,0.0,2501.902336,2389.801984,s,10,13.973065063476563,1.3973065063476562,0.003427724356547006,1.3969668579101562,1.401062353515625,1.4017873413085937,1.4023673315429688,"[1.3914072265625, 1.393419189453125, 1.4009012451171876, 1.4004678955078125, 1.3964017333984375, 1.4000360107421874, 1.4025123291015624, 1.397531982421875, 1.395591064453125, 1.39479638671875]",tokens/s,45.08674346952859,kWh,4.133535275435144e-05,4.558946191796699e-06,2.321011071974948e-05,6.910440966589762e-05,tokens/kWh,911663.9633359014,,s,630,13.965461080551151,0.022167398540557378,0.0003694476016180388,0.022058432579040527,0.022498105430603026,0.0227490740776062,0.023932267227172854,"[0.023076864242553712, 0.022781951904296875, 0.022462080001831055, 0.02277334403991699, 0.022332191467285156, 0.02209791946411133, 0.02203878402709961, 0.02194985580444336, 0.02207494354248047, 0.022087551116943358, 0.022014400482177735, 0.021895647048950195, 0.02198534393310547, 0.021904767990112303, 0.021988927841186525, 0.02204569625854492, 0.022129951477050783, 0.021947200775146485, 0.02204252815246582, 0.02200927925109863, 0.022014720916748047, 0.022103231430053712, 0.022211231231689454, 0.022060384750366212, 0.02210083198547363, 0.02201523208618164, 0.021993215560913087, 0.02196940803527832, 0.022058528900146486, 0.021956544876098633, 0.021994304656982423, 0.021987327575683592, 0.02206924819946289, 0.0220425910949707, 0.021934112548828124, 0.021845632553100586, 0.021931840896606446, 0.021942047119140624, 0.02202908706665039, 0.02190336036682129, 0.021975231170654298, 0.021987136840820314, 0.022183488845825196, 0.022038976669311525, 0.022018335342407228, 0.021949344635009766, 0.02195350456237793, 0.021901151657104493, 0.021915935516357423, 0.022158784866333006, 0.022018335342407228, 0.021983232498168945, 0.022038528442382813, 0.022002719879150392, 0.02203887939453125, 0.021948480606079103, 0.02204115104675293, 0.021997568130493163, 0.022026239395141603, 0.02224127960205078, 0.022478080749511718, 0.02231283187866211, 0.022141824722290038, 0.02288470458984375, 0.02227596855163574, 0.021926015853881837, 0.02231091117858887, 0.02256915283203125, 0.02285139274597168, 0.02217478370666504, 0.02203539276123047, 0.02205900764465332, 0.022040576934814454, 0.022079488754272462, 0.022097824096679687, 0.022019327163696287, 0.02197385597229004, 0.021850175857543945, 0.02184137535095215, 0.02201238441467285, 0.0219238395690918, 0.021987327575683592, 0.022067359924316406, 0.02194326400756836, 0.021988128662109373, 0.02206697654724121, 0.021876928329467773, 0.021928064346313475, 0.021786624908447266, 0.022064128875732423, 0.02192620849609375, 0.022321855545043946, 0.022001056671142577, 0.022114912033081056, 0.022044767379760744, 0.02196988868713379, 0.021836736679077148, 0.021927040100097658, 0.022078271865844726, 0.021932031631469725, 0.02250739288330078, 0.02191993522644043, 0.02191360092163086, 0.021997568130493163, 0.022021184921264647, 0.022504383087158204, 0.02207321548461914, 0.022139007568359376, 0.022046720504760742, 0.021980352401733398, 0.021924671173095704, 0.022099967956542968, 0.022540288925170897, 0.02205900764465332, 0.02215116882324219, 0.022005760192871093, 0.02224287986755371, 0.022040159225463866, 0.02203094482421875, 0.022059263229370116, 0.02209382438659668, 0.02262835121154785, 0.022120447158813478, 0.022644960403442382, 0.02197465515136719, 0.02222051239013672, 0.023654272079467773, 0.02295238494873047, 0.02258403205871582, 0.022224288940429687, 0.022034208297729493, 0.02196124839782715, 0.022360063552856444, 0.021954559326171876, 0.022156864166259765, 0.022030784606933595, 0.02205411148071289, 0.021967647552490234, 0.02216783905029297, 0.0220664005279541, 0.022045183181762695, 0.021948415756225585, 0.022234495162963868, 0.022346336364746092, 0.02232249641418457, 0.02249388885498047, 0.022347904205322264, 0.022161312103271484, 0.022116352081298828, 0.02206515121459961, 0.022016000747680665, 0.02199888038635254, 0.02188889694213867, 0.022007680892944335, 0.02412771224975586, 0.02273356819152832, 0.022997247695922853, 0.02225724792480469, 0.02236636734008789, 0.022124223709106446, 0.02208799934387207, 0.022157312393188477, 0.022332544326782226, 0.022283136367797853, 0.022347776412963868, 0.0221265926361084, 0.022153215408325197, 0.021944320678710938, 0.021883039474487304, 0.021913631439208985, 0.02191084861755371, 0.021921632766723632, 0.021990047454833985, 0.021825536727905274, 0.021946367263793946, 0.021869823455810546, 0.02185260772705078, 0.02191801643371582, 0.022051872253417967, 0.022172639846801758, 0.022215808868408203, 0.022065088272094725, 0.022088640213012694, 0.021989248275756837, 0.02205299186706543, 0.021968511581420897, 0.02196928024291992, 0.021993471145629884, 0.02417804718017578, 0.02208358383178711, 0.022005247116088866, 0.02204489517211914, 0.022111743927001954, 0.021918176651000976, 0.021943775177001953, 0.022390975952148437, 0.021981855392456055, 0.022094079971313477, 0.02195568084716797, 0.022182559967041014, 0.02194380760192871, 0.022054527282714845, 0.021939071655273437, 0.022103391647338867, 0.022031007766723634, 0.022128704071044922, 0.02193574333190918, 0.022020416259765627, 0.022142175674438477, 0.022338592529296875, 0.021980831146240234, 0.02211235237121582, 0.02201100730895996, 0.022350912094116212, 0.022103904724121094, 0.022470624923706054, 0.022804479598999023, 0.02271014404296875, 0.022601856231689452, 0.022779136657714843, 0.022369024276733398, 0.022619487762451172, 0.02252249526977539, 0.022383903503417967, 0.02248518371582031, 0.022391008377075194, 0.022552768707275392, 0.022706335067749023, 0.022419424057006837, 0.022610111236572264, 0.022515775680541993, 0.022437664031982423, 0.022419456481933595, 0.022573280334472656, 0.02242729568481445, 0.02231865692138672, 0.02207619285583496, 0.022034208297729493, 0.02191798400878906, 0.021995231628417967, 0.021958656311035156, 0.022355167388916016, 0.021938528060913086, 0.021930431365966795, 0.021944320678710938, 0.02204787254333496, 0.021924448013305665, 0.022050399780273438, 0.022076095581054687, 0.022220800399780274, 0.02210201644897461, 0.02207744026184082, 0.022260543823242187, 0.02230271911621094, 0.022021440505981444, 0.0223604793548584, 0.02198761558532715, 0.021987327575683592, 0.021985471725463866, 0.022071039199829102, 0.022255680084228516, 0.02205833625793457, 0.021862464904785155, 0.02201251220703125, 0.021968896865844727, 0.02198255920410156, 0.021947168350219728, 0.022284095764160156, 0.0225382080078125, 0.022401119232177736, 0.022239231109619142, 0.02201350402832031, 0.022170207977294923, 0.022099775314331056, 0.02205900764465332, 0.022077472686767578, 0.02207334327697754, 0.022001440048217774, 0.022210784912109375, 0.022273279190063475, 0.022250240325927734, 0.02222857666015625, 0.02249337577819824, 0.02245039939880371, 0.0223187198638916, 0.022178272247314453, 0.022619808197021484, 0.02210348892211914, 0.02215609550476074, 0.02203209686279297, 0.022167871475219727, 0.022601408004760744, 0.022272287368774416, 0.021986976623535156, 0.021876575469970704, 0.022053184509277343, 0.02216979217529297, 0.022035551071166993, 0.02210223960876465, 0.022043359756469726, 0.022048736572265627, 0.02287001609802246, 0.022160383224487306, 0.02226278305053711, 0.022130687713623046, 0.022108160018920898, 0.022405120849609376, 0.02198255920410156, 0.022069919586181642, 0.022037599563598635, 0.021908416748046874, 0.022042623519897463, 0.021949888229370117, 0.02200160026550293, 0.0219899845123291, 0.02188902473449707, 0.022337535858154296, 0.02394726371765137, 0.02225798416137695, 0.022137760162353515, 0.022360671997070314, 0.02217945671081543, 0.02194268798828125, 0.022311071395874023, 0.022761760711669923, 0.02250927925109863, 0.022216928482055663, 0.022374176025390626, 0.02207334327697754, 0.022024192810058595, 0.02192131233215332, 0.022084064483642578, 0.02202128028869629, 0.02196771240234375, 0.02197292709350586, 0.022078720092773438, 0.022012256622314454, 0.021959007263183592, 0.022141056060791017, 0.02246575927734375, 0.021951263427734374, 0.02191974449157715, 0.021935359954833984, 0.021962944030761718, 0.021916223526000977, 0.021915615081787108, 0.02180713653564453, 0.021908863067626953, 0.021871231079101563, 0.021957727432250978, 0.021881439208984374, 0.02192620849609375, 0.02197817611694336, 0.02195289611816406, 0.022093408584594725, 0.02212063980102539, 0.022006784439086914, 0.022107872009277343, 0.022038591384887694, 0.02203545570373535, 0.021890239715576174, 0.022210559844970702, 0.022089536666870118, 0.022116352081298828, 0.02188083267211914, 0.02200281524658203, 0.022016960144042967, 0.022255584716796874, 0.022257631301879882, 0.022166847229003906, 0.022090431213378905, 0.02208358383178711, 0.02231920051574707, 0.02430905532836914, 0.024731679916381834, 0.02253036880493164, 0.022423807144165038, 0.022595584869384764, 0.022255231857299804, 0.022352031707763672, 0.022041759490966796, 0.02221955108642578, 0.022156959533691407, 0.02235856056213379, 0.022319007873535156, 0.022085216522216795, 0.02194063949584961, 0.022017023086547852, 0.02206822395324707, 0.02320707130432129, 0.022229856491088867, 0.021935487747192384, 0.021979711532592774, 0.022056224822998047, 0.022162336349487305, 0.021974336624145507, 0.021987775802612304, 0.02203251266479492, 0.022191328048706056, 0.02200009536743164, 0.022118175506591797, 0.022039072036743164, 0.022273696899414063, 0.024794784545898438, 0.023702207565307616, 0.022517152786254883, 0.022436447143554687, 0.022218751907348632, 0.022437887191772463, 0.022779903411865234, 0.0227061767578125, 0.02225987243652344, 0.022128480911254883, 0.022124160766601564, 0.0224168643951416, 0.022127519607543944, 0.022001792907714843, 0.02198111915588379, 0.022044607162475586, 0.022141952514648438, 0.02210508728027344, 0.022106111526489256, 0.02201203155517578, 0.022194047927856446, 0.022001056671142577, 0.022003456115722655, 0.02214944076538086, 0.02231929588317871, 0.02212236785888672, 0.022206432342529298, 0.022051584243774413, 0.022036224365234374, 0.022177087783813478, 0.02204947280883789, 0.022120447158813478, 0.021929983139038087, 0.021910783767700195, 0.02198182487487793, 0.022524032592773437, 0.02245193672180176, 0.022397184371948244, 0.02230944061279297, 0.022351104736328124, 0.02200422477722168, 0.022423807144165038, 0.021956544876098633, 0.02200172805786133, 0.021990432739257812, 0.021977247238159178, 0.021926687240600585, 0.0219648323059082, 0.021982431411743164, 0.021958751678466795, 0.022031040191650392, 0.021985279083251954, 0.021917055130004883, 0.021979328155517577, 0.022284736633300783, 0.022190080642700196, 0.021958080291748047, 0.02214134407043457, 0.022075551986694336, 0.022196224212646484, 0.021958656311035156, 0.02197532844543457, 0.02202569580078125, 0.022007167816162108, 0.021904064178466798, 0.021869855880737303, 0.021924863815307616, 0.02262403106689453, 0.022104127883911133, 0.021917600631713868, 0.021915807723999023, 0.021906879425048827, 0.022114400863647462, 0.022683744430541993, 0.022058719635009764, 0.02223126411437988, 0.022227392196655274, 0.02208790397644043, 0.022089151382446288, 0.021911903381347655, 0.02202217674255371, 0.021866464614868165, 0.02205695915222168, 0.021924896240234373, 0.022071487426757814, 0.021996320724487303, 0.02216534423828125, 0.022149280548095705, 0.022410751342773438, 0.022561279296875, 0.022461599349975585, 0.022462400436401367, 0.02216771125793457, 0.022424480438232423, 0.022781791687011718, 0.022447328567504882, 0.022201120376586916, 0.02196227264404297, 0.02206972885131836, 0.025210527420043944, 0.022159744262695312, 0.022419551849365234, 0.022324735641479493, 0.022164255142211913, 0.02201206398010254, 0.021869855880737303, 0.021983808517456054, 0.022061119079589842, 0.021943647384643553, 0.022096479415893554, 0.021934080123901366, 0.021917119979858398, 0.021834304809570312, 0.022052223205566407, 0.02219481658935547, 0.021959903717041016, 0.021852960586547853, 0.022006944656372072, 0.021807584762573242, 0.021899648666381836, 0.02192495918273926, 0.022174335479736327, 0.022024288177490234, 0.022269792556762695, 0.021930335998535156, 0.0219703369140625, 0.02190787124633789, 0.022032575607299806, 0.022806528091430665, 0.022413536071777342, 0.02264041519165039, 0.022101408004760743, 0.022088287353515625, 0.022037696838378907, 0.021979904174804686, 0.023217504501342773, 0.022014656066894532, 0.022179872512817382, 0.02192793655395508, 0.022034431457519533, 0.0218789119720459, 0.0220153923034668, 0.021893600463867187, 0.021966848373413086, 0.021946367263793946, 0.022076831817626954, 0.022206079483032225, 0.02211529541015625, 0.02185215950012207, 0.021915807723999023, 0.02233123207092285, 0.02316854476928711, 0.023895551681518554, 0.022577152252197266, 0.02200457572937012, 0.022134496688842775, 0.02201363182067871, 0.022012639999389648, 0.02192736053466797, 0.022239007949829102, 0.021920543670654297, 0.02205900764465332, 0.02225152015686035, 0.02229043197631836, 0.022446975708007813, 0.022427648544311524, 0.021944063186645508, 0.021932512283325194, 0.021808639526367187, 0.02204198455810547, 0.022004383087158203, 0.021999872207641602, 0.02307276725769043, 0.021949472427368163, 0.02189206314086914, 0.021853248596191407, 0.021896127700805665, 0.023895423889160158, 0.022857599258422852, 0.02315532875061035, 0.022497407913208006, 0.022330528259277345, 0.021953311920166016, 0.02192758369445801, 0.02192630386352539, 0.022042720794677735, 0.02189116859436035, 0.02206470489501953, 0.022061279296875, 0.021962047576904297, 0.023093631744384766, 0.022143327713012695, 0.021991615295410157, 0.02185523223876953, 0.0219136962890625, 0.021977312088012697, 0.021974687576293946, 0.02244630432128906, 0.022175775527954102, 0.022392831802368163, 0.022143583297729492, 0.022332576751708983, 0.022016864776611328, 0.022056896209716795, 0.021954559326171876, 0.02190342330932617, 0.02183305549621582, 0.021956415176391603, 0.021887840270996092, 0.02191916847229004, 0.021913663864135742, 0.021825023651123047, 0.021888191223144532, 0.021903167724609374, 0.022138879776000975, 0.02208153533935547, 0.022013471603393554, 0.02222934341430664, 0.02203455924987793, 0.021978271484375, 0.021999488830566405, 0.02194492721557617, 0.0222271671295166, 0.022149280548095705, 0.02195033645629883, 0.021987455368041992, 0.021941375732421876]",tokens/s,45.11129252133056,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3553.804288,4495.179776,0.0,4116.709376,3980.386816,s,1,10.698505859375,10.698505859375,0.0,10.698505859375,10.698505859375,10.698505859375,10.698505859375,[10.698505859375],,kWh,9.446468462082861e-05,1.0412533916205323e-05,3.08761358120066e-05,0.00013575335434904052,,MB,3569.58208,4826.529792,0.0,4418.699264,4245.764608,s,10,6.540985412597656,0.6540985412597655,0.0014622330901031934,0.6539962463378907,0.6554122009277343,0.6563269500732422,0.6570587493896484,"[0.65141357421875, 0.6533139038085938, 0.6548538208007812, 0.6540926513671875, 0.652806884765625, 0.6543641967773437, 0.65724169921875, 0.6552089233398437, 0.6538998413085938, 0.6537899169921875]",tokens/s,391.37833805125916,kWh,1.9062787973176872e-05,2.1022905774729127e-06,1.263961080612535e-05,3.380468935677513e-05,tokens/kWh,7572913.843347965,MB,3576.631296,4837.015552,0.0,4429.185024,4245.767168,s,10,385.14350781249993,38.514350781249995,0.015261880598067006,38.517564453125004,38.528111328125,38.5308974609375,38.5331263671875,"[38.48181640625, 38.49543359375, 38.50627734375, 38.51169140625, 38.51723046875, 38.5178984375, 38.52492578125, 38.52705859375, 38.53368359375, 38.5274921875]",tokens/s,1.6357539130757046,kWh,0.0011235635662026559,0.0001239374439319332,0.0007470703580724743,0.0019945713682070635,tokens/kWh,31585.73365897216,,s,630,385.13932885742145,0.6113322680276537,0.0005062537275485813,0.6113420104980469,0.6119678344726562,0.6121722381591798,0.6125492669677735,"[0.6109921264648438, 0.6100316162109375, 0.611051513671875, 0.6100374145507812, 0.6104026489257812, 0.61068017578125, 0.6101295776367187, 0.6103638305664062, 0.61080810546875, 0.6105416870117187, 0.6103138427734375, 0.6109783325195313, 0.6102640991210937, 0.61072216796875, 0.610486572265625, 0.6104078979492188, 0.6116115112304688, 0.6101176147460937, 0.6113382568359375, 0.6105477294921875, 0.6103302001953125, 0.6110244140625, 0.6103285522460937, 0.6104708251953125, 0.61085693359375, 0.6103161010742187, 0.6109573364257812, 0.6105985107421875, 0.610902587890625, 0.6105989379882812, 0.6109214477539062, 0.61062451171875, 0.610783203125, 0.6112945556640625, 0.6108182983398438, 0.6106873779296875, 0.6106516723632812, 0.6108145141601562, 0.6111149291992187, 0.6111642456054688, 0.6110392456054687, 0.6110167236328125, 0.6107685546875, 0.6111071166992188, 0.6108098754882813, 0.6105782470703125, 0.611965087890625, 0.6104343872070312, 0.6109550170898438, 0.6109105224609375, 0.6109763793945312, 0.6111295776367187, 0.611034912109375, 0.6109859619140625, 0.6112991943359375, 0.6115060424804688, 0.6106196899414063, 0.611409423828125, 0.6109086303710938, 0.6111492309570312, 0.6111985473632813, 0.611876953125, 0.6106612548828125, 0.6112717895507812, 0.6104872436523437, 0.610522705078125, 0.610563720703125, 0.6107140502929688, 0.6106519775390625, 0.6105010375976563, 0.6112579956054688, 0.6113301391601562, 0.6104927368164063, 0.6113546142578125, 0.6107176513671875, 0.6111146240234375, 0.6111682739257812, 0.6106771240234375, 0.61136279296875, 0.610326416015625, 0.6114895629882813, 0.6102262573242188, 0.6108101196289063, 0.6111925048828125, 0.6111926879882813, 0.6110531005859375, 0.610546630859375, 0.6112174072265625, 0.6107294921875, 0.6116746826171875, 0.6105430297851563, 0.6113797607421875, 0.6106009521484375, 0.611178466796875, 0.6106419067382812, 0.6110119018554687, 0.6121970825195312, 0.6102078247070313, 0.6113463745117188, 0.611293212890625, 0.6107523193359375, 0.611599609375, 0.6104749755859376, 0.611045166015625, 0.610963623046875, 0.610951171875, 0.61168212890625, 0.6109185791015626, 0.6111758422851562, 0.6113695068359375, 0.6109900512695312, 0.6115401611328125, 0.610949951171875, 0.6108753662109375, 0.6111744384765625, 0.6108746948242187, 0.6114636840820312, 0.611250244140625, 0.610959228515625, 0.6115820922851563, 0.61092041015625, 0.6112987060546875, 0.6110767822265625, 0.611411865234375, 0.6119174194335938, 0.610774658203125, 0.611037353515625, 0.610566162109375, 0.611219482421875, 0.6104780883789063, 0.6116825561523438, 0.6103765869140625, 0.6105445556640625, 0.6110844116210937, 0.6112127075195313, 0.6108016357421875, 0.6114279174804688, 0.610241455078125, 0.6113211669921875, 0.6111033935546875, 0.6113541870117187, 0.611105224609375, 0.6106083374023438, 0.611092529296875, 0.611721435546875, 0.6106875610351562, 0.6114488525390624, 0.6113054809570313, 0.6107791137695312, 0.6112071533203125, 0.6111641845703125, 0.6112214965820313, 0.6112781372070313, 0.6113916015625, 0.610779296875, 0.6114451904296875, 0.6112849731445312, 0.6113416748046875, 0.6112028198242188, 0.6110396728515625, 0.6113751220703125, 0.6110286254882813, 0.6112623291015625, 0.6121746826171875, 0.610402587890625, 0.6124005737304687, 0.6108922119140625, 0.611768310546875, 0.6109204711914062, 0.6111437377929687, 0.6113484497070313, 0.6110239868164062, 0.6111959838867187, 0.6112222900390625, 0.6117939453125, 0.611330078125, 0.611583984375, 0.6110422973632812, 0.6113079223632812, 0.6110150756835937, 0.6115774536132812, 0.6112814331054688, 0.61088525390625, 0.610998779296875, 0.6116351928710938, 0.6121427001953125, 0.6112935791015625, 0.611651611328125, 0.6115852661132812, 0.61158984375, 0.6109527587890625, 0.610888427734375, 0.6115921630859374, 0.6106536254882813, 0.6108473510742187, 0.6118167114257812, 0.6111113891601563, 0.6113118896484375, 0.6108585205078125, 0.6109044189453126, 0.6109605712890624, 0.6112481689453125, 0.6114147338867187, 0.610752685546875, 0.6111846313476562, 0.6110863647460938, 0.6110222778320312, 0.6114710083007813, 0.6109985961914063, 0.6114678344726563, 0.6113565673828125, 0.6111417846679688, 0.6116593627929687, 0.6111826782226563, 0.6116703491210937, 0.6109490966796876, 0.6115655517578125, 0.610693115234375, 0.6110773315429687, 0.6111281127929687, 0.6118500366210937, 0.6110473022460937, 0.6114962768554687, 0.6114857177734375, 0.6112329711914063, 0.61167822265625, 0.6107901611328125, 0.6116265869140625, 0.6112479248046875, 0.61144873046875, 0.61187109375, 0.6102879638671875, 0.6122516479492187, 0.6111025390625, 0.6116984252929687, 0.6117682495117187, 0.610472412109375, 0.6118174438476562, 0.6105640869140625, 0.611926025390625, 0.611567138671875, 0.6107017822265625, 0.611706298828125, 0.6110521240234374, 0.6117572021484375, 0.612184814453125, 0.6106842041015625, 0.6116370849609375, 0.6110784301757812, 0.6120189208984375, 0.611293212890625, 0.6113382568359375, 0.6117147216796875, 0.6109002075195312, 0.6115035400390625, 0.610646728515625, 0.61136279296875, 0.6111211547851563, 0.6111058959960938, 0.6116148071289063, 0.6106111450195313, 0.611332275390625, 0.6105990600585938, 0.6115392456054688, 0.6115084838867187, 0.6101905517578124, 0.6114943237304687, 0.6112234497070312, 0.611407470703125, 0.6116044921875, 0.61050146484375, 0.6120794067382812, 0.6108378295898438, 0.6114108276367187, 0.611237548828125, 0.6108038330078125, 0.611182861328125, 0.612284423828125, 0.6106126098632813, 0.612206298828125, 0.6105542602539062, 0.6119552612304687, 0.6112861328125, 0.6112113037109375, 0.6112544555664062, 0.6114638061523437, 0.611952392578125, 0.6113582763671875, 0.610810546875, 0.6126079711914062, 0.6107545776367187, 0.6121326904296875, 0.61099365234375, 0.61170556640625, 0.6126713256835937, 0.6104024658203125, 0.6125906982421875, 0.6105870971679688, 0.6122266845703125, 0.6111973876953125, 0.6116929321289063, 0.610832275390625, 0.6116475219726563, 0.6121077880859375, 0.6109210205078125, 0.6118068237304688, 0.6112506103515625, 0.6116597900390625, 0.6113929443359375, 0.61121142578125, 0.6117564697265625, 0.6117857666015625, 0.6112423095703124, 0.6110398559570313, 0.6121041870117188, 0.6117105712890625, 0.6112811279296875, 0.611064208984375, 0.6111959838867187, 0.6108968505859375, 0.6108692626953125, 0.611430419921875, 0.6108098754882813, 0.6111761474609375, 0.6110431518554688, 0.6113449096679687, 0.6107310180664063, 0.6115316772460937, 0.6114692993164063, 0.6104757080078125, 0.6113712158203125, 0.6112704467773438, 0.6113427124023437, 0.6115717163085937, 0.6105310668945313, 0.61163330078125, 0.6108427734375, 0.6118502197265625, 0.6115921630859374, 0.6103900146484375, 0.6117611694335937, 0.6107698974609375, 0.611978271484375, 0.6117611083984374, 0.6107955322265625, 0.6119133911132812, 0.6106209716796875, 0.6123458862304687, 0.611243896484375, 0.611052734375, 0.6119125366210938, 0.6110679931640625, 0.6112162475585937, 0.6125850830078124, 0.6105450439453125, 0.6122443237304688, 0.6114215698242188, 0.6118607788085938, 0.6113755493164063, 0.6115061645507812, 0.611826904296875, 0.6110618286132813, 0.6113306274414062, 0.6119398803710937, 0.6121388549804687, 0.611496826171875, 0.6111968383789063, 0.61158154296875, 0.6117154541015625, 0.611382568359375, 0.611432861328125, 0.6111724243164063, 0.6114041748046875, 0.61209521484375, 0.6118342895507812, 0.6113487548828125, 0.612005859375, 0.6110945434570313, 0.6110287475585937, 0.6114531860351563, 0.6117652587890625, 0.610704345703125, 0.6109407348632813, 0.6114449462890625, 0.6114954223632812, 0.6116541748046875, 0.611900390625, 0.6107484741210938, 0.611822021484375, 0.6110479125976562, 0.611915771484375, 0.61170068359375, 0.6108094482421875, 0.6110839233398437, 0.6109970703125, 0.611715087890625, 0.6115327758789062, 0.61136279296875, 0.6114140014648437, 0.611293212890625, 0.61115185546875, 0.6119301147460937, 0.6108995361328124, 0.6124560546875, 0.6110175170898438, 0.6112965087890625, 0.6114058837890625, 0.6116432495117188, 0.6114476318359375, 0.6111863403320312, 0.6121980590820313, 0.6117874145507812, 0.6110812377929687, 0.611695068359375, 0.6110883178710937, 0.61243603515625, 0.6119996337890625, 0.61095556640625, 0.6116661987304688, 0.610967529296875, 0.6117539672851563, 0.61153271484375, 0.61158203125, 0.6116188354492188, 0.6116188354492188, 0.6107908935546875, 0.6125614624023438, 0.611567626953125, 0.6112808837890625, 0.6116290283203125, 0.6113873901367187, 0.612421630859375, 0.611565185546875, 0.6117789306640625, 0.6108671875, 0.61222216796875, 0.6117747192382812, 0.6116050415039063, 0.6115977172851562, 0.6112446899414062, 0.6119505615234375, 0.6115143432617187, 0.6112133178710938, 0.6109389038085937, 0.6114498291015625, 0.6111221923828125, 0.6121287841796875, 0.6100809326171875, 0.6120098266601562, 0.6109921264648438, 0.6113211059570313, 0.6113121948242187, 0.6112925415039062, 0.6113984375, 0.611454345703125, 0.6114136352539062, 0.6119331665039063, 0.6110739135742187, 0.6118888549804687, 0.6115637817382813, 0.6115280151367187, 0.6106920166015625, 0.6120549926757812, 0.611082275390625, 0.61172119140625, 0.6113543090820313, 0.611282958984375, 0.61156591796875, 0.61148291015625, 0.6115827026367188, 0.61085888671875, 0.6118744506835937, 0.6116233520507812, 0.6119481201171875, 0.61106005859375, 0.61166796875, 0.6118728637695312, 0.610848388671875, 0.612122802734375, 0.6112965087890625, 0.6121966552734375, 0.6116377563476563, 0.611567626953125, 0.6121145629882813, 0.61161181640625, 0.6117364501953125, 0.6111968383789063, 0.6119666748046875, 0.6112833862304687, 0.6117703857421875, 0.6125808715820312, 0.6109168701171875, 0.6113150024414062, 0.6118038330078125, 0.6116127319335938, 0.6124400024414063, 0.6106331176757812, 0.611764892578125, 0.6115382690429687, 0.6115887451171875, 0.6122815551757812, 0.6113696899414063, 0.61158203125, 0.6125175170898437, 0.6118273315429688, 0.6111178588867188, 0.6110796508789063, 0.6114712524414062, 0.6117977905273437, 0.611784912109375, 0.61105322265625, 0.6115532836914063, 0.6113218383789063, 0.6120200805664062, 0.6107853393554687, 0.6117777709960938, 0.6113821411132813, 0.611683837890625, 0.6118856201171875, 0.61125341796875, 0.6108681640625, 0.611375, 0.6117590942382812, 0.6111150512695313, 0.6115455322265625, 0.6114103393554687, 0.6111492919921875, 0.6117642211914063, 0.6117012939453125, 0.6114487915039063, 0.6117152099609375, 0.6112135620117187, 0.6121029663085937, 0.6118154296875, 0.61160498046875, 0.6118670654296875, 0.6117969970703125, 0.6106843872070312, 0.6123680419921875, 0.6115070190429688, 0.6117271728515625, 0.611373046875, 0.61243408203125, 0.6114918212890625, 0.6121692504882813, 0.61119921875, 0.6118868408203125, 0.6116414794921875, 0.611754150390625, 0.6111735229492188, 0.6117667236328125, 0.6120140991210937, 0.6122023315429688, 0.6115181884765625, 0.6117030639648438, 0.6116904907226562, 0.6116195678710937, 0.611751953125, 0.6125194091796875, 0.6119388427734375, 0.6119915771484375, 0.6117601318359375, 0.612121826171875, 0.6117793579101563, 0.6114078979492188, 0.6126141357421875, 0.6114260864257812, 0.6122276000976562, 0.6115369873046875, 0.6108263549804688, 0.6116002807617188, 0.6113702392578125, 0.6110420532226563, 0.6116039428710938, 0.6109025268554688, 0.611217041015625, 0.6117154541015625, 0.6109921264648438, 0.6114871215820312, 0.6117135620117188, 0.6114755249023438, 0.6108710327148438, 0.611488037109375, 0.6119318237304687, 0.6111788330078125, 0.611694580078125, 0.611493896484375, 0.6110637817382812, 0.6114118041992187, 0.6115015869140625, 0.6112830810546875, 0.6119649047851563, 0.6117708740234375, 0.6107279663085937, 0.6119935913085938, 0.6113423461914063, 0.6116249389648437, 0.611358642578125, 0.6114295654296875, 0.6116730346679687, 0.6117742309570312, 0.6115117797851563, 0.6119463500976563, 0.611017578125, 0.6122537231445313, 0.611446044921875, 0.6121294555664063, 0.6116015625, 0.6116072998046875, 0.6116763305664062, 0.6117437744140625, 0.6113546142578125, 0.6115429077148438, 0.6107661743164062, 0.6120408935546875, 0.6112135620117187, 0.6119387817382812, 0.6119666137695312, 0.6120185546875, 0.610864990234375, 0.61204833984375, 0.6110808715820313, 0.6115655517578125, 0.6121328735351562, 0.6121287841796875, 0.6120202026367187, 0.6107361450195312, 0.61201611328125, 0.6118806762695312, 0.6115453491210937]",tokens/s,1.6357716618268952,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,3162.034176,4423.876608,0.0,4028.628992,3944.723968,s,1,10.139919921875,10.139919921875,0.0,10.139919921875,10.139919921875,10.139919921875,10.139919921875,[10.139919921875],,kWh,9.448301945834221e-05,1.0414976070960834e-05,2.917669000800094e-05,0.00013407468553730398,,MB,2943.471616,4763.615232,0.0,4353.687552,4305.05728,s,10,1.0864285354614256,0.10864285354614256,0.0009323365593873592,0.10896449661254883,0.10917128753662109,0.10925636291503907,0.10932442321777344,"[0.108942626953125, 0.10898636627197265, 0.10888729858398437, 0.10912060546875, 0.10934143829345704, 0.10915238189697266, 0.10807360076904297, 0.10881046295166015, 0.10909606170654297, 0.10601769256591796]",tokens/s,2356.3445881994644,kWh,3.251938411296191e-06,3.586319725762157e-07,2.1665819801776804e-06,5.777152364050087e-06,tokens/kWh,44312488.89903443,MB,2945.818624,4763.615232,0.0,4353.687552,4305.05984,s,10,21.81330712890625,2.1813307128906247,0.008862422337077453,2.181543701171875,2.1906317626953125,2.1919728637695313,2.1930457446289062,"[2.188095703125, 2.190167236328125, 2.19331396484375, 2.174505126953125, 2.1765244140625, 2.18593408203125, 2.170438720703125, 2.1771533203125, 2.1668408203125, 2.190333740234375]",tokens/s,28.881452788291124,kWh,6.324622699662207e-05,6.975845056279136e-06,3.424028047862247e-05,0.0001044623525315237,tokens/kWh,603088.0836326985,,s,630,21.81070582580564,0.03462016797746931,0.0005132230684201481,0.034509664535522455,0.0350792552947998,0.0353736967086792,0.03716842910766602,"[0.03538739013671875, 0.03503308868408203, 0.03500851058959961, 0.034581729888916016, 0.034584415435791015, 0.034508766174316405, 0.034425216674804686, 0.034523521423339844, 0.03444329452514648, 0.03458272171020508, 0.03487948989868164, 0.03455385589599609, 0.034490367889404294, 0.03480985641479492, 0.03461939239501953, 0.03500646209716797, 0.03496259307861328, 0.03493465423583984, 0.03535696029663086, 0.03476755142211914, 0.03455980682373047, 0.03481411361694336, 0.03457846450805664, 0.03494911956787109, 0.03481100845336914, 0.03465468978881836, 0.03455340957641601, 0.03461356735229492, 0.03443075180053711, 0.03442953491210937, 0.03432259368896484, 0.03476684951782227, 0.03417497634887695, 0.034326526641845705, 0.03474051284790039, 0.034445022583007814, 0.03461503982543945, 0.03466870498657226, 0.03456156921386719, 0.034665023803710934, 0.03441664123535156, 0.03457987213134766, 0.034259552001953124, 0.03418838500976563, 0.0344334716796875, 0.034353633880615235, 0.03444057464599609, 0.03480384063720703, 0.034728446960449216, 0.037367809295654295, 0.034961406707763674, 0.03476275253295898, 0.03463987350463867, 0.034697216033935545, 0.03470950317382813, 0.03469107055664063, 0.034442272186279294, 0.03448112106323242, 0.03439206314086914, 0.034598209381103515, 0.03485356903076172, 0.03717529678344727, 0.03470131301879883, 0.03522969436645508, 0.03618815994262695, 0.0348711051940918, 0.034547039031982425, 0.035461982727050784, 0.036808704376220705, 0.03485628890991211, 0.03467913436889648, 0.03490028762817383, 0.03580723190307617, 0.03491984176635742, 0.034877857208251956, 0.03518278503417969, 0.03449651336669922, 0.03465011215209961, 0.03480166244506836, 0.03527679824829102, 0.034560001373291016, 0.03447795104980469, 0.03453305435180664, 0.03462393569946289, 0.03460675048828125, 0.034551647186279295, 0.03454617691040039, 0.03439811325073242, 0.03451500701904297, 0.034612319946289063, 0.03459900665283203, 0.035543903350830075, 0.035125152587890625, 0.03527811050415039, 0.03485555267333985, 0.0345797119140625, 0.03456915283203125, 0.03445555114746094, 0.03445555114746094, 0.034465473175048826, 0.0344290885925293, 0.03450896072387695, 0.03436921691894531, 0.03450681686401367, 0.03479283142089844, 0.0345337905883789, 0.034466270446777345, 0.03457369613647461, 0.03440435028076172, 0.03450646209716797, 0.03443382263183594, 0.03447814559936523, 0.03442489624023438, 0.03464601516723633, 0.03480575942993164, 0.034988033294677735, 0.034799617767333986, 0.03470950317382813, 0.03457024002075195, 0.034336769104003906, 0.03439820861816406, 0.03457331085205078, 0.034457759857177736, 0.03474313735961914, 0.0348322868347168, 0.03470479965209961, 0.035405601501464844, 0.03495062255859375, 0.03476534271240234, 0.03467673492431641, 0.03451084899902344, 0.03451254272460937, 0.034285919189453125, 0.03433881759643555, 0.03480780792236328, 0.03479347229003906, 0.0348671989440918, 0.0348221435546875, 0.034754558563232424, 0.034590721130371094, 0.034648063659667966, 0.03437088012695313, 0.03443513488769531, 0.03448691177368164, 0.03458796691894531, 0.03470099258422851, 0.03478192138671875, 0.03465859222412109, 0.03509849548339844, 0.034899456024169925, 0.03473436737060547, 0.03448796844482422, 0.034662113189697266, 0.03426553726196289, 0.03439260864257813, 0.03489484786987305, 0.034423809051513675, 0.03466236877441406, 0.03502054214477539, 0.03528054428100586, 0.03485299301147461, 0.035001056671142575, 0.03490793609619141, 0.03477043151855469, 0.0346319694519043, 0.03445939254760742, 0.034443744659423826, 0.03430131149291992, 0.0340814094543457, 0.034412384033203125, 0.034861217498779296, 0.03501875305175781, 0.03528927993774414, 0.03508614349365234, 0.03504742431640625, 0.03521331024169922, 0.03507183837890625, 0.03508348846435547, 0.03534944152832031, 0.03530281448364258, 0.03534646224975586, 0.03532790374755859, 0.035154590606689455, 0.035168254852294925, 0.03540377426147461, 0.03496956634521484, 0.03473590469360351, 0.035028831481933594, 0.03512483215332031, 0.035402751922607424, 0.034958335876464845, 0.0347586555480957, 0.034907615661621094, 0.034514591217041014, 0.03465286254882813, 0.03465753555297851, 0.03452998352050781, 0.034382080078125, 0.034215614318847655, 0.034271808624267576, 0.03417625427246094, 0.03409356689453125, 0.03415407943725586, 0.03432080078125, 0.03439779281616211, 0.034636192321777344, 0.03439206314086914, 0.034340545654296874, 0.03420393753051758, 0.034358814239501954, 0.0344246711730957, 0.034375457763671874, 0.03425491333007812, 0.03466665649414063, 0.034382495880126956, 0.03459827041625976, 0.03473881530761719, 0.03456950378417969, 0.034681312561035155, 0.03521356964111328, 0.03593011093139648, 0.034830337524414064, 0.03462960052490234, 0.03442076873779297, 0.03430806350708008, 0.03432825469970703, 0.03442723083496094, 0.034457023620605466, 0.03437420654296875, 0.03429580688476563, 0.03421388626098633, 0.03410528182983399, 0.03410480117797852, 0.03428003311157227, 0.03431628799438476, 0.03419340896606445, 0.034129920959472655, 0.034305759429931644, 0.03464015960693359, 0.03699097442626953, 0.03503513717651367, 0.03465216064453125, 0.03462348937988281, 0.034258846282958985, 0.03424470520019531, 0.0341071662902832, 0.03416086578369141, 0.034286880493164064, 0.03406460952758789, 0.03412223815917969, 0.03442483139038086, 0.03474374389648437, 0.03446169662475586, 0.034123870849609376, 0.03405408096313477, 0.03405337524414063, 0.034000926971435544, 0.03715161514282227, 0.03461939239501953, 0.034738174438476564, 0.03495727920532227, 0.03478940963745117, 0.034686817169189456, 0.03463753509521485, 0.03480825424194336, 0.03475843048095703, 0.03445126342773437, 0.03434947204589844, 0.03459481430053711, 0.034151649475097655, 0.0343785285949707, 0.034163871765136716, 0.03462643051147461, 0.03454492950439453, 0.03486995315551758, 0.03440639877319336, 0.03420528030395508, 0.0343392333984375, 0.03420569610595703, 0.03414371109008789, 0.0342817268371582, 0.03405033493041992, 0.034269184112548826, 0.034716926574707034, 0.03448684692382813, 0.03436761474609375, 0.03440166473388672, 0.03427734375, 0.03451561737060547, 0.03450067138671875, 0.03446934509277344, 0.03465827178955078, 0.03459331130981445, 0.03539971160888672, 0.03482419204711914, 0.03490611267089844, 0.03496345520019531, 0.03491020965576172, 0.0347393913269043, 0.03496364974975586, 0.034672286987304686, 0.03454665756225586, 0.03490371322631836, 0.034436607360839845, 0.03442134475708008, 0.03540518569946289, 0.03430694580078125, 0.03446076965332031, 0.034442142486572264, 0.03417497634887695, 0.0343633918762207, 0.03428281784057617, 0.03401388931274414, 0.03418080139160156, 0.03410966491699219, 0.035161598205566406, 0.0349005126953125, 0.03469292831420898, 0.03443059158325195, 0.034965534210205075, 0.034675521850585936, 0.034418689727783204, 0.0344370231628418, 0.03464371109008789, 0.03407206344604492, 0.03417993545532227, 0.034063423156738284, 0.03438278579711914, 0.035097984313964846, 0.03460492706298828, 0.0343109130859375, 0.034393505096435545, 0.03465071868896484, 0.03419456100463867, 0.03722943878173828, 0.03759638214111328, 0.03425513458251953, 0.034242111206054686, 0.03434108734130859, 0.03450508880615234, 0.03655100631713867, 0.03470489501953125, 0.03449478530883789, 0.03580742263793945, 0.035037185668945314, 0.03465011215209961, 0.03425075149536133, 0.034661983489990236, 0.035546913146972656, 0.03507878494262695, 0.035026943206787106, 0.03523583984375, 0.03490339279174805, 0.034546337127685546, 0.03462736129760742, 0.03440576171875, 0.03429430389404297, 0.03507436752319336, 0.03422822570800781, 0.03430115127563477, 0.03435708618164063, 0.03416096115112305, 0.03426572799682617, 0.03452694320678711, 0.03469692611694336, 0.034337024688720706, 0.03436316680908203, 0.03471971130371094, 0.03423494338989258, 0.03422208023071289, 0.03426038360595703, 0.03411004638671875, 0.034327934265136716, 0.034500606536865236, 0.03432447814941406, 0.034810497283935544, 0.03475001525878906, 0.034834495544433595, 0.03526022338867187, 0.034554847717285155, 0.03434659194946289, 0.034300193786621094, 0.034144382476806644, 0.03457747268676758, 0.034872257232666015, 0.034576385498046876, 0.03452320098876953, 0.03423839950561523, 0.034103294372558594, 0.034207199096679686, 0.03395199966430664, 0.03404748916625976, 0.03407747268676758, 0.0339128303527832, 0.033914302825927736, 0.03436758422851562, 0.03526294326782226, 0.034846240997314454, 0.034691551208496096, 0.034610561370849606, 0.034374271392822266, 0.03436048126220703, 0.03418812942504883, 0.03469107055664063, 0.03437286376953125, 0.034105182647705075, 0.034255775451660156, 0.03461324691772461, 0.03479142379760742, 0.034479934692382815, 0.03427552032470703, 0.03419955062866211, 0.03521283340454102, 0.03430380630493164, 0.03440019226074219, 0.03425558471679688, 0.03420159912109375, 0.03383295822143555, 0.0341190414428711, 0.03439475250244141, 0.03479075241088867, 0.03478915023803711, 0.03463257598876953, 0.034334720611572264, 0.0346333122253418, 0.034671009063720705, 0.034455169677734376, 0.03461977767944336, 0.03432243347167969, 0.03423788833618164, 0.034253376007080075, 0.03528444671630859, 0.034896385192871096, 0.03472796630859375, 0.03426303863525391, 0.03448831939697266, 0.03466035079956055, 0.03435724639892578, 0.03428953552246094, 0.034375808715820313, 0.03428704071044922, 0.03538739013671875, 0.0346478385925293, 0.03445987319946289, 0.034533374786376955, 0.034240543365478514, 0.034676704406738285, 0.03415260696411133, 0.03426838302612305, 0.03423091125488281, 0.0341682243347168, 0.034324417114257814, 0.034571006774902345, 0.03437942504882813, 0.034590110778808594, 0.03449932861328125, 0.034164833068847655, 0.037119998931884765, 0.034484222412109376, 0.034332481384277344, 0.034144161224365234, 0.0343059196472168, 0.03420585632324219, 0.03451110458374024, 0.034869247436523435, 0.034743648529052734, 0.0345258560180664, 0.03438777542114258, 0.034264671325683595, 0.034313823699951174, 0.03429478454589844, 0.03442227172851563, 0.03442329788208008, 0.034070526123046875, 0.034181121826171876, 0.0343078384399414, 0.034873054504394534, 0.03471404647827148, 0.03460300827026367, 0.03437932968139648, 0.03432463836669922, 0.03433478546142578, 0.03424492645263672, 0.03417497634887695, 0.034080768585205076, 0.034533374786376955, 0.03428102493286133, 0.03427372741699219, 0.03471769714355469, 0.034769054412841796, 0.03438985443115234, 0.034375679016113284, 0.03410739135742188, 0.03474431991577148, 0.034375137329101565, 0.03459945678710938, 0.03543215942382812, 0.03740409469604492, 0.0350731201171875, 0.03491814422607422, 0.034776287078857424, 0.034506752014160154, 0.034498687744140624, 0.03420598220825195, 0.034304000854492187, 0.03426303863525391, 0.033974273681640625, 0.034166145324707034, 0.03424505615234375, 0.034444671630859375, 0.03430688095092774, 0.034227745056152344, 0.036382560729980466, 0.035078239440917966, 0.03435984039306641, 0.034076576232910154, 0.034343006134033204, 0.03406380844116211, 0.0340906867980957, 0.03396217727661133, 0.03464860916137695, 0.03468828964233398, 0.03446636962890625, 0.034426433563232425, 0.03444403076171875, 0.0346861457824707, 0.03450124740600586, 0.034191551208496096, 0.034248767852783205, 0.034186176300048825, 0.0342108154296875, 0.03424665451049805, 0.034519264221191406, 0.03483363342285156, 0.03455779266357422, 0.034461536407470704, 0.034366336822509766, 0.03419443130493164, 0.03432115173339844, 0.03420800018310547, 0.03411264038085938, 0.03432742309570312, 0.03422003173828125, 0.034070560455322266, 0.03454528045654297, 0.034783584594726566, 0.03443270492553711, 0.03435961532592773, 0.034399551391601564, 0.03446956634521484, 0.034452255249023435, 0.03435542297363281, 0.034404319763183595, 0.03434409713745117, 0.034214336395263674, 0.03435974502563476, 0.03442483139038086, 0.03465420913696289, 0.034725822448730466, 0.034389472961425784, 0.034279647827148436, 0.03436991882324219, 0.03427900695800781, 0.03428803253173828, 0.034088958740234376, 0.034426048278808595, 0.03413670349121094, 0.0355302734375, 0.034889217376708984, 0.034751487731933595, 0.03433062362670898, 0.034617088317871095, 0.03422233581542969, 0.034455360412597655, 0.03429804611206055, 0.03434239959716797, 0.034319038391113284, 0.03494073486328125, 0.03477612686157226, 0.03458758544921875, 0.03472515106201172, 0.03469590377807617, 0.03427081680297851, 0.03440201568603515, 0.034493118286132815, 0.03430809783935547, 0.034106689453125, 0.03428422546386719, 0.034625408172607425, 0.0350079345703125, 0.034570945739746096, 0.034457599639892575, 0.034471519470214845, 0.03428803253173828, 0.03433039855957031, 0.03435951995849609, 0.03451036834716797, 0.03448403167724609, 0.034151073455810546, 0.03410124969482422, 0.03423027038574219, 0.03497574234008789, 0.034664447784423826, 0.03458598327636719, 0.034447391510009764, 0.034482112884521486, 0.03431827163696289, 0.03467702484130859, 0.03444364929199219, 0.03444035339355469, 0.03432745742797851, 0.03461251068115234, 0.03448400115966797, 0.03810604858398438, 0.03489996719360351, 0.034705406188964845, 0.034699264526367186, 0.035168254852294925, 0.034813697814941404, 0.03469952011108399, 0.03594649505615234, 0.03774259185791016, 0.034887680053710936, 0.03483011245727539, 0.03527702331542969, 0.03587071990966797, 0.03531491088867188, 0.03511785507202148, 0.03482150268554687, 0.03575462341308594]",tokens/s,28.88489740000097,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1169.977344,1101.98784,0.0,706.740224,681.6384,s,1,8.240458984375,8.240458984375,0.0,8.240458984375,8.240458984375,8.240458984375,8.240458984375,[8.240458984375],,kWh,3.042966298750116e-05,3.348905752097596e-06,8.997784976011447e-06,4.2776353715610206e-05,,MB,1477.947392,1406.07488,0.0,996.1472,949.238272,s,10,0.2649172801971435,0.026491728019714354,0.00029793763482712345,0.026321727752685545,0.02689329662322998,0.026940312099456788,0.02697792448043823,"[0.026882848739624023, 0.026987327575683593, 0.026252416610717772, 0.02670947265625, 0.026139328002929688, 0.026283327102661132, 0.026788543701171875, 0.026230560302734376, 0.026358240127563475, 0.026285215377807616]",tokens/s,9663.39378878918,kWh,7.905608014752041e-07,8.718526049061943e-08,4.875897294107915e-07,1.365335791376615e-06,tokens/kWh,187499662.43973225,MB,1498.300416,1414.463488,0.0,1004.535808,949.240832,s,10,12.595625854492187,1.2595625854492187,0.007672994935525482,1.2575475463867187,1.2665170166015625,1.2722932983398436,1.2769143237304688,"[1.278069580078125, 1.26454345703125, 1.250636962890625, 1.25344140625, 1.259962646484375, 1.2652333984375, 1.255451171875, 1.254578369140625, 1.2596439208984376, 1.25406494140625]",tokens/s,50.01736374817077,kWh,3.732229134477349e-05,4.116098889717311e-06,1.5007144888589593e-05,5.6445535123080395e-05,tokens/kWh,1116120.165441385,,s,630,12.593511472702021,0.019989700750320676,0.0003206107088227993,0.019910863876342774,0.02026016883850098,0.02048119831085205,0.02131405834197999,"[0.02076630401611328, 0.02052751922607422, 0.020439136505126954, 0.020158016204833984, 0.020348800659179687, 0.02035145568847656, 0.020225791931152343, 0.020098335266113283, 0.020228767395019533, 0.020021568298339842, 0.020414464950561522, 0.020178239822387697, 0.01999942398071289, 0.019785728454589844, 0.01985955238342285, 0.02021798324584961, 0.020110143661499023, 0.019719135284423827, 0.019830976486206055, 0.020127552032470703, 0.020385631561279295, 0.020480159759521485, 0.020315168380737304, 0.0209946231842041, 0.020470176696777344, 0.02031001663208008, 0.020108768463134766, 0.02002998352050781, 0.01989836883544922, 0.019933183670043944, 0.020107040405273436, 0.020168928146362303, 0.019895776748657227, 0.019812896728515626, 0.01998624038696289, 0.02004412841796875, 0.020193119049072266, 0.02015827178955078, 0.020273344039916992, 0.020234304428100584, 0.019994239807128906, 0.020224319458007813, 0.021409408569335937, 0.019943807601928713, 0.020174047470092774, 0.02036796760559082, 0.02034294319152832, 0.019965343475341797, 0.02000048065185547, 0.019989408493041993, 0.020133888244628906, 0.020100608825683593, 0.02318751907348633, 0.02056550407409668, 0.02014508819580078, 0.020105215072631837, 0.02022400093078613, 0.02007859230041504, 0.020330656051635743, 0.021389152526855467, 0.020841567993164063, 0.02059561538696289, 0.020523008346557618, 0.020568384170532226, 0.020301408767700195, 0.020048704147338867, 0.020000448226928712, 0.020154687881469728, 0.020146175384521483, 0.02004755210876465, 0.020164352416992187, 0.02005459213256836, 0.020008960723876954, 0.019984064102172853, 0.020611391067504883, 0.019893312454223634, 0.019960128784179687, 0.01991334342956543, 0.019918848037719726, 0.020000768661499024, 0.020059776306152344, 0.019853696823120118, 0.01985536003112793, 0.01999977684020996, 0.02113020706176758, 0.020808736801147462, 0.020384735107421875, 0.020258207321166993, 0.020103103637695314, 0.020191200256347658, 0.020443359375, 0.020122079849243163, 0.02029497528076172, 0.02003424072265625, 0.02003321647644043, 0.019908287048339843, 0.019873823165893555, 0.019794143676757813, 0.0199048957824707, 0.01995955276489258, 0.020133312225341798, 0.02018771171569824, 0.019949855804443358, 0.02037881660461426, 0.01994211196899414, 0.019732736587524415, 0.01975276756286621, 0.020083808898925783, 0.020108192443847657, 0.019970048904418947, 0.01989593505859375, 0.01991436767578125, 0.019864320755004883, 0.01991231918334961, 0.01977494430541992, 0.019865888595581055, 0.019937919616699218, 0.01995699119567871, 0.019800832748413086, 0.019918848037719726, 0.020229408264160156, 0.020214048385620118, 0.02011123275756836, 0.02001158332824707, 0.01998147201538086, 0.019925695419311523, 0.0198089599609375, 0.019951520919799806, 0.019779680252075195, 0.019796255111694337, 0.019748512268066405, 0.019847007751464845, 0.0198305606842041, 0.019767744064331055, 0.019793376922607422, 0.019814144134521483, 0.019888927459716797, 0.019799711227416993, 0.019751264572143556, 0.0199267520904541, 0.019900703430175783, 0.019939136505126954, 0.0199354248046875, 0.01993280029296875, 0.020251007080078126, 0.020122751235961914, 0.01995395278930664, 0.019790016174316406, 0.0198701114654541, 0.019916000366210936, 0.019927295684814453, 0.02000092887878418, 0.0203001594543457, 0.019891584396362304, 0.01987443161010742, 0.019810464859008788, 0.019715967178344725, 0.02018876838684082, 0.019917184829711915, 0.019707807540893553, 0.01983292770385742, 0.019742719650268553, 0.019705312728881836, 0.019691904067993163, 0.01977471923828125, 0.019614463806152345, 0.019675296783447267, 0.01963827133178711, 0.019779584884643556, 0.01989360046386719, 0.019791616439819335, 0.019762239456176757, 0.019731327056884764, 0.01976176071166992, 0.019874176025390624, 0.019736576080322265, 0.019761152267456054, 0.019961856842041017, 0.019762432098388672, 0.019886751174926758, 0.019861215591430663, 0.020029823303222657, 0.01985945510864258, 0.019779584884643556, 0.01982464027404785, 0.019741792678833008, 0.019766176223754883, 0.019775487899780272, 0.019936607360839843, 0.01998585510253906, 0.019958208084106446, 0.019869823455810547, 0.019900415420532228, 0.01987583923339844, 0.01984716796875, 0.01984214401245117, 0.019798944473266602, 0.019808256149291992, 0.019655967712402345, 0.019673728942871095, 0.019730527877807616, 0.019900415420532228, 0.01988761520385742, 0.019734655380249023, 0.0197857608795166, 0.01996556854248047, 0.01993187141418457, 0.019795967102050782, 0.019769344329833984, 0.01982259178161621, 0.01979372787475586, 0.019959999084472657, 0.01978748893737793, 0.01977987289428711, 0.019775775909423827, 0.01981996726989746, 0.019800352096557616, 0.019900703430175783, 0.019914464950561525, 0.02009516716003418, 0.019945247650146485, 0.019948896408081056, 0.020085151672363282, 0.019900703430175783, 0.019932735443115236, 0.020009408950805663, 0.019982559204101562, 0.019877664566040038, 0.01969270324707031, 0.020119808197021485, 0.019993183135986328, 0.02025187110900879, 0.02015648078918457, 0.01995644760131836, 0.019885663986206056, 0.019807968139648437, 0.019991231918334962, 0.019853311538696287, 0.019944511413574218, 0.0197291202545166, 0.019765472412109374, 0.01996143913269043, 0.02023200035095215, 0.02006275177001953, 0.02001296043395996, 0.01992310333251953, 0.019804159164428712, 0.019832639694213866, 0.019763391494750978, 0.01984716796875, 0.019900415420532228, 0.019877023696899414, 0.019928543090820313, 0.019927391052246092, 0.020050111770629882, 0.020622976303100587, 0.01988595199584961, 0.019819007873535157, 0.019767295837402343, 0.01984511947631836, 0.0200581111907959, 0.019926496505737305, 0.019868192672729493, 0.021798912048339843, 0.02038118362426758, 0.02036787223815918, 0.020105215072631837, 0.019947200775146483, 0.019878208160400392, 0.019767488479614258, 0.019787296295166016, 0.019812320709228514, 0.01991628837585449, 0.01989846420288086, 0.019870431900024414, 0.019901567459106446, 0.020454336166381835, 0.019989631652832032, 0.019947904586791992, 0.019806720733642577, 0.02017683219909668, 0.02019327926635742, 0.020313535690307617, 0.020238367080688477, 0.02020102310180664, 0.020214752197265626, 0.020024511337280275, 0.020144384384155275, 0.01987180709838867, 0.019810815811157227, 0.019868959426879884, 0.01993974494934082, 0.019802431106567382, 0.019752960205078125, 0.019715232849121092, 0.019770048141479493, 0.019822111129760744, 0.019763839721679687, 0.019765247344970704, 0.01975654411315918, 0.01992755126953125, 0.01992428779602051, 0.019853599548339845, 0.01991107177734375, 0.02001203155517578, 0.019892448425292968, 0.01989459228515625, 0.02007206344604492, 0.020089696884155274, 0.019832223892211915, 0.020075103759765626, 0.02001919937133789, 0.019997760772705077, 0.01995622444152832, 0.01983459281921387, 0.019830175399780273, 0.019931711196899415, 0.019814367294311522, 0.019861888885498048, 0.020291584014892578, 0.020150272369384766, 0.02233568000793457, 0.021124000549316405, 0.019907487869262695, 0.01988921546936035, 0.020192192077636718, 0.02002943992614746, 0.019804159164428712, 0.019920064926147462, 0.020043712615966797, 0.01991062355041504, 0.019921823501586913, 0.01992038345336914, 0.01989059257507324, 0.01985955238342285, 0.01983283233642578, 0.020092927932739257, 0.01982259178161621, 0.01985536003112793, 0.019783679962158202, 0.01984921646118164, 0.02003126335144043, 0.019990751266479492, 0.019889503479003905, 0.019986783981323242, 0.01999839973449707, 0.02006687927246094, 0.020104480743408204, 0.020111520767211913, 0.019968544006347656, 0.020172191619873048, 0.020203487396240234, 0.020175392150878907, 0.020695295333862305, 0.020547391891479493, 0.020977216720581053, 0.02008438491821289, 0.019859615325927733, 0.019792640686035156, 0.01972809600830078, 0.019800352096557616, 0.02021990394592285, 0.020176511764526367, 0.0201582088470459, 0.019831167221069337, 0.019880191802978515, 0.020068351745605468, 0.019859039306640625, 0.0198701114654541, 0.019826751708984375, 0.0199964485168457, 0.02026630401611328, 0.020052448272705078, 0.020093120574951173, 0.019932704925537108, 0.020294303894042968, 0.020191232681274415, 0.020247840881347658, 0.020064287185668946, 0.020150976181030275, 0.02025062370300293, 0.02046566390991211, 0.020112991333007812, 0.019851680755615234, 0.01984921646118164, 0.019935232162475586, 0.02002943992614746, 0.019802112579345704, 0.019715103149414062, 0.019921215057373046, 0.019899040222167968, 0.019931007385253906, 0.019931264877319336, 0.019773088455200195, 0.0198372802734375, 0.019910655975341796, 0.022226783752441408, 0.019900575637817382, 0.019740671157836915, 0.01982259178161621, 0.01968332862854004, 0.019910655975341796, 0.019881824493408203, 0.019773120880126952, 0.01980259132385254, 0.020684799194335936, 0.019795967102050782, 0.01973151969909668, 0.019759296417236328, 0.019755199432373048, 0.019929183959960937, 0.019933664321899414, 0.019937280654907227, 0.02008883285522461, 0.01986764717102051, 0.01984921646118164, 0.019844383239746095, 0.019710016250610352, 0.019800512313842774, 0.019828319549560547, 0.019839071273803712, 0.01983951950073242, 0.01988403129577637, 0.019998720169067383, 0.019932191848754884, 0.020022239685058594, 0.019887840270996094, 0.019826175689697266, 0.01985206413269043, 0.019763200759887696, 0.019742176055908202, 0.019886623382568358, 0.019793920516967774, 0.019933183670043944, 0.01983692741394043, 0.019687231063842774, 0.0196231689453125, 0.019718719482421876, 0.019734912872314454, 0.019748096466064454, 0.01998691177368164, 0.019900224685668946, 0.019924768447875975, 0.020724128723144532, 0.020008703231811524, 0.019941024780273438, 0.019805952072143553, 0.019729183197021483, 0.019809951782226564, 0.019837120056152343, 0.019788000106811525, 0.02048204803466797, 0.019982336044311523, 0.019873760223388673, 0.0198123836517334, 0.019973119735717772, 0.020351999282836913, 0.019848800659179686, 0.01970012855529785, 0.019740671157836915, 0.019802112579345704, 0.019955711364746095, 0.019930335998535158, 0.01985820770263672, 0.01978982353210449, 0.019726335525512697, 0.0198922233581543, 0.01983014488220215, 0.01990060806274414, 0.019765695571899413, 0.019826719284057617, 0.020092384338378906, 0.02013433647155762, 0.019900224685668946, 0.01988140869140625, 0.019893056869506837, 0.019808256149291992, 0.019827871322631835, 0.019831647872924806, 0.01981644821166992, 0.01978278350830078, 0.01990131187438965, 0.02005734443664551, 0.020161279678344725, 0.019932159423828123, 0.019962879180908204, 0.01982259178161621, 0.019978368759155273, 0.0198286075592041, 0.019826528549194335, 0.01984118461608887, 0.019930496215820312, 0.02007094383239746, 0.019998815536499022, 0.019933183670043944, 0.019840160369873048, 0.019851711273193358, 0.01982512092590332, 0.01978156852722168, 0.01970979118347168, 0.01992310333251953, 0.019823871612548827, 0.019864320755004883, 0.02002943992614746, 0.0199332160949707, 0.01987740707397461, 0.019855424880981444, 0.01987228775024414, 0.019834943771362305, 0.019810304641723633, 0.01972617530822754, 0.019855520248413087, 0.01983807945251465, 0.019816320419311525, 0.019893247604370116, 0.019673088073730468, 0.019703359603881837, 0.019660383224487304, 0.019634784698486327, 0.01966924858093262, 0.01983692741394043, 0.019744768142700195, 0.019832544326782227, 0.019832128524780272, 0.019843584060668946, 0.019740224838256836, 0.02064886474609375, 0.020162431716918946, 0.020026624679565428, 0.019853408813476563, 0.019851999282836916, 0.019828800201416016, 0.02078950309753418, 0.020059104919433593, 0.019829248428344725, 0.01971545600891113, 0.019755552291870117, 0.01977587127685547, 0.019812288284301757, 0.01993075180053711, 0.019984832763671877, 0.01987107276916504, 0.02101705551147461, 0.02064134407043457, 0.019874399185180663, 0.02002742385864258, 0.020006208419799804, 0.019874496459960936, 0.02004924774169922, 0.020154560089111328, 0.02098627281188965, 0.020230207443237305, 0.02161664009094238, 0.02024630355834961, 0.02003376007080078, 0.019895904541015624, 0.019831199645996094, 0.020331647872924803, 0.01991155242919922, 0.019976192474365235, 0.019992576599121094, 0.019974143981933593, 0.01983036804199219, 0.019829151153564453, 0.019918687820434572, 0.019843231201171874, 0.019971872329711916, 0.019947519302368166, 0.019852319717407228, 0.019720640182495117, 0.01974892807006836, 0.019973728179931642, 0.019950464248657228, 0.01977872085571289, 0.01981923294067383, 0.020088703155517577, 0.020008863449096678, 0.020135263442993163, 0.019893247604370116, 0.019916351318359376, 0.020001440048217772, 0.02042822456359863, 0.02080995178222656, 0.019763328552246093, 0.019793920516967774, 0.019795967102050782, 0.019898656845092774, 0.01988934326171875, 0.019885759353637695, 0.019841888427734374, 0.01987993621826172, 0.01994704055786133, 0.02016876792907715, 0.019800256729125977, 0.01972879981994629, 0.019797855377197266, 0.01976300811767578, 0.019911872863769532, 0.020279935836791992, 0.019860063552856445, 0.019754079818725585, 0.02025948715209961, 0.019875104904174806, 0.019987167358398436, 0.019871295928955077, 0.019932640075683593, 0.01981500816345215, 0.01999910354614258, 0.020165792465209963, 0.01991894340515137, 0.01986636734008789, 0.019916799545288084, 0.01989753532409668, 0.020126527786254882, 0.019961727142333983, 0.019949087142944334, 0.01979372787475586, 0.019820640563964844, 0.019744831085205077, 0.019679391860961914, 0.019701759338378907, 0.019668895721435545, 0.019730112075805665, 0.019673599243164062, 0.019655040740966797, 0.019920896530151368, 0.01981158447265625, 0.0198023681640625, 0.019742303848266602, 0.019753887176513673]",tokens/s,50.025761390347874,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1584.623616,1596.915712,0.0,1201.668096,1189.151232,s,1,8.3438662109375,8.3438662109375,0.0,8.3438662109375,8.3438662109375,8.3438662109375,8.3438662109375,[8.3438662109375],,kWh,3.5593928066667024e-05,3.918479009886834e-06,1.0983897675998638e-05,5.04963047525525e-05,,MB,1721.929728,1794.048,0.0,1384.12032,1351.367168,s,10,0.41199757003784176,0.04119975700378418,0.00014483756846233586,0.041238176345825196,0.04129707107543945,0.04141133575439453,0.04150274749755859,"[0.04152560043334961, 0.041245952606201175, 0.04123302459716797, 0.04099168014526367, 0.041271678924560545, 0.04107120132446289, 0.04107059097290039, 0.04125964736938476, 0.041243328094482425, 0.04108486557006836]",tokens/s,6213.628880784091,kWh,1.24244321833335e-06,1.370178162340395e-07,8.233245357276679e-07,2.2027855702950574e-06,tokens/kWh,116216486.7303491,MB,1731.1744,1835.99104,0.0,1426.06336,1407.548416,s,10,10.576904418945313,1.0576904418945312,0.005352611792629986,1.0581462402343749,1.062176708984375,1.0641183227539062,1.0656716137695312,"[1.0660599365234376, 1.0612806396484376, 1.057637939453125, 1.04605126953125, 1.058654541015625, 1.055569580078125, 1.0571251220703124, 1.0617452392578124, 1.051779052734375, 1.0610010986328124]",tokens/s,59.5637414356838,kWh,3.0963543785417386e-05,3.414185807765365e-06,1.5384993986472118e-05,4.976272357965487e-05,tokens/kWh,1266007.8763405364,,s,630,10.574133043289184,0.016784338163951085,0.00033400692043555826,0.016730128288269044,0.017058774185180665,0.01727484941482544,0.01835901706695557,"[0.017328544616699217, 0.017398239135742188, 0.019746816635131836, 0.017338048934936522, 0.017328447341918945, 0.017270784378051757, 0.017137664794921875, 0.017006591796875, 0.017165567398071287, 0.017231744766235353, 0.017054559707641602, 0.018394336700439454, 0.01705196762084961, 0.016991968154907226, 0.016888799667358397, 0.01684432029724121, 0.016972192764282225, 0.016801664352416992, 0.016859136581420898, 0.016817760467529298, 0.01684115219116211, 0.01670550346374512, 0.016723968505859374, 0.01664169692993164, 0.016574560165405275, 0.016689407348632813, 0.016590368270874022, 0.016595424652099608, 0.016736255645751954, 0.016760576248168946, 0.016652671813964844, 0.01663167953491211, 0.01663801574707031, 0.01651456069946289, 0.016541280746459962, 0.016528480529785155, 0.016549055099487304, 0.016645952224731444, 0.016554752349853517, 0.01653555107116699, 0.016547840118408205, 0.016520736694335937, 0.016498687744140626, 0.01650326347351074, 0.016541696548461913, 0.01648227119445801, 0.016515104293823243, 0.016457696914672852, 0.016565439224243163, 0.018501760482788086, 0.01876652717590332, 0.016746623992919922, 0.016576416015625, 0.016617151260375978, 0.016764863967895508, 0.016619903564453125, 0.01661302375793457, 0.016699743270874024, 0.017123327255249024, 0.017155519485473635, 0.016878143310546875, 0.01692006492614746, 0.0168985595703125, 0.016728384017944336, 0.016622976303100587, 0.01651161575317383, 0.01637990379333496, 0.016433151245117187, 0.01636672019958496, 0.01643814468383789, 0.01662156867980957, 0.016702720642089844, 0.01674515151977539, 0.01691372871398926, 0.0167063045501709, 0.016736480712890626, 0.01679952049255371, 0.016730112075805666, 0.01668016052246094, 0.016747295379638674, 0.016592256546020506, 0.016581087112426757, 0.01652956771850586, 0.01678473663330078, 0.01681475257873535, 0.016930816650390625, 0.016777215957641603, 0.017083423614501953, 0.01678428840637207, 0.016756383895874024, 0.01665884780883789, 0.016875520706176757, 0.01662156867980957, 0.016691200256347655, 0.016614463806152342, 0.016645055770874023, 0.017143808364868163, 0.01717647933959961, 0.01663542366027832, 0.016659008026123048, 0.016740447998046876, 0.016750495910644533, 0.01670924758911133, 0.0169168643951416, 0.016764928817749023, 0.016730112075805666, 0.016912128448486326, 0.01686070442199707, 0.01667555236816406, 0.01684819221496582, 0.01668908882141113, 0.016730880737304686, 0.01666633605957031, 0.016752927780151368, 0.016631200790405275, 0.01797590446472168, 0.016836063385009765, 0.016726560592651367, 0.019449567794799803, 0.018272544860839842, 0.016942399978637696, 0.017070783615112304, 0.01716223907470703, 0.017334112167358397, 0.016857536315917968, 0.016805599212646485, 0.017108991622924806, 0.016888896942138673, 0.016927679061889647, 0.016903615951538085, 0.01703993606567383, 0.017079296112060546, 0.016873855590820313, 0.016760799407958986, 0.016554079055786132, 0.016622047424316406, 0.01680803108215332, 0.016699392318725585, 0.01674822425842285, 0.016685375213623045, 0.016904447555541994, 0.016625408172607423, 0.016751808166503908, 0.016812864303588866, 0.016680448532104493, 0.016653888702392577, 0.016587455749511718, 0.016648448944091798, 0.01679769515991211, 0.016662080764770507, 0.016693695068359375, 0.0166297607421875, 0.01663385581970215, 0.016570367813110352, 0.016699392318725585, 0.016598304748535155, 0.016769376754760743, 0.016673152923583984, 0.016644096374511717, 0.016539392471313478, 0.016615680694580078, 0.01653555107116699, 0.017320032119750976, 0.01705743980407715, 0.016765024185180662, 0.016692480087280272, 0.016739519119262695, 0.016801504135131835, 0.016760671615600586, 0.0166810245513916, 0.016773216247558592, 0.016748544692993163, 0.017016576766967773, 0.017344768524169923, 0.016951295852661134, 0.016928768157958983, 0.016832063674926758, 0.01681171226501465, 0.016934783935546874, 0.016954496383666993, 0.01690188789367676, 0.017088064193725584, 0.01713190460205078, 0.01683990478515625, 0.016741216659545897, 0.01664204788208008, 0.016516319274902345, 0.016431903839111327, 0.016578527450561525, 0.016645023345947266, 0.016582847595214844, 0.016561983108520507, 0.01684889602661133, 0.016512672424316407, 0.016559616088867187, 0.016452287673950194, 0.01645756721496582, 0.01655958366394043, 0.016626527786254883, 0.016451583862304688, 0.016530815124511718, 0.016783872604370118, 0.016490623474121092, 0.016556032180786134, 0.01645952033996582, 0.016435136795043947, 0.016539520263671875, 0.016550336837768555, 0.016581888198852538, 0.016547935485839844, 0.016520095825195313, 0.01647385597229004, 0.016523103713989257, 0.016455743789672853, 0.016530784606933593, 0.01644825553894043, 0.016472063064575194, 0.016457727432250976, 0.01657241630554199, 0.01646905517578125, 0.01728595161437988, 0.016627840042114258, 0.016590560913085937, 0.016470176696777344, 0.016766176223754883, 0.0165948486328125, 0.016559104919433593, 0.016447488784790038, 0.016590719223022462, 0.016558271408081054, 0.01665017509460449, 0.016562175750732423, 0.016570367813110352, 0.016554079055786132, 0.01651702308654785, 0.0164454402923584, 0.016453632354736326, 0.016493791580200194, 0.01653430366516113, 0.016523263931274415, 0.016559232711791994, 0.0165382080078125, 0.016419103622436523, 0.016434656143188477, 0.016575008392333983, 0.01659903907775879, 0.016850944519042968, 0.01692576026916504, 0.016927391052246093, 0.01716409683227539, 0.017289695739746095, 0.017037120819091797, 0.017079456329345703, 0.016754400253295897, 0.016631200790405275, 0.01657494354248047, 0.016573856353759766, 0.01667363166809082, 0.0166759033203125, 0.016702272415161132, 0.01671548843383789, 0.016795936584472655, 0.016744447708129884, 0.01671891212463379, 0.01672492790222168, 0.01665433692932129, 0.016670719146728515, 0.016861183166503906, 0.016855039596557618, 0.01683660888671875, 0.01676288032531738, 0.016762432098388673, 0.01680019187927246, 0.01683251190185547, 0.01688800048828125, 0.016942047119140626, 0.01675734329223633, 0.017033472061157226, 0.016856639862060548, 0.016818239212036134, 0.016914815902709962, 0.017098623275756834, 0.016900224685668944, 0.01684480094909668, 0.01678745651245117, 0.016787391662597656, 0.016863296508789063, 0.01679155158996582, 0.01699839973449707, 0.016766752243041992, 0.01661302375793457, 0.016728639602661133, 0.016898048400878905, 0.016931039810180664, 0.01682377624511719, 0.017117504119873048, 0.016855039596557618, 0.016854944229125975, 0.016803936004638673, 0.016902143478393555, 0.016943103790283204, 0.01705369567871094, 0.016817983627319337, 0.016791872024536133, 0.016781183242797853, 0.016744447708129884, 0.016693248748779296, 0.01676892852783203, 0.01670751953125, 0.01673846435546875, 0.01676697540283203, 0.016703487396240235, 0.016596607208251953, 0.016658176422119142, 0.01666227149963379, 0.01702230453491211, 0.0168799991607666, 0.01670172882080078, 0.01679555130004883, 0.016953407287597658, 0.016898080825805663, 0.016985952377319338, 0.016903392791748045, 0.016772031784057617, 0.016693248748779296, 0.01660927963256836, 0.0165928955078125, 0.016532512664794923, 0.016659423828125, 0.01661747169494629, 0.016900096893310547, 0.016664575576782227, 0.016639488220214844, 0.016574464797973632, 0.016961887359619142, 0.016873632431030273, 0.016631807327270508, 0.016727584838867188, 0.016798240661621094, 0.016813568115234375, 0.01678585624694824, 0.01679897689819336, 0.01671855926513672, 0.016750272750854493, 0.01678927993774414, 0.01684867286682129, 0.01686387252807617, 0.016807903289794923, 0.016863040924072266, 0.016690784454345704, 0.016626495361328125, 0.016631391525268553, 0.01653798484802246, 0.016498687744140626, 0.016488447189331054, 0.01646329689025879, 0.0164913272857666, 0.016444320678710937, 0.016633760452270507, 0.016689407348632813, 0.01655171203613281, 0.016547935485839844, 0.01662211227416992, 0.016566560745239257, 0.016674623489379883, 0.016979232788085937, 0.017308576583862305, 0.016637727737426757, 0.01656787109375, 0.016578943252563476, 0.016628000259399416, 0.016543807983398436, 0.016602880477905275, 0.01651321601867676, 0.016502784729003905, 0.016477888107299804, 0.01911020851135254, 0.017278175354003906, 0.016667776107788086, 0.016669536590576173, 0.01653334426879883, 0.01648044776916504, 0.016506879806518555, 0.016483999252319335, 0.0165382080078125, 0.016617216110229493, 0.016639999389648438, 0.01660723114013672, 0.01659903907775879, 0.016506879806518555, 0.01652115249633789, 0.01674025535583496, 0.01664620780944824, 0.01660323143005371, 0.01649446487426758, 0.016496768951416017, 0.01658233642578125, 0.016546112060546875, 0.01665023994445801, 0.016553216934204102, 0.016547584533691408, 0.016550943374633788, 0.01783724784851074, 0.017103616714477538, 0.0185262393951416, 0.016793600082397463, 0.016610912322998047, 0.016648607254028322, 0.01658060836791992, 0.016700576782226563, 0.016797664642333985, 0.016843648910522462, 0.01681203269958496, 0.016699392318725585, 0.016742399215698242, 0.016920576095581053, 0.01680384063720703, 0.01670966339111328, 0.016764543533325196, 0.016926752090454102, 0.017097024917602538, 0.017333343505859376, 0.016874399185180664, 0.01700864028930664, 0.016750175476074217, 0.01687183952331543, 0.016852447509765625, 0.01687606430053711, 0.01675596809387207, 0.01668118476867676, 0.016637760162353514, 0.016626399993896486, 0.016785408020019533, 0.017003807067871093, 0.01672643280029297, 0.01680732727050781, 0.016868255615234376, 0.016965375900268555, 0.016799936294555663, 0.016928831100463868, 0.01697996711730957, 0.016926752090454102, 0.016794143676757814, 0.01716806411743164, 0.017211103439331056, 0.017242303848266603, 0.01677676773071289, 0.01679657554626465, 0.01689948844909668, 0.01687196731567383, 0.016846847534179688, 0.016836063385009765, 0.016726335525512694, 0.016909664154052734, 0.016792512893676757, 0.016822208404541017, 0.016723775863647462, 0.016558271408081054, 0.016999679565429686, 0.01686809539794922, 0.01678745651245117, 0.01687481689453125, 0.016824287414550783, 0.01672435188293457, 0.01664601516723633, 0.016613439559936525, 0.016730144500732423, 0.01661929512023926, 0.016646751403808592, 0.016504480361938478, 0.01646134376525879, 0.01653446388244629, 0.01653708839416504, 0.016662912368774416, 0.016721920013427736, 0.016674783706665038, 0.016619455337524413, 0.016899391174316405, 0.0174021110534668, 0.016900640487670898, 0.017296672821044922, 0.017191648483276367, 0.01679769515991211, 0.016891904830932617, 0.01687731170654297, 0.016957696914672853, 0.016941055297851563, 0.016852991104125976, 0.016649375915527342, 0.016585151672363282, 0.016784000396728515, 0.016728992462158202, 0.0168723201751709, 0.017110015869140623, 0.017101472854614257, 0.016959840774536133, 0.01683456039428711, 0.016924671173095703, 0.017020256042480468, 0.01702355194091797, 0.016892000198364256, 0.016748544692993163, 0.01686028861999512, 0.017437568664550783, 0.01700454330444336, 0.016893888473510744, 0.01685264015197754, 0.01695568084716797, 0.01704560089111328, 0.016857120513916017, 0.016803647994995115, 0.016771263122558593, 0.016724319458007814, 0.01665603256225586, 0.016633216857910155, 0.016680864334106444, 0.017133440017700195, 0.016792352676391602, 0.016750656127929687, 0.01661747169494629, 0.016672767639160157, 0.01676643180847168, 0.016740896224975585, 0.016767999649047852, 0.016731136322021483, 0.017012224197387696, 0.01703558349609375, 0.01695120048522949, 0.017004352569580078, 0.017011167526245118, 0.01684480094909668, 0.01672208023071289, 0.016693088531494142, 0.016574304580688478, 0.01651113510131836, 0.016521472930908204, 0.016649984359741212, 0.016590368270874022, 0.01681046485900879, 0.01650908851623535, 0.016848735809326172, 0.016594944000244142, 0.016547840118408205, 0.016518592834472656, 0.0165545597076416, 0.016637535095214845, 0.016559871673583984, 0.017420448303222657, 0.016605247497558595, 0.016597087860107423, 0.016499040603637695, 0.01647542381286621, 0.01646870422363281, 0.016441343307495117, 0.016597024917602538, 0.01649660873413086, 0.016488544464111327, 0.016578079223632813, 0.016577024459838868, 0.01661939239501953, 0.01639833641052246, 0.0163918399810791, 0.016468320846557617, 0.01642905616760254, 0.016451040267944337, 0.016513792037963868, 0.016477983474731447, 0.016530048370361327, 0.016579999923706054, 0.01673916816711426, 0.016836639404296874, 0.016770687103271485, 0.016836896896362304, 0.016791072845458985, 0.016822816848754883, 0.01683977508544922, 0.01680476760864258, 0.016692672729492188, 0.016716352462768556, 0.016789535522460937, 0.016601055145263673, 0.01658470344543457, 0.016422592163085937, 0.016568639755249023, 0.01692451286315918, 0.016436672210693358, 0.017430944442749022, 0.0164150390625, 0.016357152938842774, 0.016462047576904296, 0.0166748161315918, 0.0167587833404541, 0.01715814399719238, 0.01707827186584473, 0.017126848220825195, 0.017044031143188476, 0.017405120849609376, 0.017578784942626952, 0.01694108772277832, 0.01699839973449707, 0.016914560317993165, 0.016905567169189454, 0.016779808044433592, 0.016989343643188475, 0.017310560226440428, 0.016952352523803713, 0.016819168090820312, 0.016731487274169923, 0.016722591400146484, 0.016719104766845704, 0.016609727859497072, 0.01663724708557129, 0.016616191864013672, 0.01661516761779785, 0.01656268882751465, 0.01658880043029785, 0.016766656875610353, 0.016654560089111328, 0.016663904190063476, 0.016601856231689454, 0.016633087158203125, 0.016589183807373047, 0.01680175971984863, 0.018142656326293947, 0.018082239151000976, 0.01688425636291504, 0.01669113540649414, 0.016951072692871095, 0.016978336334228517, 0.016882816314697267]",tokens/s,59.57935250302398,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1583.558656,1596.915712,0.0,1201.668096,1189.151232,s,1,8.3514072265625,8.3514072265625,0.0,8.3514072265625,8.3514072265625,8.3514072265625,8.3514072265625,[8.3514072265625],,kWh,3.551230208750174e-05,3.909955984242548e-06,1.0968342108001738e-05,5.039060017974603e-05,,MB,1587.183616,1794.048,0.0,1384.12032,1351.367168,s,10,0.41280178833007813,0.041280178833007816,0.0002324199835202943,0.04122892761230469,0.04140379981994628,0.04166441097259521,0.041872899894714356,"[0.04192502212524414, 0.04125302505493164, 0.04117756652832031, 0.04118697738647461, 0.04127635192871094, 0.041204830169677735, 0.0410423698425293, 0.041086944580078125, 0.04130281448364258, 0.04134588623046875]",tokens/s,6201.523521387975,kWh,1.2442479582092324e-06,1.372182518467848e-07,8.22242974578723e-07,2.20370918463474e-06,tokens/kWh,116167778.30076134,MB,1592.111104,1835.99104,0.0,1426.06336,1407.548416,s,10,10.592636230468752,1.0592636230468753,0.004145041345814589,1.0582247924804689,1.0626305419921875,1.0657195678710938,1.0681907885742188,"[1.0590074462890624, 1.05448046875, 1.061748046875, 1.06880859375, 1.0547740478515626, 1.057442138671875, 1.061944091796875, 1.0614659423828126, 1.057037109375, 1.0559283447265626]",tokens/s,59.47527945761627,kWh,3.0436203563040093e-05,3.3566527589631704e-06,1.536185330602108e-05,4.915470962802435e-05,tokens/kWh,1281667.6260881033,,s,630,10.589003307342528,0.016807941757686556,0.00032476302278186965,0.016749680519104006,0.016978409004211426,0.017119202995300294,0.017825050716400153,"[0.017150848388671876, 0.017287168502807617, 0.016746496200561522, 0.016875520706176757, 0.01684217643737793, 0.016746112823486328, 0.01671673583984375, 0.01660313606262207, 0.016697216033935546, 0.01676710319519043, 0.016852991104125976, 0.01664963150024414, 0.016642656326293945, 0.016740352630615234, 0.01662761688232422, 0.01687126350402832, 0.016965856552124025, 0.016768224716186525, 0.0168437442779541, 0.01672707176208496, 0.01672025680541992, 0.016713823318481445, 0.01672540855407715, 0.01683888053894043, 0.01675132751464844, 0.016748544692993163, 0.016778783798217775, 0.016869855880737306, 0.016906240463256835, 0.016884895324707033, 0.016795967102050783, 0.016860864639282228, 0.01676153564453125, 0.016793760299682617, 0.01678745651245117, 0.016789344787597655, 0.017066144943237306, 0.017964927673339844, 0.016765056610107423, 0.01677644729614258, 0.01664896011352539, 0.016655359268188476, 0.0167490234375, 0.016868896484375, 0.016741439819335936, 0.016914304733276368, 0.01686124801635742, 0.017123327255249024, 0.016726015090942382, 0.016764928817749023, 0.016697343826293946, 0.016793535232543944, 0.01669536018371582, 0.016729663848876954, 0.016681407928466795, 0.016717119216918944, 0.016652095794677736, 0.016714624404907227, 0.01670528030395508, 0.01675699234008789, 0.01669468879699707, 0.016810527801513674, 0.016659616470336914, 0.016749183654785157, 0.016668607711791992, 0.01669945526123047, 0.016674144744873047, 0.016882335662841797, 0.016611072540283205, 0.016762752532958985, 0.016673152923583984, 0.016633024215698244, 0.016607072830200194, 0.016788448333740234, 0.01660054397583008, 0.016798112869262697, 0.016689279556274413, 0.016690431594848634, 0.0166878719329834, 0.016842752456665038, 0.016728063583374024, 0.01683660888671875, 0.016707231521606445, 0.016718175888061522, 0.0168787841796875, 0.01697260856628418, 0.016783327102661134, 0.01677110481262207, 0.016748544692993163, 0.0167956485748291, 0.016639999389648438, 0.01669526481628418, 0.01668239974975586, 0.016749055862426757, 0.01680499267578125, 0.017029375076293946, 0.017089279174804687, 0.01679270362854004, 0.016719968795776367, 0.01685772705078125, 0.016692703247070312, 0.016610208511352538, 0.016727712631225584, 0.0165449275970459, 0.01688675117492676, 0.016852319717407225, 0.016724544525146483, 0.016691295623779297, 0.0166748161315918, 0.016713727951049806, 0.01661952018737793, 0.016750591278076172, 0.01667036819458008, 0.016617183685302735, 0.016656511306762694, 0.016629535675048827, 0.01650524711608887, 0.01678995132446289, 0.016786367416381835, 0.016861568450927733, 0.016788127899169922, 0.016697248458862304, 0.016739519119262695, 0.016595775604248048, 0.016594911575317384, 0.016773151397705077, 0.01666454315185547, 0.016793407440185548, 0.01705923271179199, 0.016935712814331056, 0.01679769515991211, 0.01662512016296387, 0.01689244842529297, 0.016794784545898438, 0.016609119415283202, 0.016607967376708985, 0.016785696029663087, 0.016838623046875, 0.016666591644287108, 0.01674799919128418, 0.01674710464477539, 0.016951295852661134, 0.017088512420654296, 0.01672563171386719, 0.016713216781616212, 0.01674025535583496, 0.016724960327148437, 0.01664780807495117, 0.01675712013244629, 0.016729663848876954, 0.01662816047668457, 0.016697343826293946, 0.016961536407470702, 0.016728063583374024, 0.016752639770507814, 0.01668057632446289, 0.016719968795776367, 0.016828447341918944, 0.01676860809326172, 0.016793695449829102, 0.016886335372924804, 0.016971967697143556, 0.017194911956787108, 0.01717033576965332, 0.016977088928222656, 0.01704140853881836, 0.0169268798828125, 0.016884479522705078, 0.016854944229125975, 0.016809120178222656, 0.016867647171020506, 0.016760671615600586, 0.01700524711608887, 0.017864704132080078, 0.017680383682250975, 0.017104032516479493, 0.017005407333374023, 0.01711916732788086, 0.01694918441772461, 0.01677939224243164, 0.016744447708129884, 0.01671507263183594, 0.01667910385131836, 0.01684940719604492, 0.016678911209106445, 0.01672985649108887, 0.01665795135498047, 0.016636640548706054, 0.016772224426269532, 0.016833536148071288, 0.016675840377807616, 0.016683008193969725, 0.016719871520996094, 0.01668819236755371, 0.016677824020385743, 0.016683008193969725, 0.016769023895263673, 0.016721920013427736, 0.016963584899902344, 0.017119232177734374, 0.016730112075805666, 0.01660416030883789, 0.0168089599609375, 0.016657888412475588, 0.016544288635253906, 0.0166014404296875, 0.016544511795043945, 0.01658358383178711, 0.016699199676513673, 0.01747577667236328, 0.020911552429199218, 0.021582239151000975, 0.01703651237487793, 0.016823232650756834, 0.016908031463623047, 0.016689407348632813, 0.016858272552490235, 0.016670751571655273, 0.016933439254760742, 0.016679168701171875, 0.016742399215698242, 0.016693248748779296, 0.01678745651245117, 0.016702592849731444, 0.0171276798248291, 0.0171812801361084, 0.016777023315429688, 0.0167174072265625, 0.016748512268066406, 0.016695968627929686, 0.016877407073974608, 0.016871583938598632, 0.01666864013671875, 0.01665363121032715, 0.016890592575073242, 0.016731584548950195, 0.01673263931274414, 0.016752735137939453, 0.016708992004394532, 0.01670412826538086, 0.016852991104125976, 0.016746496200561522, 0.01667024040222168, 0.016656448364257812, 0.016756160736083985, 0.016673215866088865, 0.016828128814697266, 0.01674671936035156, 0.01690809631347656, 0.016742687225341796, 0.0191779842376709, 0.01718003273010254, 0.01734294319152832, 0.016876575469970703, 0.01684124755859375, 0.016887231826782225, 0.016709856033325195, 0.01688991928100586, 0.01694371223449707, 0.016648191452026367, 0.016611263275146483, 0.016643295288085936, 0.016622432708740233, 0.01663795280456543, 0.01666662406921387, 0.01683865547180176, 0.016602655410766602, 0.016743104934692384, 0.016647680282592774, 0.016760671615600586, 0.016683584213256837, 0.01685286331176758, 0.016611551284790037, 0.016763776779174806, 0.016698432922363282, 0.01693270492553711, 0.016570367813110352, 0.016774560928344725, 0.016681568145751953, 0.01665843200683594, 0.016583744049072265, 0.016813119888305663, 0.01696460723876953, 0.016740447998046876, 0.01677187156677246, 0.016670719146728515, 0.016655359268188476, 0.01660211181640625, 0.016645824432373047, 0.01678163146972656, 0.016603328704833983, 0.01672502326965332, 0.016577184677124022, 0.01676915168762207, 0.016704704284667967, 0.01694921684265137, 0.016802656173706056, 0.016879039764404295, 0.016646080017089844, 0.016617311477661132, 0.016681695938110353, 0.016738367080688477, 0.01660678482055664, 0.016839040756225585, 0.01662099266052246, 0.01686300849914551, 0.01670639991760254, 0.01682841682434082, 0.016660480499267577, 0.016683008193969725, 0.016717824935913086, 0.01679120063781738, 0.016662879943847655, 0.01677107238769531, 0.016732160568237304, 0.01710095977783203, 0.017058431625366213, 0.016781312942504883, 0.016774431228637695, 0.01671446418762207, 0.01663702392578125, 0.016760992050170898, 0.016763647079467772, 0.017102848052978514, 0.016842752456665038, 0.01677836799621582, 0.0168143367767334, 0.01681878471374512, 0.016817535400390625, 0.016865951538085937, 0.01686499214172363, 0.016711519241333007, 0.017183168411254883, 0.016670719146728515, 0.01690323257446289, 0.016747264862060546, 0.016810176849365234, 0.01676803207397461, 0.016712671279907228, 0.01697996711730957, 0.016957536697387695, 0.016762176513671876, 0.01680182456970215, 0.016696895599365234, 0.016747520446777343, 0.016631807327270508, 0.016710975646972655, 0.01673664093017578, 0.016744768142700196, 0.016693248748779296, 0.016648191452026367, 0.016622751235961915, 0.01667568016052246, 0.016692703247070312, 0.016910879135131836, 0.01663795280456543, 0.016627328872680664, 0.016654720306396486, 0.01676892852783203, 0.016601184844970703, 0.016717824935913086, 0.01657241630554199, 0.016764928817749023, 0.016726015090942382, 0.01682636833190918, 0.01667430305480957, 0.01674006462097168, 0.01675254440307617, 0.01664899253845215, 0.016706911087036133, 0.01673664093017578, 0.016615680694580078, 0.01696780776977539, 0.016760639190673828, 0.01669548797607422, 0.016828479766845702, 0.017229759216308593, 0.016897247314453124, 0.01677587127685547, 0.016596960067749023, 0.016689344406127928, 0.01670515251159668, 0.016693695068359375, 0.016680831909179687, 0.01669340705871582, 0.01664614486694336, 0.016777215957641603, 0.01682841682434082, 0.016846847534179688, 0.016632863998413086, 0.016759456634521483, 0.016813535690307618, 0.016672767639160157, 0.016622432708740233, 0.01671548843383789, 0.01761065673828125, 0.016715263366699217, 0.016663103103637694, 0.0168656005859375, 0.0167521915435791, 0.016884159088134766, 0.016635967254638673, 0.01665836715698242, 0.016793600082397463, 0.016844287872314453, 0.01672038459777832, 0.016852991104125976, 0.016737823486328126, 0.01661952018737793, 0.01662828826904297, 0.016746463775634764, 0.01668835258483887, 0.017320415496826173, 0.016793855667114256, 0.016687103271484375, 0.01721958351135254, 0.01683443260192871, 0.0166843204498291, 0.016620384216308594, 0.01677516746520996, 0.016807903289794923, 0.016643392562866212, 0.016706079483032227, 0.016982175827026366, 0.016803871154785155, 0.016752639770507814, 0.016772928237915038, 0.016718015670776368, 0.0168571834564209, 0.017033119201660157, 0.017881088256835938, 0.018191904067993165, 0.0169783992767334, 0.01695692825317383, 0.016949535369873047, 0.016873695373535155, 0.016829504013061523, 0.016686016082763672, 0.01683033561706543, 0.017127552032470704, 0.017394943237304686, 0.017176448822021486, 0.017006528854370116, 0.01684294319152832, 0.01690006446838379, 0.01672400093078613, 0.0169998722076416, 0.016795423507690428, 0.016676927566528322, 0.016777952194213866, 0.016774784088134764, 0.01687923240661621, 0.016631776809692383, 0.017727968215942382, 0.01667308807373047, 0.01681203269958496, 0.017625087738037108, 0.01705366325378418, 0.016821823120117187, 0.016922592163085937, 0.016652351379394532, 0.01666502380371094, 0.016693248748779296, 0.016700864791870117, 0.016702016830444335, 0.01684889602661133, 0.017160192489624023, 0.01699190330505371, 0.016968032836914063, 0.017003711700439454, 0.016975744247436524, 0.017044416427612306, 0.017059743881225584, 0.016730207443237305, 0.01676233673095703, 0.016636447906494142, 0.016961088180541994, 0.016913888931274414, 0.016587232589721678, 0.016717727661132813, 0.016880224227905274, 0.01683456039428711, 0.01679974365234375, 0.016664575576782227, 0.016773311614990235, 0.01680899238586426, 0.016783456802368164, 0.016667327880859374, 0.016664575576782227, 0.01677926445007324, 0.016685056686401366, 0.016662687301635743, 0.016770591735839845, 0.01677343940734863, 0.016828191757202147, 0.016908607482910155, 0.017033119201660157, 0.016707584381103514, 0.016715776443481444, 0.016714048385620118, 0.01665158462524414, 0.01660713577270508, 0.016664768218994142, 0.017252191543579102, 0.01720966339111328, 0.016949247360229493, 0.01682841682434082, 0.016717824935913086, 0.01666819190979004, 0.016654367446899413, 0.016667072296142577, 0.016772159576416014, 0.01681056022644043, 0.016847232818603515, 0.016743488311767578, 0.016679040908813475, 0.017023807525634767, 0.01680588722229004, 0.016726015090942382, 0.01677107238769531, 0.016639135360717774, 0.016784223556518554, 0.016730112075805666, 0.01674425506591797, 0.016766176223754883, 0.01685321617126465, 0.01687424087524414, 0.01676288032531738, 0.016732160568237304, 0.0167956485748291, 0.01671513557434082, 0.016804479598999025, 0.016713247299194336, 0.01679408073425293, 0.016701440811157226, 0.016728063583374024, 0.016709632873535156, 0.01677107238769531, 0.01660723114013672, 0.016742399215698242, 0.016676864624023437, 0.016877567291259766, 0.016859136581420898, 0.016898048400878905, 0.016685056686401366, 0.01665433692932129, 0.01675382423400879, 0.016724191665649413, 0.01686140823364258, 0.016789920806884767, 0.016644096374511717, 0.016770143508911133, 0.016892831802368165, 0.01674985694885254, 0.017081056594848633, 0.01682431983947754, 0.01664614486694336, 0.016633216857910155, 0.01665292739868164, 0.01663385581970215, 0.016573728561401366, 0.01682896041870117, 0.01662585639953613, 0.0169716796875, 0.016633567810058595, 0.016820512771606445, 0.01674665641784668, 0.016906240463256835, 0.016701440811157226, 0.01684000015258789, 0.016886463165283205, 0.01701478385925293, 0.016760831832885743, 0.016752639770507814, 0.016764928817749023, 0.017043455123901367, 0.016883712768554687, 0.01684480094909668, 0.016752511978149413, 0.01679372787475586, 0.01666646385192871, 0.016623008728027345, 0.01678976058959961, 0.016808448791503908, 0.01679769515991211, 0.016678911209106445, 0.01667635154724121, 0.0170644474029541, 0.016901567459106447, 0.01697849655151367, 0.016856992721557617, 0.01664771270751953, 0.016756767272949218, 0.01664259147644043, 0.016928096771240235, 0.01677788734436035, 0.01668611145019531, 0.016563167572021486, 0.016688671112060547, 0.016616992950439453, 0.01663702392578125, 0.01674950408935547, 0.016690080642700195, 0.016643552780151366, 0.01669174385070801, 0.01666662406921387, 0.01667433547973633, 0.016650880813598633, 0.01671561622619629, 0.016606239318847655, 0.016683584213256837, 0.016916223526000976, 0.01692972755432129, 0.016776512145996094, 0.01671824073791504, 0.01665433692932129, 0.016695295333862305, 0.016760831832885743, 0.016801599502563477, 0.016659744262695314, 0.016705535888671876, 0.01676585578918457, 0.016900096893310547, 0.016668031692504883, 0.016681215286254884, 0.016628095626831055, 0.01664204788208008, 0.01660259246826172, 0.016660192489624023, 0.016614208221435545]",tokens/s,59.49568450537277,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,810.528768,554.631168,0.0,159.383552,143.673856,s,1,7.36071435546875,7.36071435546875,0.0,7.36071435546875,7.36071435546875,7.36071435546875,7.36071435546875,[7.36071435546875],,kWh,1.0813214037504318e-05,1.185590018481142e-06,3.592502873996095e-06,1.5591306929981556e-05,,MB,1303.117824,609.15712,0.0,199.22944,186.684928,s,32,0.20167136001586916,0.006302230000495911,0.000168425978490321,0.006266864061355591,0.006366675138473511,0.006626598286628723,0.006932350602149964,"[0.006303711891174317, 0.006245567798614502, 0.006314752101898194, 0.006281055927276611, 0.006163584232330322, 0.006309823989868164, 0.006356768131256104, 0.006266240119934082, 0.006225791931152344, 0.006520671844482422, 0.0062631678581237795, 0.006187839984893799, 0.006303487777709961, 0.006266240119934082, 0.006181600093841552, 0.006254816055297851, 0.006316256046295166, 0.007011551856994629, 0.006272352218627929, 0.006756063938140869, 0.006186975955963135, 0.006275455951690673, 0.006190144062042237, 0.006277184009552002, 0.0062674880027771, 0.00620630407333374, 0.006271008014678955, 0.006223264217376709, 0.006367775917053222, 0.006219423770904541, 0.00614844799041748, 0.006236544132232666]",tokens/s,40620.54224930792,kWh,1.8653826384802866e-07,2.0571929875286933e-08,7.918076098593644e-08,2.8629095470925205e-07,tokens/kWh,894195208.7168993,MB,1316.548608,613.351424,0.0,203.423744,186.687488,s,32,10.012835144042967,0.31290109825134277,0.001958896783369078,0.31242938232421874,0.3154934631347656,0.31649754333496094,0.31895257751464845,"[0.3195748291015625, 0.3123941955566406, 0.31391668701171876, 0.3119555969238281, 0.31176416015625, 0.3124645690917969, 0.3128881225585938, 0.3126595153808594, 0.31342831420898437, 0.31559823608398435, 0.31210430908203124, 0.3114669494628906, 0.3137422180175781, 0.3132228088378906, 0.31349627685546877, 0.31101092529296875, 0.3145505065917969, 0.3116888427734375, 0.3113709716796875, 0.31756756591796875, 0.31312869262695314, 0.3112661437988281, 0.3110016784667969, 0.31158636474609375, 0.3106305847167969, 0.3118937072753906, 0.3117104187011719, 0.31084735107421874, 0.3113258972167969, 0.3141195983886719, 0.3128370361328125, 0.3156220703125]",tokens/s,201.3415751880623,kWh,8.93105547428338e-06,9.849508270135154e-07,3.2166215389534714e-06,1.3132627840250369e-05,tokens/kWh,4797212.01014396,,s,2016,9.99823603630067,0.0049594424783237405,0.00011499753868454484,0.004934175968170166,0.0050223200321197516,0.005089400053024292,0.00545977780818939,"[0.005140672206878662, 0.005021312236785889, 0.005017792224884033, 0.005008959770202636, 0.00498137617111206, 0.00510975980758667, 0.005124095916748047, 0.005224448204040527, 0.005203648090362549, 0.005284160137176514, 0.005240928173065185, 0.005596799850463867, 0.005198304176330566, 0.005713727951049805, 0.005277696132659912, 0.0051113600730896, 0.005108160018920898, 0.0050687680244445804, 0.0050826559066772465, 0.005220320224761963, 0.005112287998199463, 0.005017951965332031, 0.005125855922698975, 0.005063680171966553, 0.004981503963470459, 0.00505401611328125, 0.005067455768585205, 0.0050785279273986815, 0.004995584011077881, 0.0049909758567810054, 0.004932960033416748, 0.004951807975769043, 0.004944799900054931, 0.004920864105224609, 0.004951935768127441, 0.0050183038711547855, 0.0049558720588684085, 0.004910880088806152, 0.004959904193878174, 0.005035967826843262, 0.0049795198440551755, 0.004982495784759521, 0.005095583915710449, 0.005507232189178467, 0.0049749441146850586, 0.004953728199005127, 0.0050094079971313476, 0.00496454381942749, 0.0049723520278930665, 0.005053440093994141, 0.005011744022369384, 0.005027711868286133, 0.004985695838928223, 0.004980127811431884, 0.005007455825805664, 0.004971007823944092, 0.004956319808959961, 0.005011295795440674, 0.004978240013122559, 0.005058559894561767, 0.0049333758354187015, 0.004917695999145508, 0.004942240238189698, 0.004884479999542236, 0.0049879360198974605, 0.004936768054962158, 0.00494377613067627, 0.0049064640998840335, 0.004995872020721435, 0.00494975996017456, 0.004927487850189209, 0.004927487850189209, 0.004974592208862305, 0.004984831809997559, 0.004917407989501953, 0.004955999851226807, 0.00502569580078125, 0.00498803186416626, 0.005108191967010498, 0.004957024097442627, 0.004972415924072266, 0.004992800235748291, 0.0049500160217285155, 0.004933792114257813, 0.00493174409866333, 0.00517468786239624, 0.0049647679328918455, 0.004933504104614258, 0.004915200233459473, 0.005033120155334473, 0.004936543941497803, 0.00491315221786499, 0.004910528182983398, 0.004990592002868653, 0.004946879863739014, 0.004924575805664063, 0.004916063785552979, 0.004972479820251465, 0.004970111846923828, 0.004909408092498779, 0.004986048221588135, 0.005101471900939941, 0.004936704158782959, 0.004919519901275635, 0.004898591995239258, 0.004941823959350586, 0.004966400146484375, 0.004911327838897705, 0.004898335933685303, 0.004905055999755859, 0.005129727840423584, 0.004915872097015381, 0.004892096042633056, 0.004885056018829346, 0.00494979190826416, 0.004937119960784912, 0.004887680053710938, 0.004894303798675537, 0.0049890241622924806, 0.004951488018035888, 0.00487286376953125, 0.004898496150970459, 0.004896992206573486, 0.004978496074676514, 0.004929728031158447, 0.004919328212738037, 0.004826272010803222, 0.004882847785949707, 0.004951935768127441, 0.004966976165771485, 0.004937248229980469, 0.004923871994018555, 0.004931615829467773, 0.005019040107727051, 0.004958720207214356, 0.004925536155700684, 0.004916607856750488, 0.0050366721153259275, 0.00497376012802124, 0.004928319931030273, 0.0049235520362854, 0.005005023956298828, 0.004947743892669678, 0.005089759826660156, 0.0050198397636413575, 0.005158592224121094, 0.004959392070770264, 0.004915743827819824, 0.004919616222381592, 0.004988319873809814, 0.0049359679222106935, 0.004966879844665527, 0.004998688220977783, 0.004989247798919677, 0.00494979190826416, 0.004913375854492187, 0.004925439834594727, 0.005012767791748047, 0.004956831932067871, 0.004925504207611084, 0.004917535781860351, 0.004931104183197021, 0.004954304218292236, 0.004941343784332275, 0.00505244779586792, 0.005046720027923584, 0.004976064205169678, 0.005040703773498535, 0.005074944019317627, 0.005128064155578613, 0.005016736030578613, 0.0049714879989624025, 0.004989120006561279, 0.0050133118629455565, 0.004978432178497315, 0.005203936100006103, 0.004962592124938965, 0.0050709757804870605, 0.004982367992401123, 0.004919583797454834, 0.004923391819000244, 0.00499507188796997, 0.005074944019317627, 0.004941023826599121, 0.0049344320297241215, 0.004974592208862305, 0.004945343971252442, 0.004926015853881836, 0.004914976119995117, 0.004784383773803711, 0.004888319969177246, 0.00498089599609375, 0.004916927814483643, 0.004890783786773682, 0.004888576030731201, 0.0049006400108337405, 0.004962528228759765, 0.004902912139892578, 0.004898111820220947, 0.0048913278579711915, 0.004971903800964355, 0.00493395185470581, 0.004888895988464355, 0.004897791862487793, 0.004968800067901611, 0.004915647983551026, 0.005030111789703369, 0.0049192957878112795, 0.004999135971069336, 0.005074304103851318, 0.0049424958229064946, 0.004948224067687988, 0.00496614408493042, 0.004974592208862305, 0.004943871974945068, 0.0049269118309021, 0.004936255931854248, 0.0050152640342712405, 0.004945631980895996, 0.004926015853881836, 0.004929535865783692, 0.005045472145080566, 0.004966911792755127, 0.00493126392364502, 0.004933792114257813, 0.004971968173980713, 0.004939807891845703, 0.004943967819213867, 0.004926047801971436, 0.004999296188354492, 0.004952191829681396, 0.004931359767913818, 0.004951488018035888, 0.004997951984405518, 0.004953311920166016, 0.00495411205291748, 0.004926239967346192, 0.005006656169891357, 0.004956863880157471, 0.004921343803405762, 0.005025792121887207, 0.004904960155487061, 0.0049725441932678225, 0.00491315221786499, 0.004917247772216797, 0.004912320137023926, 0.004989759922027588, 0.004940991878509522, 0.004911231994628906, 0.004924320220947266, 0.00499894380569458, 0.004941823959350586, 0.004853055953979492, 0.004907264232635498, 0.00490070390701294, 0.004915808200836182, 0.004995168209075928, 0.004951871871948242, 0.004908383846282959, 0.004913919925689697, 0.004958208084106445, 0.0049090561866760255, 0.004929376125335693, 0.0049153599739074705, 0.00491315221786499, 0.004989952087402344, 0.004951039791107178, 0.004921343803405762, 0.004939199924468994, 0.004987743854522705, 0.004939487934112549, 0.004921343803405762, 0.0049210238456726075, 0.0049708161354064945, 0.004941311836242676, 0.004898560047149658, 0.004932415962219238, 0.0049376640319824215, 0.004955520153045654, 0.0049424638748168945, 0.004907360076904297, 0.004898752212524414, 0.004970208168029785, 0.005074912071228027, 0.004902944087982177, 0.004917247772216797, 0.0049879360198974605, 0.004957151889801025, 0.004929535865783692, 0.00491315221786499, 0.004974751949310303, 0.004928544044494629, 0.005005152225494385, 0.004913536071777344, 0.004954720020294189, 0.004941215991973877, 0.004946527957916259, 0.004902912139892578, 0.004898816108703613, 0.004978367805480957, 0.004931104183197021, 0.0049119038581848145, 0.0049023680686950686, 0.0049894719123840334, 0.004935679912567138, 0.004925407886505127, 0.004931615829467773, 0.005005536079406739, 0.005074719905853272, 0.005015552043914795, 0.004921535968780518, 0.004998176097869873, 0.004944255828857422, 0.004917407989501953, 0.004897280216217041, 0.004851712226867676, 0.004919551849365235, 0.005010848045349121, 0.004945600032806396, 0.0049097280502319336, 0.0049021439552307125, 0.004976607799530029, 0.004934783935546875, 0.004906655788421631, 0.004908383846282959, 0.004967328071594238, 0.0049600000381469726, 0.004903168201446533, 0.004921088218688965, 0.004898816108703613, 0.004984831809997559, 0.004941760063171386, 0.004912864208221435, 0.004908736228942871, 0.004991615772247314, 0.004947840213775635, 0.0049032001495361325, 0.0049023680686950686, 0.0049872961044311525, 0.004925439834594727, 0.004902912139892578, 0.004902976036071777, 0.004929599761962891, 0.004935647964477539, 0.0049622077941894535, 0.004904960155487061, 0.004902912139892578, 0.004952064037322998, 0.004908480167388916, 0.004892928123474121, 0.004902944087982177, 0.004961599826812744, 0.004930528163909912, 0.0049170880317687985, 0.0049025602340698245, 0.0049541440010070804, 0.004968544006347656, 0.004913119792938232, 0.004897183895111084, 0.004917247772216797, 0.004976640224456787, 0.0049192638397216795, 0.005021535873413086, 0.004917439937591553, 0.004976640224456787, 0.004929535865783692, 0.00491487979888916, 0.004968768119812012, 0.0053116798400878905, 0.004977471828460693, 0.005061952114105225, 0.004948671817779541, 0.005167103767395019, 0.005076288223266601, 0.004963007926940918, 0.0049575681686401364, 0.00514899206161499, 0.004997439861297607, 0.004909503936767578, 0.0049459199905395506, 0.0049090561866760255, 0.004963967800140381, 0.004938432216644287, 0.004910783767700195, 0.0049294400215148925, 0.004976736068725586, 0.0050440959930419926, 0.004923520088195801, 0.004907008171081543, 0.004951231956481934, 0.004968992233276367, 0.004923679828643799, 0.004918816089630127, 0.004905087947845459, 0.00501091194152832, 0.00504307222366333, 0.004947872161865235, 0.004923103809356689, 0.0050191679000854495, 0.004968768119812012, 0.004929215908050537, 0.004917727947235107, 0.005021215915679932, 0.004946688175201416, 0.004924960136413574, 0.004909952163696289, 0.004976319789886475, 0.004957312107086181, 0.005378015995025635, 0.00493455982208252, 0.005002816200256347, 0.004958816051483154, 0.004912992000579834, 0.004914976119995117, 0.004983007907867432, 0.005089280128479004, 0.004925439834594727, 0.004947968006134033, 0.004994944095611572, 0.004999135971069336, 0.004921696186065674, 0.0049227199554443355, 0.0049730238914489746, 0.00497599983215332, 0.0049056000709533695, 0.004904096126556397, 0.004889567852020263, 0.0049844799041748045, 0.0050845761299133305, 0.004889408111572266, 0.004913504123687744, 0.004961952209472657, 0.0049552001953125, 0.004926591873168945, 0.004994688034057618, 0.004989120006561279, 0.004966080188751221, 0.004919392108917236, 0.004902400016784668, 0.004969183921813965, 0.004935679912567138, 0.004882431983947754, 0.004911104202270508, 0.004890048027038575, 0.004887328147888183, 0.00495411205291748, 0.004896543979644776, 0.004890175819396972, 0.004903359889984131, 0.0049827837944030765, 0.004960256099700928, 0.004921343803405762, 0.00491264009475708, 0.004927999973297119, 0.005006432056427002, 0.004934336185455322, 0.004925343990325928, 0.00494214391708374, 0.004995296001434326, 0.0050001277923583986, 0.004904863834381104, 0.0049285759925842285, 0.004963712215423584, 0.004935423851013184, 0.004906847953796387, 0.0049222722053527835, 0.005035871982574463, 0.004974751949310303, 0.0049459199905395506, 0.0049502081871032715, 0.00498252820968628, 0.004949535846710205, 0.0049342079162597655, 0.004937376022338867, 0.004990496158599853, 0.0049613118171691895, 0.004962048053741455, 0.004935679912567138, 0.004923423767089844, 0.005021664142608642, 0.004941823959350586, 0.005175295829772949, 0.0049348797798156735, 0.005085504055023194, 0.004910880088806152, 0.0050183038711547855, 0.004976640224456787, 0.004999167919158935, 0.004933440208435059, 0.004933631896972656, 0.004928736209869384, 0.005006303787231445, 0.005115903854370117, 0.004928639888763428, 0.004961152076721192, 0.004999167919158935, 0.004968448162078858, 0.004929120063781738, 0.004929952144622803, 0.004993023872375488, 0.004947008132934571, 0.004916351795196533, 0.00490831995010376, 0.004977439880371094, 0.00488486385345459, 0.00496288013458252, 0.004927616119384765, 0.0049212160110473635, 0.004904960155487061, 0.004974143981933594, 0.004938240051269531, 0.0049006400108337405, 0.004909120082855225, 0.005009664058685303, 0.004935776233673096, 0.004910655975341797, 0.004909247875213623, 0.004906367778778076, 0.004972799777984619, 0.004949440002441406, 0.004916160106658935, 0.005070655822753906, 0.005066944122314453, 0.004943871974945068, 0.004925439834594727, 0.004929376125335693, 0.0050157117843627926, 0.0049500160217285155, 0.004941184043884278, 0.004917600154876709, 0.00504585599899292, 0.004953855991363525, 0.004918208122253418, 0.0050503678321838375, 0.005011231899261475, 0.00512175989151001, 0.004951583862304688, 0.004952479839324951, 0.005007936000823975, 0.0049618239402771, 0.004955935955047608, 0.005056672096252442, 0.005001503944396973, 0.004983168125152588, 0.0049558720588684085, 0.004929696083068848, 0.004994368076324463, 0.004965055942535401, 0.004923391819000244, 0.004925439834594727, 0.00504249620437622, 0.005052000045776367, 0.004917376041412354, 0.005030111789703369, 0.004973887920379639, 0.004962751865386963, 0.00491315221786499, 0.004927487850189209, 0.00499129581451416, 0.005121376037597656, 0.005063007831573487, 0.004966368198394775, 0.004960256099700928, 0.004940095901489258, 0.004929056167602539, 0.004953663825988769, 0.004919936180114746, 0.004837535858154297, 0.005166399955749512, 0.005185632228851318, 0.004962944030761719, 0.004972511768341064, 0.005197824001312256, 0.0049517440795898435, 0.004940095901489258, 0.005025951862335205, 0.005374144077301026, 0.004986144065856933, 0.005155136108398437, 0.005506175994873047, 0.005598144054412842, 0.004953375816345215, 0.005445824146270752, 0.0049352960586547855, 0.004920224189758301, 0.004968448162078858, 0.005054304122924805, 0.004935808181762695, 0.004911136150360107, 0.004914656162261963, 0.004999551773071289, 0.0049378881454467775, 0.0050462718009948735, 0.0049090561866760255, 0.004986688137054444, 0.004930047988891601, 0.004910816192626953, 0.004910399913787842, 0.004975264072418213, 0.004916800022125244, 0.0049996161460876464, 0.005217440128326416, 0.004985695838928223, 0.004925439834594727, 0.004909215927124023, 0.004906847953796387, 0.004976640224456787, 0.00496230411529541, 0.004941823959350586, 0.004915200233459473, 0.004966176033020019, 0.0049686717987060544, 0.0050421757698059086, 0.004941855907440186, 0.0049072961807250974, 0.005013408184051514, 0.004947743892669678, 0.004909023761749267, 0.004920896053314209, 0.004978752136230469, 0.004962719917297363, 0.0049090561866760255, 0.004900735855102539, 0.004991104125976562, 0.004924831867218017, 0.004978591918945312, 0.004899136066436768, 0.004968832015991211, 0.004937727928161621, 0.004931039810180664, 0.0048653120994567875, 0.005022496223449707, 0.004890143871307373, 0.004959936141967773, 0.004913887977600098, 0.004911104202270508, 0.004911104202270508, 0.0049725441932678225, 0.005000736236572266, 0.004926271915435791, 0.004904607772827149, 0.004933184146881104, 0.004931104183197021, 0.0049284157752990726, 0.004909023761749267, 0.004884064197540283, 0.004958655834197998, 0.004920479774475098, 0.004932447910308838, 0.004902912139892578, 0.004953440189361572, 0.005042431831359863, 0.004925856113433838, 0.0049621758460998535, 0.005000991821289063, 0.005000927925109863, 0.004928127765655517, 0.004937727928161621, 0.004986656188964844, 0.004978591918945312, 0.004933695793151855, 0.004900767803192139, 0.004911168098449707, 0.004986591815948486, 0.004927455902099609, 0.004942431926727295, 0.004925248146057129, 0.004997312068939209, 0.004957888126373291, 0.004935679912567138, 0.004933152198791504, 0.005063456058502197, 0.005000671863555908, 0.004907072067260742, 0.004891007900238037, 0.004984960079193115, 0.004939487934112549, 0.004910687923431397, 0.005075615882873535, 0.00497049617767334, 0.004955264091491699, 0.004903808116912842, 0.004880383968353271, 0.004888576030731201, 0.004976640224456787, 0.004904416084289551, 0.004928224086761475, 0.00490067195892334, 0.005152607917785644, 0.004933536052703857, 0.004901120185852051, 0.004918655872344971, 0.005017792224884033, 0.004832672119140625, 0.004946752071380615, 0.004916192054748535, 0.0049160318374633786, 0.004917247772216797, 0.0049725441932678225, 0.004931583881378174, 0.004918816089630127, 0.004915840148925781, 0.005025023937225342, 0.005007775783538818, 0.004924736022949219, 0.00489353609085083, 0.004974656105041504, 0.005006400108337403, 0.0049081602096557615, 0.004899680137634277, 0.004942431926727295, 0.004933919906616211, 0.004905087947845459, 0.004896607875823975, 0.004905055999755859, 0.004967584133148194, 0.00491974401473999, 0.004903264045715332, 0.004900479793548584, 0.004979104042053223, 0.004949215888977051, 0.00491542387008667, 0.004913504123687744, 0.00508134412765503, 0.004952064037322998, 0.004927487850189209, 0.005005311965942383, 0.004960256099700928, 0.004959455966949463, 0.004913951873779297, 0.0049164161682128905, 0.004938560009002686, 0.005009088039398193, 0.00492575979232788, 0.004939519882202149, 0.004912928104400634, 0.004972671985626221, 0.004933568000793457, 0.004897024154663086, 0.004911263942718506, 0.004945216178894043, 0.004928192138671875, 0.0049210238456726075, 0.004892223834991455, 0.004897535800933838, 0.0049909758567810054, 0.004937727928161621, 0.0049285759925842285, 0.004905920028686523, 0.0049827837944030765, 0.004923391819000244, 0.004908927917480469, 0.004898367881774902, 0.005033728122711182, 0.004947999954223633, 0.004894527912139892, 0.004827231884002686, 0.004894847869873047, 0.004892096042633056, 0.004960671901702881, 0.004922783851623535, 0.004914944171905518, 0.004908127784729004, 0.004954048156738281, 0.004942048072814942, 0.0049006080627441405, 0.004907008171081543, 0.004935488224029541, 0.004982016086578369, 0.004944831848144531, 0.004978687763214112, 0.004944096088409424, 0.004994592189788818, 0.0049136638641357425, 0.004929120063781738, 0.004923232078552246, 0.005078368186950684, 0.005070047855377197, 0.005023136138916016, 0.005102047920227051, 0.0051274561882019044, 0.005151391983032227, 0.005082111835479736, 0.005128928184509277, 0.005075327873229981, 0.00504531192779541, 0.005036831855773926, 0.005058464050292969, 0.004991072177886963, 0.004964352130889893, 0.00495411205291748, 0.005027103900909424, 0.004967040061950684, 0.004925536155700684, 0.00491315221786499, 0.005023744106292725, 0.004964416027069092, 0.00496940803527832, 0.0049316477775573735, 0.004944767951965332, 0.00494598388671875, 0.004967455863952637, 0.005005695819854736, 0.00524073600769043, 0.004950975894927979, 0.004904704093933105, 0.004911327838897705, 0.0049287681579589845, 0.004968992233276367, 0.0049231362342834475, 0.004903456211090088, 0.004939487934112549, 0.005029888153076172, 0.004932928085327149, 0.004918975830078125, 0.004908415794372558, 0.004960959911346436, 0.0049304962158203125, 0.004906144142150879, 0.004806911945343018, 0.004887839794158935, 0.004902656078338623, 0.00496943998336792, 0.004928736209869384, 0.0048997759819030765, 0.004906847953796387, 0.005009024143218994, 0.004940159797668457, 0.0049229440689086915, 0.005048031806945801, 0.005133376121520996, 0.005221888065338135, 0.005219615936279297, 0.005217152118682861, 0.005197247982025146, 0.0051205759048461915, 0.005043424129486084, 0.005030687808990479, 0.004972415924072266, 0.004927584171295166, 0.004987167835235596, 0.00498252820968628, 0.004974592208862305, 0.004923488140106201, 0.004908991813659668, 0.004935520172119141, 0.004969791889190674, 0.004905663967132569, 0.004921088218688965, 0.004890975952148438, 0.004962495803833008, 0.004923232078552246, 0.00490012788772583, 0.0048904638290405275, 0.005042848110198975, 0.004940000057220459, 0.004924799919128418, 0.004895359992980957, 0.004910272121429443, 0.004926271915435791, 0.004955967903137207, 0.004902239799499512, 0.004901535987854004, 0.004985023975372314, 0.00495411205291748, 0.004924960136413574, 0.004925920009613037, 0.005087232112884522, 0.004943679809570312, 0.0049276800155639644, 0.00491315221786499, 0.0049862079620361325, 0.004922016143798828, 0.004915200233459473, 0.004923456192016602, 0.004978240013122559, 0.004944255828857422, 0.004921343803405762, 0.004927487850189209, 0.004892096042633056, 0.004989823818206787, 0.0049202880859375, 0.004890848159790039, 0.004896895885467529, 0.004912543773651123, 0.004947328090667725, 0.0049344320297241215, 0.004889984130859375, 0.004879072189331055, 0.004900864124298096, 0.004975743770599365, 0.004915296077728271, 0.004877088069915772, 0.004889664173126221, 0.004992127895355225, 0.0049269118309021, 0.004934304237365723, 0.004921055793762207, 0.004968448162078858, 0.004997312068939209, 0.004929344177246094, 0.004907008171081543, 0.005462240219116211, 0.005614751815795898, 0.006055776119232178, 0.005397280216217041, 0.00496454381942749, 0.004939104080200195, 0.004997600078582764, 0.004936863899230957, 0.0049090561866760255, 0.004922207832336426, 0.004945504188537598, 0.004958752155303955, 0.004921120166778564, 0.0048919677734375, 0.004887328147888183, 0.004968448162078858, 0.005000671863555908, 0.0048932161331176754, 0.004882016181945801, 0.004941472053527832, 0.004913919925689697, 0.004895999908447266, 0.004877056121826172, 0.004914175987243652, 0.0049398717880249025, 0.004885536193847656, 0.004894527912139892, 0.004881631851196289, 0.004950655937194824, 0.004907392024993897, 0.004878176212310791, 0.004881984233856202, 0.0049647998809814456, 0.004911104202270508, 0.004909279823303222, 0.004888351917266846, 0.004896768093109131, 0.0050032639503479, 0.0049168958663940426, 0.004946271896362305, 0.004902463912963867, 0.0049853758811950685, 0.004935840129852295, 0.004874239921569825, 0.004917247772216797, 0.004902944087982177, 0.004892608165740967, 0.004976672172546387, 0.004905151844024658, 0.004893631935119629, 0.004963551998138428, 0.004996767997741699, 0.004941023826599121, 0.004917791843414307, 0.00491545581817627, 0.00497049617767334, 0.004925439834594727, 0.0049209918975830075, 0.004925695896148682, 0.004943967819213867, 0.00495411205291748, 0.004917247772216797, 0.004897024154663086, 0.004938784122467041, 0.0049731841087341305, 0.004943583965301514, 0.004929887771606445, 0.004886655807495117, 0.0050627517700195315, 0.004928959846496582, 0.004893152236938476, 0.004908959865570068, 0.004966400146484375, 0.004947135925292969, 0.004905792236328125, 0.004896224021911621, 0.0049129600524902345, 0.00497327995300293, 0.004920608043670655, 0.0048913278579711915, 0.004896800041198731, 0.004993311882019043, 0.0049286079406738285, 0.005003903865814209, 0.004895967960357666, 0.004973343849182129, 0.004930592060089111, 0.004881631851196289, 0.004919007778167724, 0.004923423767089844, 0.004924928188323975, 0.004892704010009766, 0.004876959800720215, 0.004873631954193115, 0.0050917439460754395, 0.0049909758567810054, 0.004898303985595703, 0.004936192035675049, 0.00498092794418335, 0.004923200130462647, 0.004889855861663819, 0.004868864059448242, 0.004904895782470703, 0.004919360160827637, 0.004933536052703857, 0.004888351917266846, 0.004906400203704834, 0.004890431880950927, 0.004958144187927246, 0.004911968231201172, 0.004875743865966797, 0.004886208057403564, 0.004895584106445312, 0.004961696147918701, 0.004958816051483154, 0.0048798398971557615, 0.004907872200012207, 0.004973824024200439, 0.004932127952575684, 0.004922560214996338, 0.004944608211517334, 0.00499507188796997, 0.004957312107086181, 0.004907167911529541, 0.004930560111999512, 0.004936768054962158, 0.004952544212341308, 0.005071040153503418, 0.004918528079986572, 0.004938144207000733, 0.0050059518814086915, 0.004946879863739014, 0.004903711795806885, 0.004908063888549805, 0.004983551979064941, 0.004945312023162842, 0.004909471988677978, 0.004933856010437012, 0.005012735843658447, 0.004910016059875488, 0.00493123197555542, 0.0048990721702575684, 0.0050711679458618165, 0.004966176033020019, 0.005049824237823486, 0.004936031818389893, 0.005001408100128174, 0.005069888114929199, 0.004913856029510498, 0.004943168163299561, 0.004979584217071533, 0.004954016208648682, 0.0049214081764221195, 0.00490831995010376, 0.00495084810256958, 0.005081088066101074, 0.00493945598602295, 0.0049155521392822265, 0.004921088218688965, 0.0049686717987060544, 0.004923391819000244, 0.004925439834594727, 0.004906432151794433, 0.004976704120635987, 0.005050655841827393, 0.005214272022247314, 0.00598031997680664, 0.005379871845245361, 0.0054271998405456545, 0.00486240005493164, 0.004984640121459961, 0.005197792053222656, 0.004910399913787842, 0.005126495838165283, 0.004956416130065918, 0.004916607856750488, 0.004905983924865722, 0.0049600000381469726, 0.004955615997314453, 0.004921472072601319, 0.004901567935943604, 0.004904575824737549, 0.004948480129241943, 0.004963744163513184, 0.004903359889984131, 0.0050670399665832516, 0.004990687847137451, 0.00493171215057373, 0.004893887996673584, 0.004917024135589599, 0.0049836158752441405, 0.004945727825164795, 0.0048867521286010745, 0.004877471923828125, 0.004957312107086181, 0.004962016105651856, 0.004925439834594727, 0.004931583881378174, 0.004911104202270508, 0.005005504131317139, 0.004943679809570312, 0.004941504001617431, 0.004919616222381592, 0.004993279933929443, 0.004988287925720215, 0.0049313921928405766, 0.004923967838287353, 0.0049799041748046875, 0.005020480155944824, 0.0049296321868896485, 0.004906976222991943, 0.004975872039794922, 0.004915967941284179, 0.004898975849151612, 0.004902688026428223, 0.004883488178253174, 0.004956768035888672, 0.00492902421951294, 0.004879039764404297, 0.0048807039260864256, 0.0049409279823303225, 0.004928063869476318, 0.004903103828430176, 0.004889920234680176, 0.004934336185455322, 0.00501145601272583, 0.004930880069732666, 0.00490937614440918, 0.004872576236724853, 0.004959968090057373, 0.0048925762176513675, 0.004874207973480225, 0.004814655780792237, 0.00488640022277832, 0.004907519817352295, 0.0049721598625183105, 0.0049276800155639644, 0.004904607772827149, 0.00491487979888916, 0.00497926378250122, 0.004941279888153076, 0.0049136319160461425, 0.004882048130035401, 0.00497654390335083, 0.005003615856170655, 0.00490115213394165, 0.004896768093109131, 0.004882431983947754, 0.0050299839973449705, 0.0049294400215148925, 0.004900352001190185, 0.004905471801757813, 0.00495849609375, 0.004919072151184082, 0.004881824016571045, 0.0048891201019287105, 0.004952064037322998, 0.004922560214996338, 0.004895552158355713, 0.004903935909271241, 0.004955135822296143, 0.005002528190612793, 0.00491158390045166, 0.004905216217041016, 0.004933919906616211, 0.004977952003479004, 0.0049320321083068846, 0.004898816108703613, 0.004892831802368164, 0.004970335960388183, 0.004939775943756103, 0.004907392024993897, 0.004901599884033203, 0.0049407038688659664, 0.004962016105651856, 0.0049169921875, 0.004931583881378174, 0.0048893442153930666, 0.004987711906433105, 0.004901855945587158, 0.004886271953582763, 0.004904352188110352, 0.005019584178924561, 0.004946080207824707, 0.0049237761497497555, 0.00492083215713501, 0.0049777917861938475, 0.004946815967559815, 0.00494271993637085, 0.004933023929595947, 0.004973152160644531, 0.0049903359413146975, 0.004931968212127685, 0.004941055774688721, 0.005190656185150146, 0.005370783805847168, 0.005498591899871826, 0.005083424091339111, 0.0050032639503479, 0.005531712055206299, 0.007346208095550537, 0.005023839950561523, 0.005019743919372558, 0.004979423999786377, 0.00510595178604126, 0.0049387521743774416, 0.004962016105651856, 0.005017600059509277, 0.004980480194091797, 0.004947679996490479, 0.0049507198333740236, 0.00500105619430542, 0.006049280166625977, 0.005109632015228271, 0.005034239768981934, 0.004962592124938965, 0.004960256099700928, 0.004912896156311035, 0.00495417594909668, 0.0049359679222106935, 0.0049213762283325194, 0.004894688129425049, 0.004888895988464355, 0.004947648048400879, 0.004910463809967041, 0.0048847999572753905, 0.0048807039260864256, 0.00499894380569458, 0.005361504077911377, 0.004901247978210449, 0.004900320053100586, 0.00495465612411499, 0.004941823959350586, 0.004888351917266846, 0.004899040222167968, 0.004959263801574707, 0.004926047801971436, 0.004929567813873291, 0.004911776065826416, 0.004881184101104736, 0.0049919037818908696, 0.004912896156311035, 0.004873983860015869, 0.004878911972045898, 0.004966335773468018, 0.004917247772216797, 0.004917247772216797, 0.004891808032989502, 0.004919871807098388, 0.005060895919799805, 0.004900288105010986, 0.004883008003234863, 0.004906816005706787, 0.0049823040962219236, 0.004917920112609863, 0.004888063907623291, 0.0048849921226501464, 0.004964352130889893, 0.004827328205108642, 0.004947775840759277, 0.0049192957878112795, 0.0049376640319824215, 0.004934783935546875, 0.005016831874847412, 0.0049714879989624025, 0.004960383892059326, 0.004952672004699707, 0.004994688034057618, 0.005103839874267578, 0.004943168163299561, 0.00492796802520752, 0.005042272090911865, 0.004956448078155517, 0.004939775943756103, 0.004912608146667481, 0.004963871955871582, 0.004944896221160889, 0.0049090561866760255, 0.004919360160827637, 0.004949952125549316, 0.004933631896972656, 0.004900191783905029, 0.004895391941070556, 0.004894720077514648, 0.0049437122344970705, 0.004933792114257813, 0.00493126392364502, 0.00493555212020874, 0.005330783843994141, 0.004946368217468262, 0.004925504207611084, 0.005036128044128418, 0.005056511878967285, 0.004952064037322998, 0.004937727928161621, 0.004927072048187256, 0.005015967845916748, 0.004974688053131103, 0.004929152011871338, 0.004934144020080566, 0.005146399974822998, 0.005107423782348633, 0.004954304218292236, 0.004916768074035644, 0.004983359813690185, 0.0049519681930541995, 0.004911200046539306, 0.004898816108703613, 0.005006879806518555, 0.004945727825164795, 0.004906752109527588, 0.0049222722053527835, 0.004996992111206054, 0.004970111846923828, 0.00497270393371582, 0.004949920177459717, 0.004972991943359375, 0.004978687763214112, 0.004941504001617431, 0.004939807891845703, 0.004943967819213867, 0.0048009281158447265, 0.004974815845489502, 0.004929279804229737, 0.004903264045715332, 0.004910496234893799, 0.004899199962615967, 0.004963520050048828, 0.004920000076293945, 0.004906847953796387, 0.004890912055969239, 0.004966271877288818, 0.004928639888763428, 0.004889408111572266, 0.004907072067260742, 0.005000192165374756, 0.004924416065216064, 0.004894720077514648, 0.004911104202270508, 0.004931583881378174, 0.004936863899230957, 0.004931968212127685, 0.004887135982513427, 0.004924960136413574, 0.004995488166809082, 0.004986720085144043, 0.004929855823516845, 0.004908927917480469, 0.005014976024627685, 0.004952544212341308, 0.004911295890808106, 0.004915232181549072, 0.004966176033020019, 0.00501145601272583, 0.00491545581817627, 0.004896512031555176, 0.004941472053527832, 0.004947487831115723, 0.004911839962005615, 0.004898623943328857, 0.0048887357711791994, 0.005002848148345947, 0.004914847850799561, 0.004925792217254639, 0.004913504123687744, 0.004980671882629395, 0.004948224067687988, 0.004925439834594727, 0.004936863899230957, 0.0049836478233337405, 0.004995007991790771, 0.004892735958099365, 0.004918784141540527, 0.0049333758354187015, 0.0049301118850708005, 0.004929887771606445, 0.004890687942504883, 0.004890399932861328, 0.005023744106292725, 0.00493779182434082, 0.004925216197967529, 0.0049378881454467775, 0.005000895977020263, 0.004963647842407226, 0.004881184101104736, 0.0049147200584411625, 0.004911359786987305, 0.004883008003234863, 0.005113664150238037, 0.004913087844848633, 0.004898240089416504, 0.004897632122039795, 0.004973440170288086, 0.004946368217468262, 0.00490339183807373, 0.0049147200584411625, 0.004962783813476562, 0.004969632148742676, 0.00492575979232788, 0.0049025602340698245, 0.004909952163696289, 0.0049725441932678225, 0.004911104202270508, 0.004894368171691895, 0.00494646406173706, 0.0049764480590820314, 0.004923711776733399, 0.004886208057403564, 0.004902847766876221, 0.00495849609375, 0.0049201598167419435, 0.004888576030731201, 0.00491206407546997, 0.004897024154663086, 0.004980480194091797, 0.004921311855316162, 0.004915008068084717, 0.0048949441909790035, 0.004957759857177734, 0.004911456108093262, 0.004925024032592773, 0.004893184185028076, 0.004964352130889893, 0.004918528079986572, 0.0048893442153930666, 0.004900544166564941, 0.004886847972869873, 0.004978687763214112, 0.004914783954620362, 0.004896448135375976, 0.004905824184417725, 0.004999040126800537, 0.004924863815307617, 0.004925280094146728, 0.0048891201019287105, 0.004961631774902344, 0.004948832035064697, 0.004908512115478516, 0.004958752155303955, 0.004976640224456787, 0.004952064037322998, 0.004933631896972656, 0.0048865280151367185, 0.004896768093109131, 0.005003168106079102, 0.004943967819213867, 0.004988639831542969, 0.00487772798538208, 0.00489740800857544, 0.005010816097259521, 0.004950655937194824, 0.004952064037322998, 0.004907008171081543, 0.00491542387008667, 0.004997983932495117, 0.00492844820022583, 0.004914400100708008, 0.004905695915222168, 0.0049889922142028805, 0.004915264129638672, 0.004949471950531006, 0.00492796802520752, 0.005021183967590332, 0.004966464042663574, 0.004927103996276856, 0.004935488224029541, 0.004982016086578369, 0.005150400161743164, 0.004918687820434571, 0.005040544033050537, 0.005003520011901855, 0.0049498558044433595, 0.004898975849151612, 0.00490009593963623, 0.004926239967346192, 0.004941760063171386, 0.004900896072387696, 0.004890624046325683, 0.004906623840332031, 0.0049565439224243165, 0.004913375854492187, 0.004875328063964844, 0.004895296096801758, 0.004957888126373291, 0.004929056167602539, 0.004901343822479248, 0.004897471904754639, 0.004885312080383301, 0.004950463771820068, 0.004911776065826416, 0.004936704158782959, 0.004889664173126221, 0.004953536033630371, 0.004991360187530517, 0.004935840129852295, 0.005012608051300048, 0.004979072093963623, 0.004921696186065674, 0.004892000198364258, 0.0048831038475036625, 0.004923391819000244, 0.004954271793365479, 0.004923232078552246, 0.004897984027862548, 0.004897600173950196, 0.004990848064422607, 0.004926688194274902, 0.004916128158569336, 0.0049292478561401365, 0.005003551959991455, 0.004872608184814453, 0.004930912017822265, 0.004925087928771972, 0.004891136169433594, 0.004880864143371582, 0.0049807682037353515, 0.004919007778167724, 0.004892928123474121, 0.004902912139892578, 0.005011104106903076, 0.0049153599739074705, 0.004899007797241211, 0.004888319969177246, 0.0049192638397216795, 0.004932191848754883, 0.0050028800964355465, 0.004948031902313232, 0.0048863358497619625, 0.004997312068939209, 0.004904511928558349, 0.0048800320625305175, 0.004915999889373779, 0.004984320163726807, 0.004929952144622803, 0.004892767906188965, 0.004908991813659668, 0.004933695793151855, 0.0049268159866333, 0.004911424160003662, 0.004882783889770508, 0.004910208225250244, 0.004977663993835449, 0.004933504104614258, 0.004888576030731201, 0.00493174409866333, 0.005061728000640869, 0.004958975791931153, 0.004904607772827149, 0.004907519817352295, 0.004954239845275879, 0.0049407358169555665, 0.004879136085510254, 0.0048925762176513675, 0.0049398717880249025, 0.004960256099700928, 0.004902976036071777, 0.004890048027038575, 0.004897280216217041, 0.004946239948272705, 0.004902592182159424, 0.004918655872344971, 0.004896639823913574, 0.004956319808959961, 0.0049030079841613766, 0.004881951808929443, 0.004899807929992676, 0.004917247772216797, 0.00497270393371582, 0.004908895969390869, 0.004901919841766357, 0.004888671875, 0.004963200092315673, 0.004937727928161621, 0.00486195182800293, 0.004899839878082276, 0.004894015789031983, 0.0048921918869018555, 0.004970304012298584, 0.004903264045715332, 0.0049582719802856445, 0.004905151844024658, 0.00500710391998291, 0.004958208084106445, 0.004898272037506104, 0.004886816024780274, 0.00493609619140625, 0.004929376125335693, 0.004943071842193603, 0.0049119038581848145, 0.004929535865783692, 0.00516096019744873, 0.004966176033020019, 0.004954432010650635, 0.004945151805877686, 0.00502236795425415, 0.004952064037322998, 0.004941472053527832, 0.005025311946868897, 0.004993855953216553, 0.004970848083496094, 0.004904704093933105, 0.004984000205993652, 0.0049663038253784176, 0.0049236159324646, 0.004973055839538575, 0.004911200046539306, 0.004952064037322998, 0.004929535865783692, 0.004892000198364258, 0.004908031940460205, 0.00492303991317749, 0.004964352130889893, 0.004924575805664063, 0.004926303863525391, 0.004918687820434571, 0.005077600002288818, 0.00496230411529541, 0.004937727928161621, 0.00491107177734375, 0.004945951938629151, 0.004904960155487061, 0.004909152030944824, 0.004894847869873047, 0.0049634242057800294, 0.004946623802185059, 0.0049311680793762205, 0.00494598388671875, 0.004962656021118164, 0.004990464210510254, 0.004944511890411377, 0.004986752033233643, 0.0049090561866760255, 0.004974431991577148, 0.004920959949493408, 0.004875103950500489, 0.004912735939025879, 0.004785632133483887, 0.00491100788116455, 0.004971424102783203, 0.004890624046325683, 0.004896768093109131, 0.004876543998718261, 0.004963391780853271, 0.004921792030334472, 0.004875936031341553, 0.004899424076080322, 0.004952095985412598, 0.004920864105224609, 0.004879968166351318, 0.004911200046539306, 0.00489731216430664, 0.004950399875640869, 0.004910528182983398, 0.004877952098846436, 0.004881184101104736, 0.004966815948486328, 0.004919072151184082, 0.004879968166351318, 0.004870368003845215, 0.004931136131286621, 0.0049480957984924315, 0.0049073281288146975, 0.004904287815093994, 0.004897439956665039, 0.0049779839515686035, 0.00493228816986084, 0.005016895771026611, 0.004901567935943604, 0.005364992141723633, 0.005319424152374267, 0.004945824146270752, 0.005002943992614746, 0.0049647679328918455, 0.00491315221786499, 0.004917215824127197, 0.004924992084503174, 0.004950496196746826, 0.004903071880340576, 0.004902592182159424, 0.004907167911529541, 0.004980127811431884, 0.004927743911743164, 0.004904511928558349, 0.004948256015777588, 0.00497001600265503, 0.005057024002075195, 0.004931424140930176, 0.00489734411239624, 0.004976319789886475, 0.004924895763397216, 0.004903840065002441, 0.004894720077514648, 0.0049060797691345215, 0.0049705920219421384, 0.00499180793762207, 0.00495411205291748, 0.004918879985809326, 0.005007167816162109, 0.004960864067077637, 0.004906559944152832, 0.004958015918731689, 0.004916927814483643, 0.005090271949768067, 0.004929535865783692, 0.004924928188323975, 0.004905471801757813, 0.0049090561866760255, 0.004968448162078858, 0.004923391819000244, 0.004898816108703613, 0.004900352001190185, 0.004985119819641113, 0.004928895950317383, 0.004903647899627685, 0.004904255867004394, 0.004978911876678467, 0.004913887977600098, 0.004889472007751465, 0.0049342079162597655, 0.004864799976348877, 0.004964000225067139, 0.0048990721702575684, 0.004893695831298828, 0.004864863872528076, 0.004957183837890625, 0.004921599864959717, 0.004907680034637451, 0.004905983924865722, 0.004918272018432617, 0.004929696083068848, 0.004896607875823975, 0.004880383968353271, 0.0048724479675292965, 0.004943615913391113, 0.0049060478210449215, 0.004861983776092529, 0.004889503955841064, 0.004943295955657959, 0.005022272109985352, 0.00490831995010376, 0.00490399980545044, 0.004947616100311279, 0.005014592170715332, 0.004883296012878418, 0.004898496150970459, 0.004878528118133545, 0.004942048072814942, 0.004902912139892578, 0.0049090561866760255, 0.004876287937164306, 0.00495849609375, 0.004915264129638672, 0.004885983943939209, 0.004931776046752929, 0.004917024135589599, 0.005044447898864746, 0.004982207775115967, 0.0049567360877990725, 0.0049593281745910645, 0.004987808227539062, 0.004933631896972656, 0.004955840110778808, 0.004860288143157959, 0.00493833589553833, 0.00499507188796997, 0.004943871974945068, 0.004907008171081543, 0.0049192957878112795, 0.004923232078552246, 0.004946080207824707, 0.004911104202270508, 0.004933472156524658, 0.004894879817962647, 0.004970272064208984, 0.004912384033203125, 0.004911776065826416, 0.004913472175598145, 0.004998816013336182, 0.004940127849578858, 0.005001215934753418, 0.004908256053924561, 0.0049684162139892575, 0.004973120212554931, 0.004880640029907226, 0.004896768093109131, 0.005087232112884522, 0.004974592208862305, 0.004961535930633545, 0.00491590404510498, 0.004947999954223633, 0.0051528000831604, 0.004965504169464111, 0.0049509119987487795, 0.004904607772827149, 0.00498908805847168, 0.004929376125335693, 0.004915328025817871, 0.004908512115478516, 0.004956639766693115, 0.004947487831115723, 0.004883200168609619, 0.004894720077514648, 0.004964352130889893, 0.004933631896972656, 0.004902272224426269, 0.004909696102142334, 0.004884223937988281, 0.004958240032196045, 0.004904416084289551, 0.004882559776306152, 0.004877984046936035, 0.004946208000183106, 0.004973120212554931, 0.004905087947845459, 0.0048925762176513675, 0.004968607902526855, 0.004937376022338867, 0.004880671977996826, 0.004874239921569825, 0.004900864124298096, 0.004972095966339111, 0.004904672145843506, 0.004893407821655273, 0.004902912139892578, 0.004976640224456787, 0.005228544235229492, 0.00609062385559082, 0.00565670394897461, 0.005205152034759522, 0.004921440124511719, 0.004914944171905518, 0.004919424057006836, 0.004959104061126709, 0.004925439834594727, 0.004906847953796387, 0.004931104183197021, 0.005060575962066651, 0.004936351776123047, 0.004929183959960937, 0.005044576168060303, 0.004999135971069336, 0.004964384078979492, 0.004935679912567138, 0.005027679920196533, 0.004984992027282715, 0.0049398717880249025, 0.004918687820434571, 0.004907519817352295, 0.004997119903564453, 0.004925439834594727, 0.004911104202270508, 0.004892672061920166, 0.004933119773864746, 0.004958655834197998, 0.004925504207611084, 0.004904960155487061, 0.004896063804626465, 0.0049600000381469726, 0.00490502405166626, 0.0048951997756958, 0.004909471988677978, 0.004986048221588135, 0.004993855953216553, 0.00494704008102417, 0.005143199920654297, 0.005004576206207275, 0.004935776233673096, 0.004920191764831543, 0.00491315221786499, 0.004968448162078858, 0.004929344177246094, 0.004894752025604248, 0.004894176006317139, 0.004902847766876221, 0.0049630718231201175, 0.004894720077514648, 0.0048837437629699705, 0.00488428783416748, 0.004967328071594238, 0.004925439834594727, 0.004894720077514648, 0.004902912139892578, 0.004959807872772217, 0.004917407989501953, 0.00490115213394165, 0.004873600006103516, 0.004906879901885986, 0.004997568130493164, 0.0048558077812194825, 0.0049192957878112795, 0.0049090561866760255, 0.00488592004776001, 0.00489737606048584, 0.004956160068511963, 0.00496566390991211, 0.005740992069244385, 0.0050005121231079105, 0.004942240238189698, 0.004901440143585205, 0.004910719871520996, 0.0049565439224243165, 0.004910848140716553, 0.004897024154663086, 0.004902912139892578, 0.004923391819000244, 0.004956160068511963, 0.004916287899017334, 0.004897696018218994, 0.004888607978820801, 0.0049576001167297365, 0.004932191848754883, 0.004910560131072998, 0.004913695812225342, 0.00496230411529541, 0.004943871974945068, 0.004898816108703613, 0.004933599948883057, 0.004974624156951904, 0.004978367805480957, 0.004947648048400879, 0.004909599781036377, 0.004900959968566895, 0.0049909758567810054, 0.00495411205291748, 0.0049192957878112795, 0.004904960155487061, 0.00497049617767334, 0.004920959949493408, 0.004894432067871094, 0.004902719974517822, 0.00494268798828125, 0.004907008171081543, 0.005056511878967285, 0.004921343803405762, 0.004894432067871094, 0.004963808059692383, 0.004958687782287597, 0.0049088640213012695, 0.004897056102752685, 0.004962560176849365, 0.004998303890228271, 0.005817183971405029, 0.005048319816589355, 0.004933279991149902, 0.004890975952148438, 0.004914463996887207, 0.004958943843841553, 0.00491315221786499, 0.004898272037506104, 0.004891168117523193, 0.004902016162872314, 0.004799071788787842, 0.005559391975402832, 0.004971424102783203, 0.005586944103240967, 0.005717984199523926, 0.00562179183959961, 0.004939775943756103, 0.005017055988311768, 0.004950560092926025, 0.0049192957878112795, 0.004912896156311035, 0.004995039939880371, 0.004945888042449951, 0.0049073281288146975, 0.0049231362342834475, 0.004993279933929443, 0.004964352130889893, 0.004918943881988525, 0.004904863834381104, 0.0049585280418396, 0.0049706239700317385, 0.004930848121643066, 0.004903103828430176, 0.0050078401565551755, 0.004986944198608398, 0.004925439834594727, 0.004913407802581787, 0.004900735855102539, 0.004986752033233643, 0.004960256099700928, 0.005027040004730225, 0.00521830415725708, 0.005036255836486816, 0.00516870403289795, 0.004904287815093994, 0.005216991901397705, 0.004996032238006592, 0.005007359981536865, 0.004926623821258545, 0.004942207813262939, 0.004975071907043457, 0.004925439834594727, 0.0048865280151367185, 0.004933631896972656, 0.0049909758567810054, 0.004923391819000244, 0.004960256099700928, 0.0049862079620361325, 0.005001791954040527, 0.005130112171173096, 0.004925663948059082, 0.004921343803405762, 0.00499507188796997, 0.004918975830078125, 0.004922688007354736, 0.0048846077919006345, 0.004946720123291015, 0.004902624130249024, 0.004964735984802246, 0.004883584022521973, 0.004884384155273438, 0.004981279850006104, 0.0049054079055786135]",tokens/s,201.63556778220635,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,7435.067392,8041.463808,0.0,7646.216192,7627.584,s,1,12.991546875,12.991546875,0.0,12.991546875,12.991546875,12.991546875,12.991546875,[12.991546875],,kWh,0.00017130919977500125,1.8889409411852197e-05,5.410198772600079e-05,0.00024430059691285424,,MB,1762.79552,8725.13536,0.0,8315.20768,8191.863296,s,10,3.3267133789062506,0.33267133789062503,0.00033820709782437364,0.3326336975097656,0.3330281829833984,0.3331999130249023,0.3333372970581055,"[0.3326554870605469, 0.3323913879394531, 0.3329900207519531, 0.3326119079589844, 0.33216793823242186, 0.33296771240234374, 0.3325362243652344, 0.3326815185546875, 0.33337164306640626, 0.3323395385742188]",tokens/s,769.5282726285459,kWh,9.738502531527805e-06,1.0739790810460098e-06,6.445282934000018e-06,1.7257764546573834e-05,tokens/kWh,14833902.694009311,MB,1768.218624,9039.70816,0.0,8629.78048,8480.067584,s,10,26.721745361328125,2.6721745361328124,0.005471856679455445,2.672157958984375,2.678659765625,2.6799368164062503,2.68095845703125,"[2.662966552734375, 2.66588330078125, 2.66883642578125, 2.668659912109375, 2.671700927734375, 2.672614990234375, 2.674096923828125, 2.677396484375, 2.6783759765625, 2.6812138671875]",tokens/s,23.576304297538137,kWh,7.822668066305538e-05,8.628155067764689e-06,5.198445825419998e-05,0.0001388392939850201,tokens/kWh,453762.030846954,,s,630,26.71208351898191,0.042400132569812586,0.00038199873817920996,0.042404895782470704,0.042909495162963864,0.0430070894241333,0.04318935146331787,"[0.041968673706054685, 0.041872352600097654, 0.04167382431030273, 0.041505695343017575, 0.04162355041503906, 0.04158464050292969, 0.04158464050292969, 0.041723358154296876, 0.04179532623291016, 0.041729854583740233, 0.04183324813842773, 0.0419898567199707, 0.042024608612060546, 0.04181238555908203, 0.04197587203979492, 0.042237632751464846, 0.04200515365600586, 0.04196768188476562, 0.041816001892089845, 0.0421409912109375, 0.04211977767944336, 0.041957374572753905, 0.04215135955810547, 0.04218537521362305, 0.04213324737548828, 0.042106880187988284, 0.04203494262695313, 0.041931262969970705, 0.04193830490112305, 0.04223040008544922, 0.04237324905395508, 0.04228099060058594, 0.042094432830810546, 0.04206099319458008, 0.04231865692138672, 0.042377120971679685, 0.04252880096435547, 0.042377281188964847, 0.042254337310791014, 0.04240137481689453, 0.04259267044067383, 0.042563552856445315, 0.04243833541870117, 0.04298976135253906, 0.04271635055541992, 0.042678817749023434, 0.04269308853149414, 0.04247343826293945, 0.04242956924438476, 0.042584705352783206, 0.04251855850219727, 0.04254537582397461, 0.042635265350341796, 0.042759552001953124, 0.04259916687011719, 0.04263248062133789, 0.042711360931396485, 0.042708255767822265, 0.04276348876953125, 0.042938144683837894, 0.04294246292114258, 0.042850303649902347, 0.04279296112060547, 0.04178739166259766, 0.041696990966796875, 0.04185756683349609, 0.041946430206298825, 0.04193734359741211, 0.04174233627319336, 0.04173619079589844, 0.041646080017089845, 0.041586593627929686, 0.041707775115966794, 0.04190419387817383, 0.042065345764160156, 0.04214204788208008, 0.04193075180053711, 0.042446849822998046, 0.04219811248779297, 0.042166591644287106, 0.0420931510925293, 0.042008575439453126, 0.04215398406982422, 0.04222886276245117, 0.042087295532226565, 0.04201846313476563, 0.0420621452331543, 0.0422973747253418, 0.042231807708740236, 0.042162174224853514, 0.042356929779052734, 0.042167713165283206, 0.0421393928527832, 0.04213766479492188, 0.04205369567871094, 0.042154529571533206, 0.042468894958496095, 0.04252463912963867, 0.042418113708496095, 0.04243513488769531, 0.04259417724609375, 0.04256371307373047, 0.04252684783935547, 0.04258598327636719, 0.0425206413269043, 0.042794944763183594, 0.04275830459594727, 0.04268592071533203, 0.042567550659179686, 0.04252262496948242, 0.042496192932128904, 0.04250246429443359, 0.042562782287597654, 0.04244969558715821, 0.04287030410766601, 0.04279539108276367, 0.04247283172607422, 0.04252131271362305, 0.04260611343383789, 0.042525150299072265, 0.0425082893371582, 0.042469024658203125, 0.042562911987304684, 0.04277657699584961, 0.04295977783203125, 0.04297942352294922, 0.04216144180297852, 0.042003360748291016, 0.041912033081054685, 0.04245455932617188, 0.04202473449707031, 0.04196246337890625, 0.0417786865234375, 0.04169705581665039, 0.041800064086914064, 0.041976158142089846, 0.041816062927246093, 0.04155801773071289, 0.041645919799804684, 0.04207222366333008, 0.04208025741577148, 0.04196352005004883, 0.04217804718017578, 0.04217292785644531, 0.04215135955810547, 0.04224208068847656, 0.0422630729675293, 0.04205977630615235, 0.04193667221069336, 0.04215343856811524, 0.0420032958984375, 0.042280223846435545, 0.04224985504150391, 0.04216320037841797, 0.04211097717285156, 0.042395648956298826, 0.04213564682006836, 0.042366081237792966, 0.04232886505126953, 0.042190113067626954, 0.042672863006591795, 0.04247500610351562, 0.04249856185913086, 0.04287088012695312, 0.04260444641113281, 0.04260416030883789, 0.04253084945678711, 0.042546878814697264, 0.04235862350463867, 0.04241900634765625, 0.0425984001159668, 0.04271820831298828, 0.0426690559387207, 0.04253619384765625, 0.042619552612304684, 0.04289750289916992, 0.04292822265625, 0.042563518524169924, 0.04251651382446289, 0.04278879928588867, 0.0428359375, 0.042775806427001954, 0.04266387176513672, 0.04277936172485351, 0.0427369270324707, 0.04270095825195312, 0.042728096008300784, 0.043040702819824216, 0.04320060729980469, 0.04206374359130859, 0.041754463195800784, 0.041728832244873046, 0.04168201446533203, 0.04189276885986328, 0.04190329742431641, 0.04199488067626953, 0.04189734268188477, 0.04202969741821289, 0.041940193176269534, 0.04178409576416016, 0.041918464660644535, 0.04188774490356445, 0.04182220840454102, 0.04175811386108398, 0.04192111968994141, 0.042238079071044925, 0.042210559844970706, 0.04216419219970703, 0.042207294464111325, 0.04207062530517578, 0.04236876678466797, 0.042157791137695313, 0.04222201538085937, 0.042057281494140626, 0.042080863952636716, 0.04211727905273437, 0.04219062423706055, 0.04226399993896485, 0.042204830169677736, 0.04218921661376953, 0.04230604934692383, 0.04241628646850586, 0.042347423553466795, 0.04243552017211914, 0.04227635192871094, 0.04225075149536133, 0.04237865447998047, 0.04232252883911133, 0.04254294586181641, 0.042547359466552734, 0.04249615859985351, 0.04274467086791992, 0.04273660659790039, 0.042704704284667966, 0.042676448822021484, 0.04251443099975586, 0.043003902435302735, 0.04288918304443359, 0.042876510620117186, 0.04285472106933594, 0.04268239974975586, 0.042579551696777344, 0.04261312103271484, 0.042665313720703125, 0.04301107025146484, 0.042907424926757816, 0.042790912628173826, 0.04281532669067383, 0.04297439956665039, 0.04281238555908203, 0.042742977142333986, 0.042990623474121095, 0.04211113739013672, 0.041942432403564454, 0.04183100891113281, 0.04189593505859375, 0.041957374572753905, 0.04180377578735352, 0.04193484878540039, 0.042261825561523435, 0.04219359970092774, 0.04192870330810547, 0.04189583969116211, 0.041992286682128906, 0.041998207092285154, 0.04206713485717774, 0.04198441696166992, 0.04212310409545898, 0.042183361053466796, 0.0420203857421875, 0.042240478515625, 0.04227260971069336, 0.04217647933959961, 0.04210502243041992, 0.0420208625793457, 0.04226371383666992, 0.042039329528808594, 0.04203193664550781, 0.04230348968505859, 0.042419967651367185, 0.04236838531494141, 0.04233715057373047, 0.042518081665039065, 0.042326465606689456, 0.04232134246826172, 0.042404415130615235, 0.04239116668701172, 0.04248175811767578, 0.04251871871948242, 0.04240188980102539, 0.04272742462158203, 0.042557342529296875, 0.04254316711425781, 0.04253084945678711, 0.042518527984619144, 0.042687839508056644, 0.04272528076171875, 0.042603233337402346, 0.042462974548339846, 0.04291401672363281, 0.042772544860839846, 0.04274176025390625, 0.042580032348632814, 0.04242995071411133, 0.04265619277954102, 0.04300339126586914, 0.042871295928955076, 0.042661727905273436, 0.042868896484375, 0.04310835266113281, 0.04299161529541016, 0.04272537612915039, 0.04292403030395508, 0.042967041015625, 0.042989791870117186, 0.04278681564331055, 0.042059135437011716, 0.04200716781616211, 0.042003456115722655, 0.0419420166015625, 0.04177644729614258, 0.04206809616088867, 0.041968193054199215, 0.041893184661865236, 0.041816318511962894, 0.04177123260498047, 0.04177657699584961, 0.042097152709960936, 0.04223004913330078, 0.042218494415283206, 0.0421629753112793, 0.042109153747558595, 0.04205507278442383, 0.042148448944091796, 0.04204748916625976, 0.0421580810546875, 0.042041343688964845, 0.04194655990600586, 0.04236111831665039, 0.042374881744384765, 0.042266334533691406, 0.0422632942199707, 0.04224726486206055, 0.04248166275024414, 0.04233267211914062, 0.04234086227416992, 0.042229759216308595, 0.04212940979003906, 0.042240001678466796, 0.04250419235229492, 0.04252057647705078, 0.0423807373046875, 0.04235638427734375, 0.042557823181152345, 0.042496543884277344, 0.04254105758666992, 0.0423768310546875, 0.0425432014465332, 0.042670398712158206, 0.04269862365722656, 0.042504287719726565, 0.0430263671875, 0.042820926666259765, 0.04275276947021484, 0.04271513748168945, 0.04269055938720703, 0.04293804931640625, 0.04295916748046875, 0.04318207931518555, 0.042866687774658206, 0.04305100631713867, 0.042928031921386715, 0.04272137451171875, 0.042625022888183595, 0.04278208160400391, 0.04301465606689453, 0.04302979278564453, 0.04289827346801758, 0.042319072723388675, 0.04217081451416015, 0.04205097579956055, 0.04193273544311524, 0.041882625579833986, 0.04186111831665039, 0.04184473419189453, 0.04212531280517578, 0.042039295196533204, 0.041885696411132815, 0.04183049774169922, 0.041825439453125, 0.04204787063598633, 0.04245663833618164, 0.042195327758789064, 0.04216262435913086, 0.042102783203125, 0.042123264312744144, 0.04194918441772461, 0.04195734405517578, 0.04187526321411133, 0.041973983764648434, 0.04219084930419922, 0.04227686309814453, 0.04215091323852539, 0.04234902572631836, 0.042359329223632815, 0.04244188690185547, 0.0422657585144043, 0.042407615661621094, 0.0425382080078125, 0.042611488342285155, 0.042543102264404296, 0.042568737030029294, 0.04241302490234375, 0.042788063049316406, 0.04273846435546875, 0.043053054809570314, 0.042291263580322265, 0.04244473648071289, 0.04272889709472656, 0.042748287200927736, 0.04265798568725586, 0.04260646438598633, 0.04271321487426758, 0.04249401473999023, 0.04266364669799805, 0.042923904418945315, 0.0427454719543457, 0.04275225448608398, 0.04270947265625, 0.043030529022216796, 0.04290899276733398, 0.042687007904052734, 0.042614944458007814, 0.04260236740112305, 0.042692737579345705, 0.04306867218017578, 0.043394912719726564, 0.0432116813659668, 0.042971134185791016, 0.04279305648803711, 0.04274959945678711, 0.04220713424682617, 0.041984001159667966, 0.04183017730712891, 0.04178351974487305, 0.041869152069091795, 0.041716960906982424, 0.041842689514160154, 0.04210374450683594, 0.04216153717041016, 0.042116832733154294, 0.0425335693359375, 0.042216960906982424, 0.04222563171386719, 0.04232268905639648, 0.04226867294311523, 0.04198604965209961, 0.041818111419677735, 0.04197817611694336, 0.04240351867675781, 0.042405376434326174, 0.04229785537719727, 0.04246092987060547, 0.04250812911987305, 0.04243497467041016, 0.04244844818115234, 0.04232032012939453, 0.042180126190185546, 0.042181087493896485, 0.04245094299316406, 0.04286806488037109, 0.04247747039794922, 0.04236569595336914, 0.04277657699584961, 0.04272537612915039, 0.04258127975463867, 0.04260054397583008, 0.042528385162353514, 0.0424637451171875, 0.042676097869873045, 0.042722049713134765, 0.04257369613647461, 0.042559486389160156, 0.042848255157470705, 0.04271279907226563, 0.04250019073486328, 0.04270870590209961, 0.04278076934814453, 0.0429029426574707, 0.04282467269897461, 0.04285440063476562, 0.042729503631591795, 0.042635231018066405, 0.04258390426635742, 0.042812896728515626, 0.04300051116943359, 0.04295043182373047, 0.042782943725585935, 0.04308361434936524, 0.04296828842163086, 0.042898368835449216, 0.04282905578613281, 0.04293241500854492, 0.04297580718994141, 0.041940990447998046, 0.04180307388305664, 0.04196217727661133, 0.04189401626586914, 0.04168454360961914, 0.04203948974609375, 0.04205110549926758, 0.041941600799560545, 0.04181196975708008, 0.04196761703491211, 0.041971710205078124, 0.042017951965332034, 0.041785568237304685, 0.041964160919189454, 0.042171806335449216, 0.04224060821533203, 0.042302913665771484, 0.04227743911743164, 0.04230963134765625, 0.04228851318359375, 0.04256335830688476, 0.04237395095825195, 0.042355838775634765, 0.0423223991394043, 0.04221177673339844, 0.042358814239501955, 0.04244617462158203, 0.042471710205078124, 0.042430686950683597, 0.042698879241943356, 0.042602718353271486, 0.04238016128540039, 0.04223017501831055, 0.042608543395996096, 0.042584545135498045, 0.04250361633300781, 0.042754302978515624, 0.042736064910888674, 0.04266300964355469, 0.042619583129882815, 0.04256175994873047, 0.04259337615966797, 0.04254608154296875, 0.042780670166015625, 0.04289708709716797, 0.04281171035766602, 0.04300969696044922, 0.042858463287353515, 0.04274214553833008, 0.04264348983764649, 0.043014110565185545, 0.042968929290771486, 0.04304873657226563, 0.0430145263671875, 0.04290351867675781, 0.04289932632446289, 0.04286495971679687, 0.04288905715942383, 0.043126911163330076, 0.043159423828125, 0.043026462554931644, 0.04336022567749023, 0.04314316940307617, 0.04210038375854492, 0.04226108932495117, 0.04212892913818359, 0.0418554573059082, 0.041750560760498046, 0.041955135345458985, 0.04216233444213867, 0.04228227233886719, 0.0419376335144043, 0.042176513671875, 0.042228832244873046, 0.042259361267089846, 0.04250032043457031, 0.042434337615966794, 0.04232499313354492, 0.04209561538696289, 0.04191027069091797, 0.04191372680664063, 0.04228505706787109, 0.0422795524597168, 0.042215614318847655, 0.04240364837646484, 0.04239155197143555, 0.042246143341064454, 0.0421550407409668, 0.04211606216430664, 0.04208639907836914, 0.04215580749511719, 0.04240982437133789, 0.042546817779541016, 0.042614688873291014, 0.04257059097290039, 0.042516288757324217, 0.042743297576904295, 0.04266668701171875, 0.04273561477661133, 0.042790912628173826, 0.042823585510253906, 0.042937664031982424, 0.04291584014892578, 0.04274460983276367, 0.042796222686767575, 0.04262380981445312, 0.042635265350341796, 0.04252057647705078, 0.04279216003417969, 0.04289007949829102, 0.04276380920410156, 0.04321116638183594, 0.04293769454956055, 0.04288070297241211, 0.04278992080688476, 0.04271507263183594, 0.04303257751464844, 0.042974624633789066, 0.04287548828125, 0.04326604843139648, 0.04319232177734375, 0.04315692901611328, 0.04296345520019531, 0.04312649536132813, 0.043180000305175784, 0.043028865814208984]",tokens/s,23.584831918944637,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4293.066752,4878.958592,0.0,4483.710976,4465.672704,s,1,10.4649501953125,10.4649501953125,0.0,10.4649501953125,10.4649501953125,10.4649501953125,10.4649501953125,[10.4649501953125],,kWh,0.0001039129356708372,1.1454931439208603e-05,3.2453081518002413e-05,0.00014782094862804822,,MB,2150.473728,5302.583296,0.0,4892.655616,4837.669376,s,10,1.8069629058837893,0.18069629058837888,0.00038065052024590545,0.18078084564208985,0.18096441345214842,0.1810408920288086,0.18110207489013672,"[0.18040179443359375, 0.17968453979492188, 0.18072915649414062, 0.1807381134033203, 0.18081753540039064, 0.18074415588378906, 0.18085792541503906, 0.18111737060546876, 0.18092489624023436, 0.18094741821289062]",tokens/s,1416.7418665121404,kWh,5.291679808333072e-06,5.835758006887894e-07,3.5194075774285953e-06,9.394663186450456e-06,tokens/kWh,27249513.358735252,MB,2154.483712,5470.355456,0.0,5060.427776,5014.227968,s,10,15.805345214843749,1.5805345214843751,0.0018606053167179034,1.580326416015625,1.5817849731445313,1.583616668701172,1.5850820251464843,"[1.5804212646484375, 1.5793768310546874, 1.578682373046875, 1.57875439453125, 1.580556884765625, 1.5811287841796875, 1.5802315673828125, 1.5793668212890626, 1.5854483642578125, 1.5813779296875]",tokens/s,39.85993291739867,kWh,4.620386784125182e-05,5.096016547766361e-06,3.064478642057143e-05,8.194467080958962e-05,tokens/kWh,768811.4355403255,,s,630,15.80259872817993,0.02508349004473005,0.00030434212382670045,0.02506243133544922,0.0253934139251709,0.025437215518951416,0.025531290798187257,"[0.025378976821899414, 0.02512076759338379, 0.024822816848754883, 0.024773056030273438, 0.024729824066162108, 0.02475449562072754, 0.02472492790222168, 0.024762752532958985, 0.02472979164123535, 0.024735807418823242, 0.024715200424194336, 0.02478665542602539, 0.02487286376953125, 0.0248590087890625, 0.024809728622436522, 0.02471443176269531, 0.024785087585449218, 0.02492608070373535, 0.024797439575195312, 0.02476643180847168, 0.024733983993530273, 0.02481113624572754, 0.024938880920410158, 0.024821983337402344, 0.024854207992553713, 0.024904960632324218, 0.024951648712158204, 0.024877056121826172, 0.02660883140563965, 0.0250130558013916, 0.024995840072631836, 0.024965343475341798, 0.02494438362121582, 0.024997119903564454, 0.02495158386230469, 0.02497331237792969, 0.02511052894592285, 0.02531443214416504, 0.025232255935668944, 0.025182207107543944, 0.025568607330322266, 0.02527299118041992, 0.025204320907592774, 0.02526025581359863, 0.025254079818725586, 0.025157663345336916, 0.02517398452758789, 0.0252127685546875, 0.02525609588623047, 0.025364320755004884, 0.025487520217895507, 0.025272319793701172, 0.025306848526000975, 0.025264415740966797, 0.025956064224243163, 0.025404735565185545, 0.02520124816894531, 0.025223552703857424, 0.02531942367553711, 0.025268192291259765, 0.025228960037231445, 0.025341312408447267, 0.02541472053527832, 0.025241567611694337, 0.024945856094360352, 0.024897567749023436, 0.024748863220214842, 0.024667903900146483, 0.02466022491455078, 0.024772607803344726, 0.024819135665893555, 0.024816192626953126, 0.024796703338623046, 0.024764896392822266, 0.02493440055847168, 0.02511193656921387, 0.024814207077026366, 0.0247459831237793, 0.024774816513061522, 0.024821599960327147, 0.024816831588745116, 0.024885248184204102, 0.0248855037689209, 0.024975423812866212, 0.02500249671936035, 0.024913919448852538, 0.024903615951538085, 0.024917728424072267, 0.024973344802856446, 0.024973119735717773, 0.024923648834228516, 0.024953855514526366, 0.025001983642578125, 0.02494054412841797, 0.024975231170654297, 0.025273759841918944, 0.025061439514160157, 0.02496575927734375, 0.025009567260742188, 0.025055776596069335, 0.02515065574645996, 0.025077856063842774, 0.025155872344970704, 0.02520323181152344, 0.025324735641479492, 0.02512361526489258, 0.025122848510742188, 0.025198591232299804, 0.025158912658691406, 0.025101055145263673, 0.02533580780029297, 0.025401344299316408, 0.025380800247192383, 0.025312448501586916, 0.02529974365234375, 0.025434207916259766, 0.025302080154418944, 0.02525062370300293, 0.02532364845275879, 0.025358335494995117, 0.02531839942932129, 0.025357311248779296, 0.02539107131958008, 0.025418975830078124, 0.025383743286132812, 0.02545254325866699, 0.024966751098632813, 0.024760704040527343, 0.02467840003967285, 0.024513824462890625, 0.024592735290527343, 0.024573312759399415, 0.02459075164794922, 0.024592927932739258, 0.0247807674407959, 0.024873151779174804, 0.024837343215942383, 0.024754880905151367, 0.02472563171386719, 0.024885120391845702, 0.024907167434692384, 0.024883808135986327, 0.024856576919555663, 0.024833951950073242, 0.02487715148925781, 0.024868831634521485, 0.02485865592956543, 0.024861696243286133, 0.02490671920776367, 0.02498966407775879, 0.025004095077514648, 0.02513100814819336, 0.02510211181640625, 0.025188575744628905, 0.0251146240234375, 0.025048095703125, 0.025091039657592774, 0.025102527618408203, 0.025066688537597658, 0.025172000885009767, 0.025217727661132814, 0.02516694450378418, 0.025074495315551757, 0.025147359848022462, 0.02509008026123047, 0.025082944869995117, 0.02503715133666992, 0.02510710334777832, 0.025407424926757814, 0.025047040939331053, 0.02502000045776367, 0.025257408142089845, 0.02537980842590332, 0.025324607849121095, 0.02524880027770996, 0.025276544570922852, 0.025280288696289063, 0.025384960174560548, 0.02524569511413574, 0.025341535568237306, 0.025313695907592772, 0.025329343795776366, 0.025327840805053712, 0.025438079833984373, 0.025393375396728514, 0.025405439376831054, 0.025364479064941405, 0.02533184051513672, 0.025382783889770506, 0.025343679428100587, 0.024797119140625, 0.024867263793945313, 0.024775999069213867, 0.024736127853393554, 0.02468176078796387, 0.024713279724121094, 0.02471388816833496, 0.024757440567016602, 0.02466694450378418, 0.02462918472290039, 0.024659296035766602, 0.02474671936035156, 0.024793088912963866, 0.024771808624267578, 0.024777055740356446, 0.024880735397338868, 0.024873823165893556, 0.024896831512451173, 0.024916416168212892, 0.02489779281616211, 0.024923231124877928, 0.024877920150756835, 0.02491935920715332, 0.02497203254699707, 0.024981727600097658, 0.02493417549133301, 0.024993759155273437, 0.025053440093994142, 0.025032672882080078, 0.025003360748291015, 0.025002464294433594, 0.02509823989868164, 0.025096288681030275, 0.025103328704833984, 0.025267135620117186, 0.025264127731323242, 0.025302911758422853, 0.02534003257751465, 0.025204736709594725, 0.025181631088256835, 0.025241952896118164, 0.025413568496704102, 0.025181888580322265, 0.025207231521606446, 0.025184415817260743, 0.025153535842895508, 0.025223167419433593, 0.025296543121337892, 0.025239871978759765, 0.025118751525878905, 0.025165824890136718, 0.025154592514038086, 0.025210880279541017, 0.02527507209777832, 0.025329631805419923, 0.025337503433227538, 0.025407392501831053, 0.025328384399414063, 0.025370624542236327, 0.025447967529296876, 0.025432640075683594, 0.025331615447998047, 0.025241600036621094, 0.024887296676635744, 0.024879104614257814, 0.024840192794799806, 0.024758399963378905, 0.024823680877685547, 0.024785120010375975, 0.024743711471557617, 0.024919456481933593, 0.024916479110717774, 0.02481315231323242, 0.02479871940612793, 0.02476972770690918, 0.024794784545898438, 0.024768672943115234, 0.024802911758422853, 0.024751775741577147, 0.024813823699951172, 0.02484230422973633, 0.02475667190551758, 0.024737184524536132, 0.02498620796203613, 0.02507980728149414, 0.025030656814575194, 0.02489958381652832, 0.024887487411499022, 0.025031648635864257, 0.025060192108154297, 0.02502230453491211, 0.02502057647705078, 0.025036800384521486, 0.025038240432739257, 0.025024639129638673, 0.025037279129028322, 0.025093599319458006, 0.025098751068115235, 0.025091615676879883, 0.025108991622924806, 0.02540083122253418, 0.02540185546875, 0.025255935668945313, 0.025244895935058593, 0.02532841682434082, 0.025280511856079102, 0.02528665542602539, 0.02527177619934082, 0.025343679428100587, 0.02545136070251465, 0.025395200729370116, 0.025401344299316408, 0.02539491271972656, 0.02531068801879883, 0.025279296875, 0.025470975875854493, 0.025362432479858397, 0.025282400131225586, 0.0252642879486084, 0.025185407638549803, 0.025182432174682617, 0.025275039672851562, 0.02532966423034668, 0.02540345573425293, 0.025481151580810546, 0.02501180839538574, 0.024852575302124022, 0.024852800369262695, 0.024819711685180663, 0.024760351181030274, 0.02470908737182617, 0.024861791610717773, 0.024851360321044923, 0.024833696365356445, 0.024809919357299804, 0.02477609634399414, 0.024888992309570312, 0.02486966323852539, 0.024864288330078126, 0.024848928451538087, 0.024792383193969727, 0.024890047073364258, 0.025016319274902343, 0.024922111511230468, 0.024897695541381836, 0.02497724723815918, 0.024946687698364257, 0.0249036808013916, 0.02495052719116211, 0.02502681541442871, 0.024989696502685548, 0.0249036808013916, 0.024921791076660156, 0.025003744125366212, 0.0251312313079834, 0.02527680015563965, 0.024801279067993166, 0.024919071197509766, 0.025037792205810545, 0.025038848876953124, 0.025032543182373048, 0.02505686378479004, 0.024994304656982422, 0.02533510398864746, 0.025035520553588868, 0.02525814437866211, 0.025255775451660155, 0.02532761573791504, 0.02537676811218262, 0.025300991058349608, 0.025280511856079102, 0.025308767318725587, 0.025239967346191407, 0.02536038398742676, 0.025397247314453125, 0.025319232940673828, 0.025303232192993165, 0.02534809684753418, 0.025327072143554688, 0.025241439819335937, 0.02543996810913086, 0.025471744537353517, 0.025450719833374023, 0.025450496673583983, 0.025450496673583983, 0.025436159133911132, 0.025645055770874024, 0.025417728424072264, 0.02519584083557129, 0.024853376388549803, 0.02471299171447754, 0.024602527618408202, 0.02470911979675293, 0.02488047981262207, 0.024758047103881835, 0.02469171142578125, 0.024673887252807617, 0.024852767944335937, 0.024847488403320312, 0.024800224304199217, 0.024755584716796876, 0.024848928451538087, 0.025014015197753908, 0.024940128326416015, 0.024796831130981446, 0.024888288497924804, 0.024899616241455078, 0.024936447143554686, 0.024830015182495117, 0.024905664443969727, 0.024987680435180664, 0.025010143280029297, 0.024954879760742187, 0.024832000732421877, 0.024995199203491213, 0.025078239440917968, 0.025075872421264647, 0.025032703399658202, 0.024997888565063478, 0.025370655059814454, 0.025220928192138673, 0.025079967498779297, 0.025176063537597656, 0.025167423248291014, 0.02510995292663574, 0.025068544387817384, 0.025223167419433593, 0.025217023849487305, 0.025190399169921874, 0.025183359146118165, 0.025145952224731444, 0.025112287521362305, 0.02513363265991211, 0.025145343780517578, 0.025177663803100585, 0.02513350486755371, 0.025264127731323242, 0.025455936431884766, 0.025160383224487305, 0.025343040466308593, 0.025334720611572267, 0.025290752410888673, 0.025438207626342774, 0.025323392868041993, 0.025313024520874024, 0.025512319564819336, 0.025490463256835936, 0.025475423812866212, 0.02551158332824707, 0.025393760681152344, 0.02542777633666992, 0.025227327346801758, 0.024924095153808595, 0.02494054412841797, 0.024767616271972655, 0.02473664093017578, 0.024749216079711915, 0.02478780746459961, 0.024753183364868165, 0.02473878479003906, 0.02473369598388672, 0.024725439071655274, 0.024729408264160157, 0.024796831130981446, 0.024789600372314452, 0.02478291130065918, 0.024776351928710937, 0.024803615570068358, 0.024903520584106446, 0.024850656509399414, 0.024923648834228516, 0.02490208053588867, 0.02487727928161621, 0.024864543914794923, 0.02492006492614746, 0.025056991577148437, 0.025069984436035156, 0.02515977668762207, 0.025044767379760743, 0.025036575317382813, 0.025045215606689455, 0.0251146240234375, 0.024978464126586913, 0.02498454475402832, 0.025012224197387696, 0.0251312313079834, 0.024981279373168946, 0.02513920021057129, 0.025206560134887694, 0.025180383682250975, 0.02515932846069336, 0.025123104095458985, 0.025366336822509765, 0.025260128021240235, 0.025128416061401367, 0.02529158401489258, 0.02526585578918457, 0.025292512893676757, 0.025264608383178712, 0.025208255767822266, 0.025213504791259767, 0.025250848770141603, 0.02517091178894043, 0.02521244812011719, 0.0252127685546875, 0.025248224258422852, 0.025308992385864256, 0.025443967819213868, 0.02550364875793457, 0.025434944152832033, 0.02531942367553711, 0.025421024322509766, 0.02540355110168457, 0.025449087142944336, 0.025401344299316408, 0.025222272872924806, 0.025035392761230468, 0.02483331108093262, 0.024686880111694336, 0.02468524742126465, 0.024731679916381834, 0.02470275115966797, 0.024680639266967775, 0.024814912796020508, 0.0248624324798584, 0.024946815490722658, 0.02492297554016113, 0.024803327560424804, 0.02482579231262207, 0.02485641670227051, 0.02493667221069336, 0.02484947204589844, 0.02482681655883789, 0.024825664520263673, 0.024903871536254882, 0.024928255081176756, 0.02506342315673828, 0.025024255752563476, 0.025147647857666017, 0.025051103591918946, 0.025002208709716797, 0.02502022361755371, 0.025142911911010743, 0.02499827194213867, 0.024870912551879884, 0.024867967605590822, 0.0250984001159668, 0.02512131118774414, 0.025196735382080077, 0.025206783294677734, 0.025247743606567383, 0.025118719100952147, 0.02515497589111328, 0.025328224182128906, 0.025316383361816405, 0.025227840423583985, 0.025268672943115234, 0.02524291229248047, 0.02968150329589844, 0.025079839706420897, 0.02509609603881836, 0.02511555290222168, 0.025191871643066407, 0.02524790382385254, 0.02539094352722168, 0.02521343994140625, 0.02525539207458496, 0.025338239669799804, 0.02535238456726074, 0.02541366386413574, 0.02538265609741211, 0.025343391418457033, 0.02537353515625, 0.025319520950317382, 0.025340896606445312, 0.025539039611816406, 0.02551036834716797, 0.024875072479248046, 0.02473382377624512, 0.02472332763671875, 0.024762367248535155, 0.024809471130371095, 0.0247576961517334, 0.02487763214111328, 0.02490777587890625, 0.02486800003051758, 0.024957792282104492, 0.02487500762939453, 0.024829952239990235, 0.02485043144226074, 0.024903039932250976, 0.024824352264404298, 0.024780895233154295, 0.02478188705444336, 0.024804288864135743, 0.024774528503417968, 0.024946815490722658, 0.025026559829711914, 0.024949951171875, 0.024905824661254884, 0.024996448516845703, 0.024950912475585937, 0.024999584197998047, 0.025039199829101563, 0.02517100715637207, 0.02521183967590332, 0.025417728424072264, 0.025054336547851563, 0.025008319854736328, 0.025010879516601563, 0.025101472854614258, 0.025121631622314452, 0.025034751892089844, 0.025059328079223633, 0.025057279586791992, 0.025198591232299804, 0.025165824890136718, 0.02524470329284668, 0.02535113525390625, 0.025320608139038085, 0.025254751205444338, 0.025285984039306642, 0.025256607055664064, 0.025266176223754884, 0.025273504257202147, 0.025215391159057618, 0.025223264694213866, 0.02532796859741211, 0.025425504684448243, 0.025409055709838868, 0.02545724868774414, 0.025284704208374024, 0.025243839263916015, 0.02543939208984375, 0.025381727218627928, 0.025603328704833984, 0.02538390350341797, 0.025435583114624023, 0.025416032791137695, 0.025475103378295897]",tokens/s,39.86686056114015,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1057.681408,904.855552,0.0,509.607936,491.434496,s,1,7.827791015625,7.827791015625,0.0,7.827791015625,7.827791015625,7.827791015625,7.827791015625,[7.827791015625],,kWh,2.41184667208131e-05,2.652280298336202e-06,8.146395406000151e-06,3.491714242514945e-05,,MB,1365.553152,1018.10176,0.0,608.17408,592.24832,s,10,0.1971610870361328,0.019716108703613282,0.0005599603234482525,0.019589552879333498,0.02018427448272705,0.020702905559539794,0.02111781042098999,"[0.02006902313232422, 0.019475648880004883, 0.01972447967529297, 0.01926380729675293, 0.01932441520690918, 0.019350496292114258, 0.02122153663635254, 0.01970345687866211, 0.019276031494140623, 0.0197521915435791]",tokens/s,12984.306581403867,kWh,5.748851891567857e-07,6.339963632436003e-08,3.531416867126034e-07,9.914265121937492e-07,tokens/kWh,258213792.80401096,MB,1379.516416,1032.781824,0.0,622.854144,605.085696,s,10,10.358093688964845,1.0358093688964842,0.009877266112672058,1.0333173828125002,1.049001318359375,1.050311328125,1.0513593359375,"[1.03319384765625, 1.0235807495117188, 1.0278206787109374, 1.03344091796875, 1.0273258056640624, 1.024480712890625, 1.051621337890625, 1.04366015625, 1.04425927734375, 1.048710205078125]",tokens/s,60.82200247630318,kWh,3.0259939236261438e-05,3.3371566101980955e-06,1.1780895798287674e-05,4.537799164474721e-05,tokens/kWh,1388338.2167551846,,s,630,10.352869088172914,0.0164331255367824,0.0004075164655791157,0.016304304122924804,0.016814908027648925,0.016989174556732177,0.017438395004272463,"[0.01586176013946533, 0.016242368698120117, 0.016171327590942385, 0.01624678421020508, 0.016216064453125, 0.016260448455810546, 0.016392511367797853, 0.016185920715332033, 0.01618451118469238, 0.01612041664123535, 0.016279296875, 0.016339071273803712, 0.01632473564147949, 0.016285696029663087, 0.01627894401550293, 0.016599647521972655, 0.018066495895385743, 0.01744771194458008, 0.016621728897094727, 0.01654374313354492, 0.01660927963256836, 0.01647760009765625, 0.016271968841552735, 0.016304128646850585, 0.016245855331420898, 0.016272287368774414, 0.016975200653076172, 0.016218528747558594, 0.016504575729370117, 0.016314783096313477, 0.01625904083251953, 0.01626675224304199, 0.016287391662597656, 0.01626620864868164, 0.016310272216796876, 0.016314367294311523, 0.016313728332519532, 0.01653619194030762, 0.016403488159179688, 0.016202816009521483, 0.01615862464904785, 0.01617647933959961, 0.016181919097900392, 0.01620969581604004, 0.016224479675292967, 0.016205087661743164, 0.016226079940795897, 0.01639878463745117, 0.01629350471496582, 0.01616796875, 0.016236095428466796, 0.01652364730834961, 0.01670047950744629, 0.01660809516906738, 0.016584831237792967, 0.01648627281188965, 0.016368736267089845, 0.016306751251220702, 0.01634547233581543, 0.016610496520996092, 0.01667718315124512, 0.016578752517700194, 0.016421152114868165, 0.015839903831481934, 0.016209823608398437, 0.01616217613220215, 0.016243423461914062, 0.016265216827392577, 0.01643654441833496, 0.01640108871459961, 0.016358432769775392, 0.016206432342529296, 0.01616099166870117, 0.016283647537231445, 0.01632271957397461, 0.016228351593017578, 0.016348608016967775, 0.016316352844238283, 0.0161246395111084, 0.016379711151123046, 0.016160863876342774, 0.01613209533691406, 0.016134016036987303, 0.016164255142211915, 0.01622025680541992, 0.016361343383789063, 0.01635215950012207, 0.01628758430480957, 0.016215103149414063, 0.016188352584838868, 0.01618534469604492, 0.016187103271484374, 0.016135967254638672, 0.01626755142211914, 0.016318336486816406, 0.016257408142089844, 0.01647817611694336, 0.016280799865722655, 0.016315168380737304, 0.016320512771606444, 0.0161876163482666, 0.01625654411315918, 0.0163143367767334, 0.01620012855529785, 0.016309984207153322, 0.016285823822021483, 0.016207872390747072, 0.016204832077026367, 0.01641468811035156, 0.01618227195739746, 0.016170944213867187, 0.01630419158935547, 0.01618931198120117, 0.01616099166870117, 0.0163286075592041, 0.01626755142211914, 0.01620534324645996, 0.016220447540283203, 0.016265119552612305, 0.016273408889770507, 0.01617078399658203, 0.01623891258239746, 0.016109472274780275, 0.016080896377563478, 0.016113664627075194, 0.016202016830444334, 0.016091136932373046, 0.016179296493530275, 0.016117696762084962, 0.016109439849853517, 0.016152511596679686, 0.016150688171386717, 0.01615603256225586, 0.01609337615966797, 0.016148927688598633, 0.01615667152404785, 0.01651737594604492, 0.016281343460083007, 0.01611961555480957, 0.016113855361938476, 0.01608415985107422, 0.01609996795654297, 0.016212160110473633, 0.016187263488769532, 0.016178655624389648, 0.016217824935913085, 0.016173311233520508, 0.016199359893798827, 0.016219135284423827, 0.016196800231933595, 0.016157503128051757, 0.016117696762084962, 0.016179264068603514, 0.016157760620117187, 0.016141088485717773, 0.016236703872680665, 0.016216352462768556, 0.016183008193969728, 0.0162523193359375, 0.01630064010620117, 0.02134739112854004, 0.01658780860900879, 0.016338848114013673, 0.016250879287719726, 0.016158336639404296, 0.01614886474609375, 0.01613209533691406, 0.016275455474853515, 0.01631158447265625, 0.01625529670715332, 0.016565984725952148, 0.016212671279907227, 0.016196640014648437, 0.0162825927734375, 0.01622425651550293, 0.0162795524597168, 0.01618889617919922, 0.01624038314819336, 0.016226303100585936, 0.016423295974731446, 0.01633113670349121, 0.016242591857910157, 0.016271488189697265, 0.016158720016479493, 0.016317792892456055, 0.0162718391418457, 0.016617727279663087, 0.016230335235595705, 0.016150527954101563, 0.015823519706726075, 0.016231903076171873, 0.01623721694946289, 0.016244735717773438, 0.01618659210205078, 0.016149280548095703, 0.016464000701904298, 0.016401536941528322, 0.016699487686157227, 0.01620470428466797, 0.016287488937377928, 0.016150527954101563, 0.016259071350097656, 0.016144384384155275, 0.0161527042388916, 0.01611782455444336, 0.016248640060424806, 0.017026496887207032, 0.018632736206054688, 0.016906784057617186, 0.016684864044189455, 0.01652694320678711, 0.0162063045501709, 0.01612607955932617, 0.016180864334106447, 0.016167295455932616, 0.01623040008544922, 0.01639833641052246, 0.01677948760986328, 0.01671046447753906, 0.016597984313964843, 0.016350879669189453, 0.016255008697509767, 0.016285120010375978, 0.01704051208496094, 0.016162559509277342, 0.016076799392700195, 0.01625699234008789, 0.016188928604125977, 0.01627190399169922, 0.01617715263366699, 0.016269311904907227, 0.016156448364257812, 0.016205535888671876, 0.01623276710510254, 0.016146623611450195, 0.016281600952148437, 0.01617100715637207, 0.01619340705871582, 0.016273536682128907, 0.0162708797454834, 0.016237024307250977, 0.016354688644409178, 0.016347776412963866, 0.016648191452026367, 0.01624239921569824, 0.016353567123413085, 0.017019935607910156, 0.017358816146850586, 0.01706723213195801, 0.0163438720703125, 0.016294879913330076, 0.01627686309814453, 0.015849727630615235, 0.01619580841064453, 0.016463647842407225, 0.016912384033203123, 0.017225439071655274, 0.016990528106689454, 0.016549983978271485, 0.01648627281188965, 0.016344768524169922, 0.01625734329223633, 0.016170591354370118, 0.016096960067749022, 0.01607244873046875, 0.016242784500122072, 0.016313215255737305, 0.016219808578491212, 0.016183616638183594, 0.01628960037231445, 0.016130271911621093, 0.016221920013427735, 0.016204063415527343, 0.016088672637939453, 0.016189855575561525, 0.01617862319946289, 0.016195232391357423, 0.016304031372070312, 0.016264192581176756, 0.016342016220092775, 0.016516096115112306, 0.01645529556274414, 0.016374143600463867, 0.016488447189331054, 0.016504959106445314, 0.01642214393615723, 0.01647235107421875, 0.01622483253479004, 0.016191488265991212, 0.01621993637084961, 0.016269311904907227, 0.01630793571472168, 0.01626576042175293, 0.01622198486328125, 0.016205791473388673, 0.01611955261230469, 0.01632076835632324, 0.016293888092041017, 0.016107519149780272, 0.01621811294555664, 0.016239936828613282, 0.01627177619934082, 0.01626550483703613, 0.016291200637817384, 0.01624025535583496, 0.016147615432739258, 0.016387935638427734, 0.016261024475097655, 0.016291999816894533, 0.01631987190246582, 0.01621664047241211, 0.01618364715576172, 0.01615763282775879, 0.016154752731323243, 0.016208480834960938, 0.01608185577392578, 0.016400159835815428, 0.016557823181152342, 0.016228607177734375, 0.01613209533691406, 0.016297727584838866, 0.01616716766357422, 0.01618889617919922, 0.016180992126464844, 0.01622505569458008, 0.016105279922485352, 0.0162674560546875, 0.01613209533691406, 0.01609324836730957, 0.016131872177124022, 0.01616265678405762, 0.01624095916748047, 0.016373760223388673, 0.016268896102905273, 0.01615648078918457, 0.016194143295288087, 0.016151615142822266, 0.016229312896728517, 0.016184383392333985, 0.01622643280029297, 0.016681791305541992, 0.016826400756835936, 0.016551904678344727, 0.016285951614379884, 0.01619852828979492, 0.016143232345581054, 0.016107519149780272, 0.016096384048461913, 0.016144832611083983, 0.01615011215209961, 0.01610428810119629, 0.016129215240478514, 0.016131935119628907, 0.016174047470092774, 0.016154592514038085, 0.016162879943847658, 0.016187360763549805, 0.01640608024597168, 0.016343488693237304, 0.01622844886779785, 0.01615247917175293, 0.016174144744873047, 0.016189599990844728, 0.01616873550415039, 0.01618841552734375, 0.017328128814697266, 0.01658448028564453, 0.016340736389160157, 0.016328224182128905, 0.016288127899169922, 0.016164480209350587, 0.016262079238891603, 0.01620377540588379, 0.016109664916992186, 0.016183168411254882, 0.01609657669067383, 0.016079584121704103, 0.016484352111816408, 0.016813631057739257, 0.01618124771118164, 0.01621887969970703, 0.016124992370605468, 0.01633951950073242, 0.016161184310913086, 0.016135168075561524, 0.016140352249145506, 0.01604412841796875, 0.016239423751831055, 0.016943103790283204, 0.016729120254516602, 0.01667888069152832, 0.01643631935119629, 0.016123807907104493, 0.016281055450439452, 0.01641904067993164, 0.016693376541137697, 0.016704832077026367, 0.01646214485168457, 0.016578784942626955, 0.016687456130981444, 0.016908607482910155, 0.017069759368896483, 0.01706188774108887, 0.01683404731750488, 0.016796159744262695, 0.016705535888671876, 0.01659859275817871, 0.016832351684570312, 0.017008575439453125, 0.016630207061767578, 0.016713951110839845, 0.016629791259765624, 0.016803007125854492, 0.016943904876708986, 0.01704140853881836, 0.016951007843017576, 0.016803104400634764, 0.016761184692382813, 0.016558752059936524, 0.01658470344543457, 0.016640256881713868, 0.016779136657714844, 0.01679350471496582, 0.016740095138549804, 0.01667679977416992, 0.016769311904907228, 0.016987520217895506, 0.01690687942504883, 0.01679155158996582, 0.016874496459960937, 0.017265663146972657, 0.017022975921630858, 0.016834144592285157, 0.01677916717529297, 0.016924192428588867, 0.01693199920654297, 0.01674220848083496, 0.016936960220336913, 0.016687103271484375, 0.016778911590576172, 0.01678371238708496, 0.016444992065429688, 0.016578304290771485, 0.01649135971069336, 0.016471424102783204, 0.016510656356811523, 0.01669001579284668, 0.01669071960449219, 0.01650361633300781, 0.016446527481079103, 0.016373632431030273, 0.016427839279174804, 0.016725887298583986, 0.01686140823364258, 0.01659679985046387, 0.016554079055786132, 0.016639328002929686, 0.016943103790283204, 0.017109119415283203, 0.017005279541015626, 0.01662169647216797, 0.016690879821777343, 0.016891263961791993, 0.016929376602172853, 0.016746528625488283, 0.0166297607421875, 0.016748640060424806, 0.016612735748291016, 0.01660982322692871, 0.016742399215698242, 0.016682655334472656, 0.01641097640991211, 0.016478208541870116, 0.016489791870117187, 0.016495296478271484, 0.016420703887939453, 0.016373216629028322, 0.016512895584106447, 0.016386592864990234, 0.01652560043334961, 0.01640447998046875, 0.01638400077819824, 0.01660518455505371, 0.016687263488769533, 0.0166276798248291, 0.016869247436523436, 0.016617055892944335, 0.016630176544189454, 0.016621023178100585, 0.016611871719360353, 0.016678911209106445, 0.016472000122070313, 0.016488319396972657, 0.016332447052001955, 0.016306720733642577, 0.016510976791381835, 0.01650217628479004, 0.01628835105895996, 0.016314655303955077, 0.016298816680908202, 0.016160831451416016, 0.016195999145507813, 0.016257728576660156, 0.01622115135192871, 0.01577129554748535, 0.016197952270507812, 0.01621798324584961, 0.016296031951904297, 0.016171072006225588, 0.016275295257568358, 0.016244512557983398, 0.016573856353759766, 0.0166409912109375, 0.01660313606262207, 0.016549440383911134, 0.016605152130126952, 0.016586271286010743, 0.016579519271850585, 0.016785408020019533, 0.01697996711730957, 0.016885759353637696, 0.01675468826293945, 0.01669273567199707, 0.016538368225097657, 0.01650265693664551, 0.016553855895996093, 0.01658608055114746, 0.0169202880859375, 0.01661238479614258, 0.016563199996948243, 0.01660809516906738, 0.016572479248046876, 0.016473663330078124, 0.01662406349182129, 0.016490495681762696, 0.016774335861206056, 0.016680864334106444, 0.016700159072875975, 0.016605344772338868, 0.0167524471282959, 0.016638368606567384, 0.016529184341430664, 0.016362560272216796, 0.01630022430419922, 0.016313087463378905, 0.016287776947021486, 0.016219871520996094, 0.016262912750244142, 0.016204511642456055, 0.01627510452270508, 0.016245920181274413, 0.016356191635131835, 0.016615552902221678, 0.01731167984008789, 0.016808000564575196, 0.01667465591430664, 0.017039680480957033, 0.016524543762207033, 0.016472671508789064, 0.01654547119140625, 0.016714143753051757, 0.01666649627685547, 0.016674623489379883, 0.01693427276611328, 0.017171295166015624, 0.016803552627563476, 0.016686431884765623, 0.01665420722961426, 0.0168623046875, 0.01694927978515625, 0.01666342353820801, 0.016617536544799805, 0.016531391143798826, 0.017415584564208983, 0.019873983383178712, 0.017082784652709963, 0.017135616302490234, 0.016903360366821288, 0.017021440505981447, 0.016859136581420898, 0.01665999984741211, 0.016519968032836913, 0.016595008850097657, 0.01693075180053711, 0.019927040100097656, 0.01665843200683594, 0.016347135543823242, 0.016347007751464845, 0.01625823974609375, 0.017125631332397463, 0.01623062324523926, 0.01626588821411133, 0.016236352920532226, 0.016174272537231447, 0.016210752487182616, 0.016216127395629883, 0.01626451110839844, 0.016283424377441406, 0.01645654487609863, 0.0164003849029541, 0.016426559448242187, 0.016502368927001954, 0.01658572769165039, 0.01650876808166504, 0.01626038360595703, 0.01630441665649414, 0.016228351593017578, 0.016303775787353515, 0.016359296798706055, 0.016489376068115236, 0.01636761665344238, 0.016293376922607423, 0.01630259132385254, 0.017792448043823243, 0.016761568069458006, 0.017176704406738283, 0.016275232315063476, 0.01632863998413086, 0.01635251235961914, 0.016363807678222656, 0.016351711273193358, 0.01650217628479004, 0.016206432342529296, 0.016273216247558595, 0.016263359069824217, 0.01626470375061035, 0.016347808837890623, 0.016565088272094727, 0.016519359588623047, 0.016238431930541992]",tokens/s,60.85269644911382,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4975.235072,7338.917888,0.0,6943.670272,6539.1744,s,1,11.454900390625,11.454900390625,0.0,11.454900390625,11.454900390625,11.454900390625,11.454900390625,[11.454900390625],,kWh,0.00013009809213333862,1.4343599980473967e-05,4.150808876199341e-05,0.000185949780875806,,MB,5064.54016,7634.61632,0.0,7224.68864,6917.39904,s,10,1.997946273803711,0.1997946273803711,0.00045300925581402235,0.19987035369873046,0.20022368927001952,0.20027427444458007,0.20031474258422852,"[0.19856562805175781, 0.1997248992919922, 0.19992588806152345, 0.20032485961914062, 0.19982698059082032, 0.19996701049804688, 0.19991372680664063, 0.19982464599609376, 0.19966018676757813, 0.20021244812011718]",tokens/s,1281.3157358462124,kWh,5.8498406213332145e-06,6.45020581985509e-07,3.872714209280092e-06,1.0367575412598817e-05,tokens/kWh,24692369.219606094,MB,5068.857344,7636.713472,0.0,7226.785792,6917.4016,s,10,18.880694335937502,1.8880694335937502,0.010499768530445765,1.8859650268554686,1.8976787353515625,1.9055944946289063,1.9119271020507813,"[1.91351025390625, 1.895919677734375, 1.8854495849609374, 1.89361572265625, 1.88930224609375, 1.88648046875, 1.8767947998046874, 1.880902099609375, 1.876064697265625, 1.88265478515625]",tokens/s,33.36741693873294,kWh,5.5153869485750264e-05,6.083324457757696e-06,3.659748483351961e-05,9.783467877702756e-05,tokens/kWh,643943.4440581304,,s,630,18.878338212966945,0.0299656162110586,0.0006856709627015122,0.02980006408691406,0.030400528717041016,0.030849382019042967,0.03327409896850587,"[0.030861824035644532, 0.030451583862304687, 0.03032486343383789, 0.03016703987121582, 0.029781984329223632, 0.030013471603393554, 0.03058278465270996, 0.03886899185180664, 0.031029247283935548, 0.030678079605102538, 0.030370752334594728, 0.030089216232299806, 0.030066015243530274, 0.034293663024902346, 0.03078390312194824, 0.030098880767822266, 0.03010243225097656, 0.029872127532958984, 0.029851839065551757, 0.029764896392822267, 0.029610496520996094, 0.029790239334106447, 0.02987775993347168, 0.03008799934387207, 0.030015167236328126, 0.02981888008117676, 0.029759328842163087, 0.03001692771911621, 0.029969120025634767, 0.03016435241699219, 0.029794975280761717, 0.02984979248046875, 0.030721023559570314, 0.02986191940307617, 0.03232438278198242, 0.03017081642150879, 0.030112064361572266, 0.029941728591918945, 0.030117919921875, 0.03122208023071289, 0.030279359817504882, 0.03154051208496094, 0.030308448791503906, 0.029794944763183593, 0.02997657585144043, 0.02969379234313965, 0.029880479812622072, 0.033753089904785157, 0.02998271942138672, 0.029650367736816407, 0.029880895614624023, 0.029817951202392577, 0.02981340789794922, 0.029634880065917968, 0.029757343292236327, 0.029998464584350584, 0.029837055206298826, 0.02992630386352539, 0.029756511688232422, 0.02974604797363281, 0.029570335388183593, 0.029770656585693358, 0.029640544891357423, 0.03107459259033203, 0.030399520874023436, 0.03091760063171387, 0.02980988883972168, 0.029723392486572266, 0.029596704483032227, 0.02965116882324219, 0.029739999771118165, 0.03291091156005859, 0.03019139289855957, 0.029810239791870117, 0.029913631439208985, 0.03311040115356445, 0.02971238327026367, 0.029869279861450194, 0.02955913543701172, 0.029892416000366212, 0.02954876708984375, 0.029661600112915038, 0.029618175506591796, 0.02976950454711914, 0.029865663528442384, 0.029700639724731446, 0.029871103286743163, 0.02974208068847656, 0.029655040740966795, 0.029841407775878907, 0.030093311309814453, 0.02967884826660156, 0.029558847427368164, 0.03000595283508301, 0.030541215896606445, 0.029909280776977538, 0.02993548774719238, 0.030134719848632814, 0.030530912399291992, 0.030296735763549805, 0.02987615966796875, 0.029996448516845704, 0.029931968688964843, 0.02979862403869629, 0.030011199951171876, 0.029849599838256836, 0.029860031127929686, 0.029715679168701173, 0.029702943801879884, 0.033931262969970705, 0.02998886489868164, 0.030223487854003906, 0.029889408111572265, 0.029767679214477538, 0.02973695945739746, 0.029521024703979493, 0.029892608642578124, 0.029834112167358397, 0.029870080947875976, 0.029844863891601563, 0.030227071762084962, 0.030070783615112305, 0.029855743408203125, 0.029708032608032228, 0.030226015090942384, 0.03050294494628906, 0.031162271499633788, 0.030193920135498046, 0.03017545509338379, 0.030168703079223633, 0.029969184875488282, 0.029743104934692382, 0.02998476791381836, 0.029804447174072265, 0.029849695205688476, 0.029768735885620116, 0.029815776824951172, 0.0343633918762207, 0.03083417510986328, 0.02981235122680664, 0.02983526420593262, 0.02956540870666504, 0.029684127807617186, 0.029696128845214845, 0.02968947219848633, 0.030079231262207032, 0.029884416580200194, 0.029878271102905272, 0.029851648330688478, 0.02975334358215332, 0.029784063339233398, 0.029572511672973634, 0.029631071090698242, 0.02960588836669922, 0.02954444885253906, 0.029542400360107423, 0.029792255401611328, 0.029613344192504883, 0.03027836799621582, 0.03022233581542969, 0.02967897605895996, 0.029706880569458007, 0.029658271789550782, 0.029598175048828126, 0.029616256713867188, 0.029827327728271485, 0.029617887496948242, 0.029535808563232423, 0.029548799514770508, 0.02951603126525879, 0.02972694396972656, 0.03334096145629883, 0.02995350456237793, 0.029604768753051756, 0.030033184051513673, 0.029591808319091795, 0.02947539138793945, 0.029466495513916016, 0.0295644474029541, 0.029655008316040038, 0.029743520736694336, 0.029673696517944336, 0.029756799697875976, 0.02965328025817871, 0.029485408782958984, 0.02955264091491699, 0.029792255401611328, 0.029865407943725587, 0.029841983795166015, 0.03007619285583496, 0.02976963233947754, 0.029856607437133788, 0.02969094467163086, 0.02988729667663574, 0.029671552658081055, 0.029609983444213867, 0.02981888008117676, 0.031327903747558596, 0.030644575119018556, 0.034277023315429686, 0.030075231552124024, 0.02991923141479492, 0.029566976547241212, 0.02943791961669922, 0.029585439682006835, 0.029493247985839844, 0.029629919052124025, 0.029825504302978516, 0.029897056579589843, 0.029812448501586913, 0.029853599548339844, 0.02964080047607422, 0.029569055557250975, 0.029906143188476564, 0.03101568031311035, 0.029775871276855468, 0.0297574405670166, 0.029839359283447265, 0.029627391815185547, 0.03092572784423828, 0.03095350456237793, 0.03012118339538574, 0.029922143936157226, 0.030963903427124025, 0.030211904525756835, 0.029953088760375977, 0.029922239303588866, 0.030031360626220704, 0.029956672668457033, 0.0299085750579834, 0.02974959945678711, 0.029689855575561523, 0.02974515151977539, 0.03235430526733398, 0.030428192138671876, 0.029799392700195312, 0.030703296661376955, 0.029643072128295898, 0.02978803253173828, 0.02970035171508789, 0.02979414367675781, 0.029613920211791992, 0.02976582336425781, 0.029859872817993165, 0.029738975524902345, 0.029631872177124024, 0.029931264877319334, 0.029992000579833984, 0.030194879531860352, 0.029938304901123047, 0.02973695945739746, 0.029853696823120116, 0.030394367218017578, 0.02985318374633789, 0.029823007583618163, 0.02994223976135254, 0.029724672317504884, 0.029511648178100584, 0.029576288223266602, 0.029627328872680665, 0.02959974479675293, 0.029822240829467772, 0.02993020820617676, 0.029664800643920897, 0.02965305519104004, 0.029622400283813476, 0.029737247467041015, 0.029503488540649415, 0.029542400360107423, 0.029636480331420897, 0.029525856018066406, 0.029800735473632812, 0.029732223510742187, 0.03025391960144043, 0.029535135269165038, 0.029772672653198242, 0.02998886489868164, 0.03010083198547363, 0.03015747261047363, 0.031243392944335938, 0.03040959930419922, 0.030328832626342773, 0.029898752212524415, 0.03006163215637207, 0.02974611282348633, 0.030076927185058593, 0.030013439178466796, 0.029829120635986327, 0.029829120635986327, 0.030121503829956056, 0.029913536071777345, 0.029750656127929688, 0.029593759536743165, 0.029693887710571288, 0.0297825927734375, 0.029882368087768556, 0.030492671966552733, 0.030234016418457032, 0.030144672393798828, 0.030091712951660157, 0.02996214485168457, 0.029911136627197264, 0.0302336311340332, 0.030188127517700194, 0.02986969566345215, 0.02985241508483887, 0.030424224853515626, 0.030243679046630858, 0.029916799545288086, 0.02989299201965332, 0.030373695373535157, 0.030562496185302733, 0.03095369529724121, 0.030701568603515625, 0.03076483154296875, 0.03082035255432129, 0.030614912033081056, 0.030304672241210938, 0.03002934455871582, 0.029854368209838868, 0.029539648056030272, 0.02958515167236328, 0.029700639724731446, 0.02954662322998047, 0.02987654495239258, 0.029702144622802733, 0.02959987258911133, 0.029671295166015625, 0.0299683837890625, 0.02959929656982422, 0.029654527664184572, 0.0296964168548584, 0.031095327377319334, 0.030271263122558595, 0.031910112380981445, 0.030261247634887696, 0.030036127090454102, 0.029941247940063476, 0.030393888473510742, 0.03092134475708008, 0.030120128631591796, 0.030057567596435547, 0.03017184066772461, 0.029761760711669923, 0.030002208709716798, 0.029715423583984376, 0.02975948715209961, 0.029734432220458986, 0.02963484764099121, 0.029747360229492186, 0.030574623107910155, 0.029693952560424806, 0.029918943405151367, 0.029480960845947264, 0.0297161922454834, 0.029831743240356444, 0.029468896865844727, 0.030084543228149414, 0.029981311798095704, 0.029849023818969728, 0.029740928649902344, 0.02959401512145996, 0.02961577606201172, 0.029704160690307617, 0.029751487731933594, 0.0298272647857666, 0.029915136337280275, 0.02960383987426758, 0.029661216735839845, 0.02962633514404297, 0.02981216049194336, 0.029889087677001953, 0.030676448822021484, 0.03002627182006836, 0.029738304138183593, 0.02975174331665039, 0.02970035171508789, 0.02970992088317871, 0.03064028739929199, 0.03038719940185547, 0.02999135971069336, 0.029710655212402345, 0.02980784034729004, 0.029792224884033203, 0.029666208267211915, 0.02965648078918457, 0.029997440338134767, 0.029734752655029298, 0.029701791763305663, 0.029807231903076173, 0.029554176330566406, 0.029600351333618165, 0.02975334358215332, 0.029700096130371095, 0.02975276756286621, 0.029678144454956056, 0.029642751693725586, 0.029742271423339843, 0.029735744476318358, 0.030286880493164064, 0.0298505916595459, 0.029574560165405273, 0.029616767883300782, 0.03035887908935547, 0.029605791091918944, 0.029938016891479492, 0.029828575134277342, 0.029815647125244142, 0.029597759246826172, 0.029798559188842774, 0.02957910346984863, 0.029480991363525392, 0.029652927398681642, 0.029746912002563478, 0.029675519943237305, 0.0295053768157959, 0.029608160018920898, 0.02957855987548828, 0.02954745674133301, 0.029741056442260744, 0.030066688537597655, 0.02995315170288086, 0.02996940803527832, 0.02978803253173828, 0.029679616928100585, 0.0296092472076416, 0.029754079818725587, 0.029857791900634766, 0.02958131217956543, 0.02971772766113281, 0.029737695693969727, 0.030076608657836915, 0.030384511947631837, 0.030074880599975585, 0.02997657585144043, 0.029751424789428712, 0.029624191284179688, 0.02958892822265625, 0.029524511337280273, 0.029663263320922853, 0.029749216079711913, 0.030654464721679688, 0.03000934410095215, 0.029889888763427734, 0.029778079986572267, 0.02967398452758789, 0.029519840240478514, 0.029576223373413087, 0.029617151260375976, 0.029853696823120116, 0.029738208770751954, 0.029621023178100586, 0.02956819152832031, 0.02973369598388672, 0.029938976287841798, 0.029799135208129882, 0.029818336486816407, 0.030083616256713866, 0.02994175910949707, 0.03007855987548828, 0.030493087768554687, 0.029888511657714844, 0.029784063339233398, 0.03298099136352539, 0.029698047637939453, 0.029648895263671874, 0.029816831588745117, 0.029941791534423827, 0.029954015731811525, 0.029857215881347657, 0.029931615829467774, 0.029879840850830078, 0.029763872146606446, 0.02976425552368164, 0.029837312698364257, 0.029773759841918945, 0.02972438430786133, 0.02974086380004883, 0.02962486457824707, 0.029710336685180663, 0.029865983963012696, 0.02974742317199707, 0.029746976852416993, 0.029722623825073242, 0.029942943572998048, 0.02983203125, 0.029676799774169923, 0.02984832000732422, 0.029792224884033203, 0.029890592575073243, 0.030058496475219725, 0.029691328048706056, 0.029704896926879883, 0.02982080078125, 0.02979840087890625, 0.02980659294128418, 0.03000934410095215, 0.029621696472167967, 0.029739391326904296, 0.029536191940307616, 0.029554943084716796, 0.029486879348754883, 0.029442272186279296, 0.02963043212890625, 0.030341119766235353, 0.03016294479370117, 0.029848672866821288, 0.029780031204223633, 0.029522207260131834, 0.02957574462890625, 0.02959916877746582, 0.029643295288085937, 0.029574687957763673, 0.02968832015991211, 0.02971161651611328, 0.02953696060180664, 0.029515775680541992, 0.02965510368347168, 0.029624319076538085, 0.02954966354370117, 0.031160448074340822, 0.03062044715881348, 0.030048255920410157, 0.029834592819213867, 0.029903039932250977, 0.02966691207885742, 0.029655040740966795, 0.029526464462280272, 0.02956742477416992, 0.02964905548095703, 0.02981203269958496, 0.029766176223754885, 0.03027334403991699, 0.029617471694946287, 0.029678623199462892, 0.02988630485534668, 0.02966934394836426, 0.029538335800170897, 0.02970419120788574, 0.02961305618286133, 0.029640832901000978, 0.02957401657104492, 0.029467744827270506, 0.02979631996154785, 0.029722976684570312, 0.02969046401977539, 0.029695968627929687, 0.029855775833129882, 0.029998783111572266, 0.029475103378295897, 0.029655071258544923, 0.02959974479675293, 0.029599231719970705, 0.030714656829833983, 0.02981990432739258, 0.030044160842895507, 0.02970083236694336, 0.02979151916503906, 0.029798208236694337, 0.029705087661743165, 0.029632543563842772, 0.02976358413696289, 0.029740543365478517, 0.02964694404602051, 0.02965135955810547, 0.029724672317504884, 0.029788000106811523, 0.030671072006225587, 0.03011849594116211, 0.029857215881347657, 0.029796287536621092, 0.029710975646972657, 0.03000934410095215, 0.029698047637939453, 0.02979430389404297, 0.02978348731994629, 0.029637184143066406, 0.029691904067993165, 0.03036275291442871, 0.030026239395141603, 0.031056255340576173, 0.030431232452392577, 0.030060543060302734, 0.029851648330688478, 0.030015487670898438, 0.030284799575805665, 0.02995439910888672, 0.030118335723876954, 0.03005836868286133, 0.029866336822509765, 0.030104831695556642, 0.029897823333740234, 0.029734560012817383, 0.0296910400390625, 0.029644800186157227, 0.029594240188598634, 0.029616352081298827, 0.02940108871459961, 0.029642784118652343, 0.02956812858581543, 0.029436159133911132, 0.02969798469543457, 0.02962499237060547, 0.02938265609741211, 0.02945996856689453, 0.029624959945678712, 0.02989459228515625, 0.02980963134765625, 0.029989856719970703, 0.029902912139892577, 0.029699583053588868, 0.029589056015014648, 0.029803199768066405, 0.03133443260192871, 0.030503072738647462, 0.030381664276123047, 0.030456192016601564, 0.030111040115356445, 0.029788095474243163, 0.02958620834350586, 0.029655168533325196, 0.029529024124145507, 0.02984441566467285, 0.02974515151977539, 0.029675647735595702, 0.029603712081909178, 0.029603071212768554, 0.02955673599243164, 0.029688192367553712, 0.02970252799987793]",tokens/s,33.371581380360766,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,11136.868352,12227.3792,0.0,11848.9088,11814.752256,s,1,16.2327216796875,16.2327216796875,0.0,16.2327216796875,16.2327216796875,16.2327216796875,16.2327216796875,[16.2327216796875],,kWh,0.00026652513839583964,2.939236722192133e-05,8.68925695139966e-05,0.00038281007513175756,,MB,2067.243008,14033.027072,0.0,13625.196544,13297.870848,s,10,22.9517958984375,2.29517958984375,0.0008820631523208208,2.2952384033203126,2.296043969726562,2.2965340698242187,2.296926149902344,"[2.294716552734375, 2.293971923828125, 2.294431884765625, 2.29522900390625, 2.295479248046875, 2.29407421875, 2.295247802734375, 2.29568603515625, 2.29593505859375, 2.297024169921875]",tokens/s,111.53811280511947,kWh,6.69229592179181e-05,7.379358171590439e-06,4.43492299238013e-05,0.00011865154731330984,tokens/kWh,2157578.2684401874,MB,2071.445504,14335.01696,0.0,13927.186432,13689.870848,s,10,1357.6977968750002,135.76977968750003,0.03905213328064623,135.753359375,135.8288109375,135.83175703125,135.83411390625,"[135.726765625, 135.7214375, 135.73778125, 135.75059375, 135.75296875, 135.75375, 135.787078125, 135.8045625, 135.82815625, 135.834703125]",tokens/s,0.4640207868423038,kWh,0.003959727415000008,0.0004367888125291182,0.0026341422462009987,0.007030658473730125,tokens/kWh,8960.753851918405,,s,630,1357.6917192382805,2.155066221013145,0.0009203916848711222,2.154985595703125,2.1563291015625,2.156659765625,2.1572001464843753,"[2.15377978515625, 2.15362353515625, 2.154102783203125, 2.152888427734375, 2.153879638671875, 2.153713623046875, 2.1530703125, 2.153484619140625, 2.15326904296875, 2.15319775390625, 2.154849609375, 2.15480126953125, 2.154350830078125, 2.153640380859375, 2.15429931640625, 2.153489501953125, 2.155323974609375, 2.1542197265625, 2.154045654296875, 2.15464697265625, 2.154449462890625, 2.15431298828125, 2.154271484375, 2.15437890625, 2.1539443359375, 2.15463818359375, 2.1542236328125, 2.154859619140625, 2.154393798828125, 2.15407470703125, 2.154638671875, 2.154382080078125, 2.154458251953125, 2.1549345703125, 2.15419140625, 2.154756103515625, 2.15472314453125, 2.154986572265625, 2.153968017578125, 2.154627685546875, 2.154684326171875, 2.154903564453125, 2.154151611328125, 2.154827880859375, 2.15438232421875, 2.153913330078125, 2.155095458984375, 2.154193603515625, 2.15475, 2.155017822265625, 2.1539208984375, 2.154256103515625, 2.1548037109375, 2.154446044921875, 2.155332275390625, 2.15518212890625, 2.15475537109375, 2.154677001953125, 2.15482568359375, 2.15515771484375, 2.154954833984375, 2.154704833984375, 2.1553427734375, 2.15356201171875, 2.153287109375, 2.15346142578125, 2.15304443359375, 2.15363134765625, 2.15324658203125, 2.153400390625, 2.1534482421875, 2.15419482421875, 2.153303955078125, 2.1533408203125, 2.154169921875, 2.15413916015625, 2.153862060546875, 2.153770751953125, 2.154093994140625, 2.1539375, 2.153967529296875, 2.154238037109375, 2.15394921875, 2.15406396484375, 2.154262451171875, 2.154094482421875, 2.15416015625, 2.153773193359375, 2.154221435546875, 2.154911865234375, 2.154006591796875, 2.154006591796875, 2.15403466796875, 2.15473388671875, 2.153947265625, 2.154082275390625, 2.1540576171875, 2.1540595703125, 2.153810302734375, 2.15459765625, 2.154572021484375, 2.1547216796875, 2.15456787109375, 2.154612548828125, 2.154059814453125, 2.154459228515625, 2.15434033203125, 2.154974853515625, 2.1545126953125, 2.15436083984375, 2.15488427734375, 2.15504296875, 2.154566162109375, 2.1549423828125, 2.15516357421875, 2.15512060546875, 2.154883056640625, 2.155005859375, 2.155716064453125, 2.154611328125, 2.155560302734375, 2.154902099609375, 2.155333251953125, 2.154781005859375, 2.15556298828125, 2.154715087890625, 2.154047607421875, 2.15368701171875, 2.15332666015625, 2.153343017578125, 2.154083740234375, 2.15368115234375, 2.15378759765625, 2.15322802734375, 2.15338232421875, 2.15393408203125, 2.1533740234375, 2.15382666015625, 2.1550546875, 2.15336181640625, 2.15402294921875, 2.153701416015625, 2.15465087890625, 2.1540625, 2.154532958984375, 2.154282958984375, 2.154406005859375, 2.154145751953125, 2.153818115234375, 2.15392041015625, 2.15444287109375, 2.153777099609375, 2.1542412109375, 2.154507080078125, 2.15466943359375, 2.154838134765625, 2.154627685546875, 2.15440966796875, 2.154647216796875, 2.15475244140625, 2.154928466796875, 2.154638427734375, 2.153850830078125, 2.15507666015625, 2.15435986328125, 2.155682861328125, 2.154911865234375, 2.155358154296875, 2.15447509765625, 2.15534765625, 2.154611083984375, 2.155585205078125, 2.1549453125, 2.15463720703125, 2.155443359375, 2.155148193359375, 2.155347412109375, 2.154822021484375, 2.154760009765625, 2.15597216796875, 2.155488037109375, 2.155116455078125, 2.1555029296875, 2.155637451171875, 2.155179931640625, 2.155326904296875, 2.15504736328125, 2.156221923828125, 2.155205322265625, 2.15432421875, 2.153321044921875, 2.15322216796875, 2.15401416015625, 2.154091064453125, 2.15307666015625, 2.154629150390625, 2.15393896484375, 2.15340771484375, 2.153814697265625, 2.153936279296875, 2.154150390625, 2.153486572265625, 2.154694091796875, 2.15483154296875, 2.154114013671875, 2.153946044921875, 2.1546708984375, 2.15391015625, 2.1548994140625, 2.154569091796875, 2.154937255859375, 2.154496826171875, 2.154492919921875, 2.154501708984375, 2.15464599609375, 2.154235107421875, 2.154486572265625, 2.15464697265625, 2.154468017578125, 2.155227294921875, 2.154882568359375, 2.154663330078125, 2.153976806640625, 2.15427001953125, 2.1545458984375, 2.154760009765625, 2.155342041015625, 2.1553828125, 2.154933837890625, 2.154500732421875, 2.15493212890625, 2.15534375, 2.1550771484375, 2.155051513671875, 2.155622314453125, 2.155462646484375, 2.155150390625, 2.15542578125, 2.15520458984375, 2.15525, 2.15550732421875, 2.15552490234375, 2.1555712890625, 2.1557412109375, 2.155888671875, 2.15494384765625, 2.155469482421875, 2.1559990234375, 2.156082763671875, 2.1556552734375, 2.156632568359375, 2.156023681640625, 2.15436474609375, 2.153816650390625, 2.154111083984375, 2.15410400390625, 2.154985595703125, 2.15435107421875, 2.153399658203125, 2.154334228515625, 2.153712158203125, 2.1545986328125, 2.15471875, 2.1541240234375, 2.154567626953125, 2.1542216796875, 2.15448486328125, 2.1534501953125, 2.1555380859375, 2.154695068359375, 2.1541083984375, 2.154921875, 2.154289306640625, 2.154621337890625, 2.15501416015625, 2.1543505859375, 2.154255859375, 2.15504052734375, 2.154267578125, 2.154643310546875, 2.154623291015625, 2.1547373046875, 2.1549189453125, 2.15486279296875, 2.154537109375, 2.15472119140625, 2.15438818359375, 2.154477783203125, 2.155399169921875, 2.15554248046875, 2.155152587890625, 2.155150146484375, 2.155085693359375, 2.154963134765625, 2.154284423828125, 2.1551826171875, 2.15504296875, 2.1550439453125, 2.15484326171875, 2.15489306640625, 2.155017822265625, 2.155342529296875, 2.15538623046875, 2.15503662109375, 2.154445068359375, 2.15603759765625, 2.15510107421875, 2.156349365234375, 2.15521826171875, 2.155336181640625, 2.15549951171875, 2.1556796875, 2.155181396484375, 2.156218505859375, 2.155602783203125, 2.154482177734375, 2.153758544921875, 2.15450244140625, 2.15416357421875, 2.153860107421875, 2.153955078125, 2.154624267578125, 2.15406884765625, 2.1538037109375, 2.15387744140625, 2.154406005859375, 2.154027099609375, 2.154689697265625, 2.15476708984375, 2.15424169921875, 2.15487939453125, 2.154475341796875, 2.1543466796875, 2.15468994140625, 2.154701416015625, 2.15486669921875, 2.1554482421875, 2.15520458984375, 2.15374853515625, 2.153969482421875, 2.154931640625, 2.154985595703125, 2.15489794921875, 2.154056884765625, 2.15442724609375, 2.15461181640625, 2.15497216796875, 2.15499462890625, 2.154851318359375, 2.154536376953125, 2.154569580078125, 2.1551787109375, 2.15495703125, 2.154661376953125, 2.154598876953125, 2.1551669921875, 2.154668701171875, 2.155399169921875, 2.15532958984375, 2.15520263671875, 2.15521484375, 2.15503466796875, 2.1550322265625, 2.154961181640625, 2.1554052734375, 2.154875, 2.1551328125, 2.1555322265625, 2.15577392578125, 2.1547763671875, 2.155614013671875, 2.1548134765625, 2.15576953125, 2.1561640625, 2.155378662109375, 2.155300048828125, 2.15560888671875, 2.156122314453125, 2.15542138671875, 2.15410693359375, 2.15370751953125, 2.15404345703125, 2.15413134765625, 2.15398388671875, 2.154730712890625, 2.154179443359375, 2.1545166015625, 2.15442236328125, 2.153889404296875, 2.1549775390625, 2.154921875, 2.15444189453125, 2.15519091796875, 2.154968505859375, 2.155385498046875, 2.154739013671875, 2.1551982421875, 2.15461572265625, 2.154502197265625, 2.155098388671875, 2.15466259765625, 2.1547666015625, 2.15472607421875, 2.1551494140625, 2.154901611328125, 2.15481689453125, 2.155205322265625, 2.15503466796875, 2.156209228515625, 2.155299560546875, 2.1552314453125, 2.155640869140625, 2.155310791015625, 2.1551865234375, 2.155093994140625, 2.155556884765625, 2.155173828125, 2.1561201171875, 2.1563681640625, 2.15586328125, 2.15506396484375, 2.155530029296875, 2.155470703125, 2.15595166015625, 2.156271484375, 2.156151123046875, 2.155916748046875, 2.155580322265625, 2.15549951171875, 2.156786865234375, 2.156016357421875, 2.15598291015625, 2.1558330078125, 2.15690283203125, 2.156203125, 2.1568740234375, 2.156804443359375, 2.156328857421875, 2.15601171875, 2.15711328125, 2.156693603515625, 2.155583251953125, 2.154637451171875, 2.154427734375, 2.15435888671875, 2.15477880859375, 2.154145263671875, 2.15453759765625, 2.1538388671875, 2.154702880859375, 2.154565185546875, 2.154799560546875, 2.155702392578125, 2.155001708984375, 2.15463134765625, 2.155059326171875, 2.15557080078125, 2.155644287109375, 2.155435791015625, 2.155279296875, 2.155478271484375, 2.155039306640625, 2.1556474609375, 2.155759521484375, 2.1556796875, 2.155052978515625, 2.155063232421875, 2.156125244140625, 2.155266845703125, 2.15598583984375, 2.15598583984375, 2.155769775390625, 2.155423828125, 2.156295166015625, 2.155389892578125, 2.154956787109375, 2.1549384765625, 2.155702392578125, 2.156359130859375, 2.15553466796875, 2.156149169921875, 2.15556884765625, 2.15610107421875, 2.156392822265625, 2.15614208984375, 2.155922119140625, 2.155926513671875, 2.15628515625, 2.1563779296875, 2.156031982421875, 2.156570556640625, 2.155749267578125, 2.156455810546875, 2.156539306640625, 2.156162109375, 2.156419921875, 2.156111083984375, 2.1556201171875, 2.157068115234375, 2.15618359375, 2.15617529296875, 2.156353515625, 2.156662841796875, 2.156812255859375, 2.15483154296875, 2.154446533203125, 2.1550927734375, 2.155013427734375, 2.155321044921875, 2.153851806640625, 2.15472314453125, 2.154208740234375, 2.155258544921875, 2.15474609375, 2.155627685546875, 2.1557392578125, 2.1559658203125, 2.155125244140625, 2.15587890625, 2.15556103515625, 2.155802734375, 2.156337158203125, 2.155599853515625, 2.155122802734375, 2.154838134765625, 2.15573291015625, 2.155853271484375, 2.15604833984375, 2.155375244140625, 2.155175048828125, 2.156044677734375, 2.155989501953125, 2.156078857421875, 2.156032470703125, 2.156312255859375, 2.1562412109375, 2.155767333984375, 2.15622900390625, 2.155845703125, 2.156160888671875, 2.155933349609375, 2.156331298828125, 2.156830810546875, 2.155802734375, 2.156553466796875, 2.15624560546875, 2.156656005859375, 2.156861083984375, 2.155530029296875, 2.155895751953125, 2.156756591796875, 2.15710546875, 2.156838623046875, 2.15633251953125, 2.156612060546875, 2.156882080078125, 2.156545166015625, 2.15689306640625, 2.1569375, 2.156795654296875, 2.156451904296875, 2.157452392578125, 2.15695458984375, 2.15725048828125, 2.15652978515625, 2.15766015625, 2.1569189453125, 2.15613720703125, 2.154751953125, 2.15535205078125, 2.155133056640625, 2.155610107421875, 2.15499560546875, 2.155558837890625, 2.155183837890625, 2.15576611328125, 2.155431884765625, 2.15549072265625, 2.155479736328125, 2.15575341796875, 2.15545654296875, 2.156015380859375, 2.15538916015625, 2.156316650390625, 2.156632080078125, 2.156115966796875, 2.15632275390625, 2.1554462890625, 2.156004638671875, 2.156026611328125, 2.156030029296875, 2.156322998046875, 2.155793212890625, 2.15531201171875, 2.15627783203125, 2.1556279296875, 2.15658349609375, 2.156557373046875, 2.15524658203125, 2.156424560546875, 2.156294921875, 2.155815185546875, 2.15559130859375, 2.15583447265625, 2.156342041015625, 2.156015625, 2.156478271484375, 2.156675048828125, 2.1556572265625, 2.156151123046875, 2.156275634765625, 2.156451904296875, 2.1573857421875, 2.156472412109375, 2.155664794921875, 2.156966552734375, 2.156527587890625, 2.156632080078125, 2.156265625, 2.1570087890625, 2.15602685546875, 2.156317138671875, 2.157116943359375, 2.1564873046875, 2.15671337890625, 2.156304931640625, 2.157250732421875, 2.15592333984375, 2.157657470703125, 2.157234130859375]",tokens/s,0.4640228640073425,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,6765.789184,7762.542592,0.0,7367.294976,7351.94368,s,1,12.5058095703125,12.5058095703125,0.0,12.5058095703125,12.5058095703125,12.5058095703125,12.5058095703125,[12.5058095703125],,kWh,0.00015767173855417126,1.738523505041432e-05,5.054559599200134e-05,0.00022560256959658692,,MB,1635.319808,8404.271104,0.0,7994.343424,7863.794176,s,10,2.9980195617675776,0.29980195617675787,0.0004853329511504965,0.2998737182617187,0.3003250793457031,0.3003877288818359,0.3004378485107422,"[0.2996583557128906, 0.30008908081054686, 0.29907073974609377, 0.29927716064453125, 0.29923199462890626, 0.30045037841796873, 0.30015191650390627, 0.30027667236328126, 0.3003111572265625, 0.2995021057128906]",tokens/s,853.8970301083259,kWh,8.76525808872551e-06,9.666528461919464e-07,5.797406598705881e-06,1.5529317533623337e-05,tokens/kWh,16484948.514042618,MB,1641.824256,8676.900864,0.0,8266.973184,8120.408064,s,10,24.660447021484373,2.4660447021484373,0.0022546624102290007,2.4662266845703122,2.4684953125,2.4685719970703124,2.4686333447265625,"[2.465872314453125, 2.465596923828125, 2.4603427734375, 2.46468408203125, 2.467619873046875, 2.46687158203125, 2.468648681640625, 2.46575146484375, 2.4665810546875, 2.468478271484375]",tokens/s,25.546982155316936,kWh,7.217162492544173e-05,7.960560736861764e-06,4.812663654049395e-05,0.00012825882220279745,tokens/kWh,491194.2813601317,,s,630,24.654574352264408,0.03913424500359429,0.0003454978796092168,0.0391464958190918,0.03957495574951172,0.03966784496307373,0.03983591388702393,"[0.03908633422851562, 0.03847494506835938, 0.03833103942871094, 0.03829171371459961, 0.038526878356933594, 0.03899097442626953, 0.03889823913574219, 0.03885702514648438, 0.038631393432617185, 0.03855363082885742, 0.03917004776000976, 0.03863142395019531, 0.03844710540771484, 0.0385986557006836, 0.03871539306640625, 0.038866943359375, 0.03882393646240234, 0.038727680206298826, 0.03872972869873047, 0.03907379150390625, 0.03919772720336914, 0.03914236831665039, 0.03912483215332031, 0.03905142211914062, 0.03930521774291992, 0.039206912994384766, 0.039188255310058595, 0.03881596755981445, 0.038830078125, 0.0387665901184082, 0.039073055267333984, 0.03901513671875, 0.03908943939208984, 0.03895574569702148, 0.039374526977539064, 0.03924166488647461, 0.03908415985107422, 0.03921529769897461, 0.03938924789428711, 0.03960627365112305, 0.03947315216064453, 0.03955055999755859, 0.039526622772216795, 0.03944451141357422, 0.03933552169799805, 0.03915568161010742, 0.03917168045043945, 0.03952742385864258, 0.039373855590820316, 0.03941020965576172, 0.039637439727783205, 0.03946495819091797, 0.039247966766357424, 0.03930908966064453, 0.03944979095458984, 0.03929980850219727, 0.03959215927124023, 0.03966918563842774, 0.03949539184570312, 0.039905982971191405, 0.039701793670654295, 0.03977865600585938, 0.03989763259887695, 0.03919830322265625, 0.03895702362060547, 0.038859455108642575, 0.03898137664794922, 0.03891225433349609, 0.03890291213989258, 0.038277568817138674, 0.03859632110595703, 0.03843468856811524, 0.03857705688476563, 0.03897951889038086, 0.03896054458618164, 0.038754913330078126, 0.03876249694824219, 0.03929644775390625, 0.039166526794433595, 0.03902668762207031, 0.038771743774414065, 0.03885564804077148, 0.038776832580566405, 0.038809600830078124, 0.038819839477539066, 0.03923747253417969, 0.039166175842285156, 0.03884806442260742, 0.03942643356323242, 0.03916156768798828, 0.03917238235473633, 0.03909836959838867, 0.03903039932250976, 0.039541118621826174, 0.03944160079956055, 0.03918316650390625, 0.03896319961547851, 0.0388218879699707, 0.03886899185180664, 0.03897100830078125, 0.039123329162597656, 0.039251518249511716, 0.039039615631103516, 0.03924332809448242, 0.039198974609375, 0.03910860824584961, 0.03946086502075195, 0.03938230514526367, 0.039402206420898436, 0.0392540168762207, 0.03923763275146484, 0.03910806274414062, 0.03962246322631836, 0.039778144836425784, 0.03965017700195313, 0.03947724914550781, 0.03935635375976562, 0.03935785675048828, 0.039365280151367185, 0.03947724914550781, 0.039370750427246096, 0.03933184051513672, 0.0393072624206543, 0.03922739028930664, 0.03951113510131836, 0.039443359375, 0.03890985488891602, 0.03852912139892578, 0.038545406341552735, 0.03855974578857422, 0.0385654411315918, 0.038521278381347654, 0.0384224967956543, 0.03846352005004883, 0.03845657730102539, 0.03877964782714844, 0.03866419219970703, 0.0385629768371582, 0.03856083297729492, 0.039030017852783205, 0.038930976867675784, 0.03887891387939453, 0.038844734191894534, 0.03880755233764648, 0.03870515060424805, 0.038578174591064454, 0.03853107070922852, 0.0388955192565918, 0.03902268981933594, 0.038834175109863284, 0.03908748626708984, 0.03920355224609375, 0.03910851287841797, 0.038946495056152344, 0.038963264465332034, 0.0388139533996582, 0.03936793518066406, 0.039242496490478514, 0.03906755065917969, 0.03894895935058594, 0.03896934509277344, 0.03911270523071289, 0.03892784118652344, 0.03896368026733398, 0.03908169555664062, 0.03919625473022461, 0.03929065704345703, 0.039297855377197266, 0.03925609588623047, 0.039250049591064456, 0.039257953643798825, 0.03962860870361328, 0.03947555160522461, 0.03938508987426758, 0.039413761138916016, 0.039452671051025394, 0.0394947509765625, 0.03954166412353516, 0.03939123153686523, 0.03936880111694336, 0.039245246887207035, 0.039252574920654294, 0.039474880218505856, 0.03960639953613281, 0.039446590423583984, 0.03951424026489258, 0.0395359992980957, 0.03946547317504883, 0.03937212753295898, 0.03901440048217773, 0.038747135162353515, 0.038492225646972654, 0.03894524765014649, 0.039061920166015625, 0.03886678314208984, 0.03855791854858399, 0.0385167350769043, 0.038553600311279294, 0.03877068710327149, 0.03877273559570313, 0.03873382568359375, 0.038836223602294925, 0.03881951904296875, 0.03884054565429688, 0.038757823944091795, 0.03915433502197266, 0.03899135971069336, 0.038992385864257816, 0.03890716934204102, 0.03875094223022461, 0.03882393646240234, 0.03887513732910156, 0.03874540710449219, 0.038957439422607425, 0.03901472091674805, 0.03894831848144531, 0.03887760162353516, 0.03935801696777344, 0.03922371292114258, 0.03917536163330078, 0.039203422546386715, 0.03935475158691406, 0.03919257736206055, 0.03926012802124024, 0.039423103332519534, 0.039265182495117186, 0.03904307174682617, 0.03892019271850586, 0.03905036926269531, 0.039120960235595706, 0.039050048828125, 0.03911385726928711, 0.03934067153930664, 0.039272705078125, 0.039284320831298826, 0.0395145263671875, 0.03934400177001953, 0.03943027114868164, 0.039460159301757815, 0.03928543853759765, 0.03971859359741211, 0.03963935852050781, 0.039413761138916016, 0.03942102432250977, 0.039424671173095706, 0.039551231384277345, 0.039624385833740235, 0.039548961639404294, 0.03943164825439453, 0.03959276962280273, 0.0395142707824707, 0.03946684646606445, 0.03901033782958984, 0.03861577606201172, 0.03848732757568359, 0.038486560821533206, 0.038798656463623044, 0.03878579330444336, 0.03866195297241211, 0.0386761589050293, 0.038765182495117186, 0.03880956649780273, 0.03876457595825195, 0.03870684814453125, 0.03892870330810547, 0.038895294189453124, 0.03881350326538086, 0.03877737426757812, 0.038959102630615236, 0.038958942413330075, 0.03873603057861328, 0.03901792144775391, 0.03902521514892578, 0.0393994255065918, 0.039016448974609375, 0.039124385833740234, 0.03902912139892578, 0.0390043830871582, 0.038735870361328126, 0.038856254577636716, 0.03909062576293945, 0.03914956665039063, 0.03905945587158203, 0.0391734733581543, 0.03916422271728515, 0.039063583374023436, 0.039512382507324216, 0.03952640151977539, 0.03931545639038086, 0.0393359375, 0.03922518539428711, 0.03938524627685547, 0.03928617477416992, 0.03904982376098633, 0.03920896148681641, 0.03936275100708008, 0.03937849426269531, 0.03938451385498047, 0.039405536651611325, 0.039410526275634766, 0.03946022415161133, 0.03937139129638672, 0.039684097290039064, 0.03947520065307617, 0.03959807968139648, 0.03953664016723633, 0.03949158477783203, 0.03956252670288086, 0.03959676742553711, 0.03955279922485352, 0.03957753753662109, 0.0394666862487793, 0.03974614334106445, 0.03972463989257812, 0.0400654411315918, 0.03949135971069336, 0.03877068710327149, 0.03853952026367188, 0.03837952041625976, 0.03858790588378906, 0.03865983963012695, 0.03862579345703125, 0.038604225158691406, 0.038472511291503905, 0.03874816131591797, 0.03878448104858399, 0.03890230560302734, 0.03886489486694336, 0.03895296096801758, 0.03865727996826172, 0.03863808059692383, 0.038965503692626954, 0.03907583999633789, 0.038873153686523436, 0.03879740905761719, 0.03873484802246094, 0.039008960723876954, 0.03924595260620117, 0.03937283325195313, 0.039231487274169925, 0.03914342498779297, 0.0390041618347168, 0.03895500946044922, 0.0393809928894043, 0.03894076919555664, 0.03896105575561523, 0.03904512023925781, 0.03896115112304688, 0.03902668762207031, 0.03917824172973633, 0.039153568267822264, 0.03915935897827148, 0.0393240966796875, 0.039346271514892575, 0.039327743530273435, 0.039362560272216796, 0.039589088439941404, 0.039658432006835935, 0.03944755172729492, 0.03941462326049805, 0.039399265289306644, 0.039349536895751956, 0.03926713562011719, 0.03971263885498047, 0.03972713470458984, 0.039562751770019534, 0.039737888336181644, 0.0395470085144043, 0.039346176147460936, 0.03926425552368164, 0.03931545639038086, 0.039329792022705076, 0.03933184051513672, 0.03946086502075195, 0.039550975799560545, 0.039637054443359375, 0.0394936637878418, 0.03943734359741211, 0.038967262268066405, 0.03844409561157226, 0.038675422668457034, 0.038801406860351564, 0.03873750305175781, 0.03901603317260742, 0.03892102432250977, 0.03878908920288086, 0.03875433731079102, 0.038596607208251955, 0.038604286193847655, 0.038631519317626956, 0.03864617538452148, 0.0388485107421875, 0.038917537689208984, 0.038741695404052735, 0.03872604751586914, 0.039135295867919924, 0.039258560180664065, 0.03897923278808594, 0.039035232543945315, 0.03896319961547851, 0.03898303985595703, 0.038824577331542966, 0.03889561462402344, 0.038828033447265625, 0.0389939193725586, 0.03902054214477539, 0.03918950271606445, 0.03943936157226562, 0.03926835250854492, 0.03915161514282227, 0.039210945129394534, 0.03958585739135742, 0.03938508987426758, 0.03918438339233398, 0.03915375900268555, 0.03917404937744141, 0.03946086502075195, 0.039241695404052736, 0.03900617599487305, 0.039110721588134764, 0.03909836959838867, 0.0390978889465332, 0.03927702331542969, 0.039354366302490236, 0.03925299072265625, 0.03979270553588867, 0.03973388671875, 0.03953190231323242, 0.039494590759277345, 0.03949552154541015, 0.03936819076538086, 0.03980579376220703, 0.039804737091064454, 0.039653377532958986, 0.03972259140014649, 0.03957564926147461, 0.03978604888916016, 0.03972787094116211, 0.03974092864990234, 0.03990784072875977, 0.0398287353515625, 0.038836223602294925, 0.03855769729614258, 0.03857920074462891, 0.03857926559448242, 0.03845929718017578, 0.03849628829956055, 0.038991870880126955, 0.03892633438110352, 0.038866943359375, 0.03908169555664062, 0.03920515060424805, 0.039008255004882815, 0.038729217529296874, 0.03857049560546875, 0.03867766571044922, 0.03879100799560547, 0.038832897186279296, 0.038840576171875, 0.03879100799560547, 0.03859881591796875, 0.03896115112304688, 0.038948863983154294, 0.038868896484375, 0.03919267272949219, 0.03923763275146484, 0.03917004776000976, 0.038967201232910156, 0.039038143157958984, 0.03898780822753906, 0.03888217544555664, 0.03883318328857422, 0.03905436706542969, 0.03907372665405273, 0.03896310424804687, 0.03932579040527344, 0.0394420166015625, 0.03948118209838867, 0.03928326416015625, 0.039316608428955076, 0.03961494445800781, 0.039597793579101564, 0.039527103424072264, 0.03927449417114258, 0.03925596618652344, 0.039209056854248046, 0.03916377639770508, 0.03912307357788086, 0.039180030822753904, 0.03932928085327148, 0.03935308837890625, 0.03930252838134766, 0.03923212814331055, 0.039378944396972655, 0.03937279891967774, 0.03932947158813477, 0.039522624969482424, 0.03953251266479492, 0.039507999420166015, 0.03958736038208008, 0.03966620635986328, 0.039851966857910155, 0.03983769607543945, 0.03962265777587891, 0.038776832580566405, 0.03861276626586914, 0.03865827178955078, 0.0387209587097168, 0.038591041564941406, 0.03849324798583984, 0.03844944000244141, 0.03865628814697265, 0.038711681365966796, 0.038587455749511716, 0.03879199981689453, 0.038801345825195316, 0.03873196792602539, 0.03877273559570313, 0.039106559753417966, 0.03906150436401367, 0.039016448974609375, 0.03899347305297852, 0.039239776611328124, 0.03908339309692383, 0.0388271369934082, 0.03894051361083985, 0.03888329696655273, 0.03881129455566406, 0.039161407470703125, 0.03909846496582031, 0.03899260711669922, 0.038997791290283204, 0.038964542388916015, 0.03905014419555664, 0.03933996963500976, 0.03930527877807617, 0.03916377639770508, 0.03909235382080078, 0.03899369430541992, 0.03901871871948242, 0.03913900756835938, 0.039113025665283206, 0.03903398513793945, 0.03906233596801758, 0.039465023040771485, 0.03954483032226563, 0.03953987121582031, 0.0396317138671875, 0.03934793472290039, 0.039366943359375, 0.03929817581176758, 0.039433216094970705, 0.039363872528076174, 0.03964364624023437, 0.03957487869262695, 0.03942211151123047, 0.039420127868652344, 0.03935171127319336, 0.03979702377319336, 0.03962265777587891, 0.0396192626953125, 0.03957350540161133, 0.03949702453613281, 0.03953529739379883, 0.03953664016723633, 0.039593982696533206, 0.03954867172241211, 0.03917619323730469, 0.03869696044921875, 0.03838771057128906, 0.03904307174682617, 0.03878911972045898, 0.038899711608886715, 0.03872870254516601, 0.03873689651489258, 0.038735870361328126, 0.03878815841674805, 0.03876927947998047, 0.03884268951416016, 0.03889299011230469, 0.03895552062988281, 0.03900831985473633, 0.03900131225585937, 0.03912783813476563, 0.03897139358520508, 0.038860801696777345, 0.038793182373046874, 0.038846752166748044, 0.039161441802978515, 0.03918044662475586, 0.03889766311645508, 0.038876480102539065, 0.038769344329833984, 0.03886297607421875, 0.03880467224121094, 0.03898643112182617, 0.0389956169128418, 0.039036991119384766, 0.038803775787353514, 0.03935990524291992, 0.03929964828491211, 0.03949977493286133, 0.03919647979736328, 0.039184574127197266, 0.03951395034790039, 0.039591712951660155, 0.03950758361816406, 0.039524513244628905, 0.03971535873413086, 0.03946092987060547, 0.03930918502807617, 0.03919257736206055, 0.03938111877441406, 0.03942399978637695, 0.039376609802246096, 0.039385215759277344, 0.039333343505859375, 0.03920966339111328, 0.03952844619750977, 0.039495681762695314, 0.039472862243652346, 0.03946246337890625, 0.03936966323852539, 0.03958147048950195, 0.03954617691040039, 0.03978092956542969, 0.03971903991699219, 0.03956531143188476, 0.039831550598144534, 0.03990323257446289]",tokens/s,25.55306739425163,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,873.938944,655.294464,0.0,260.046848,258.555392,s,1,7.4411923828125,7.4411923828125,0.0,7.4411923828125,7.4411923828125,7.4411923828125,7.4411923828125,[7.4411923828125],,kWh,1.4626477424997118e-05,1.6062564338542084e-06,4.513892499995176e-06,2.07466263588465e-05,,MB,1319.145472,751.763456,0.0,341.835776,317.950464,s,18,0.19939472007751463,0.011077484448750811,0.0007115572758054694,0.010883920192718506,0.01117632646560669,0.01184773926734924,0.013511051759719844,"[0.010726367950439453, 0.010890496253967286, 0.010988991737365722, 0.010856703758239746, 0.01148083209991455, 0.011015359878540038, 0.010823936462402343, 0.010953760147094727, 0.010739520072937011, 0.010793663978576661, 0.010769696235656738, 0.011025983810424805, 0.010902239799499511, 0.010877344131469726, 0.01104582405090332, 0.010825599670410156, 0.010751520156860352, 0.0139268798828125]",tokens/s,23109.939913196507,kWh,3.150733660412048e-07,3.474662900105478e-08,1.616532970691219e-07,5.114732921113814e-07,tokens/kWh,500514892.8563252,MB,1333.055488,779.026432,0.0,369.098752,317.953024,s,18,10.063167541503903,0.5590648634168837,0.0031527165675258478,0.5581517944335938,0.5640977416992188,0.5648694519042968,0.5651240368652344,"[0.5586320190429688, 0.559837646484375, 0.5648132934570312, 0.5637910766601563, 0.56099658203125, 0.5651876831054687, 0.5630997924804687, 0.5564115600585937, 0.5565952758789062, 0.5572677612304687, 0.5553729248046875, 0.5580917358398437, 0.5545128784179687, 0.5589156494140625, 0.55782763671875, 0.5582118530273438, 0.5575255126953125, 0.55607666015625]",tokens/s,112.68817649343515,kWh,1.6115394765672077e-05,1.777027075129568e-06,6.047225126819507e-06,2.393964696762115e-05,tokens/kWh,2631617.754648126,,s,1134,10.054431803703311,0.008866341978574345,0.00013876498947876364,0.008839359760284424,0.008989321804046631,0.009089022159576415,0.00937534260749817,"[0.008696415901184081, 0.00890287971496582, 0.008814208030700684, 0.00887337589263916, 0.008897279739379883, 0.008929280281066895, 0.00889241600036621, 0.008814911842346191, 0.00882259178161621, 0.008838272094726563, 0.009082719802856446, 0.008922016143798828, 0.008884448051452637, 0.008914719581604004, 0.00890060806274414, 0.008834912300109863, 0.008976575851440429, 0.008871904373168945, 0.008902463912963867, 0.008875359535217285, 0.008836159706115723, 0.008844927787780761, 0.008833184242248535, 0.008888319969177246, 0.00882688045501709, 0.008797375679016114, 0.008774463653564452, 0.008787839889526368, 0.00891654396057129, 0.008857184410095215, 0.00884335994720459, 0.008941439628601075, 0.00886620807647705, 0.008852160453796387, 0.008825056076049805, 0.008850527763366698, 0.008800864219665527, 0.008890368461608887, 0.008830975532531739, 0.008824831962585449, 0.008785152435302734, 0.00880297565460205, 0.008880224227905274, 0.008826144218444824, 0.008827615737915039, 0.008820735931396484, 0.008817919731140137, 0.008876799583435058, 0.00883471965789795, 0.00881481647491455, 0.008794143676757812, 0.008809951782226563, 0.008894207954406739, 0.008811391830444337, 0.00905136013031006, 0.008822976112365722, 0.008869664192199707, 0.008956735610961913, 0.008833024024963379, 0.008894463539123536, 0.008887616157531739, 0.008861568450927735, 0.008835424423217773, 0.00864463996887207, 0.008844544410705566, 0.008923423767089845, 0.00891539192199707, 0.00886137580871582, 0.008851648330688477, 0.008812704086303712, 0.00882588768005371, 0.009081567764282227, 0.008823007583618163, 0.008828384399414062, 0.008818976402282715, 0.008928735733032227, 0.008883999824523927, 0.008854528427124024, 0.00884547233581543, 0.008795519828796387, 0.008854240417480468, 0.008789183616638184, 0.009019968032836913, 0.008924351692199708, 0.008846143722534179, 0.008855648040771484, 0.008789248466491699, 0.00878275203704834, 0.008724224090576172, 0.008804351806640624, 0.008854592323303222, 0.008811327934265136, 0.008792192459106445, 0.00880844783782959, 0.008902463912963867, 0.008840895652770997, 0.008845919609069825, 0.008777631759643554, 0.008747008323669434, 0.008820735931396484, 0.008762592315673829, 0.008765727996826171, 0.008800640106201171, 0.008779359817504882, 0.008828991889953614, 0.008943967819213867, 0.00875327968597412, 0.008773280143737792, 0.008825471878051758, 0.008971487998962403, 0.0090251522064209, 0.009048959732055665, 0.009054207801818847, 0.008970239639282226, 0.008893952369689942, 0.008879743576049804, 0.008866687774658204, 0.009093119621276855, 0.008986623764038085, 0.008951807975769043, 0.008972288131713867, 0.009048383712768554, 0.009010304450988769, 0.009102080345153809, 0.009015232086181641, 0.009069472312927247, 0.009036352157592773, 0.00890499210357666, 0.008979840278625488, 0.00883148765563965, 0.008892448425292968, 0.008890175819396972, 0.008944767951965332, 0.008866687774658204, 0.008934816360473634, 0.008869695663452148, 0.0088439359664917, 0.0088919677734375, 0.008968768119812011, 0.008919103622436524, 0.008842687606811523, 0.008860159873962402, 0.008830975532531739, 0.008879648208618165, 0.008872415542602539, 0.008818079948425293, 0.008783647537231445, 0.008784704208374024, 0.008879199981689453, 0.008892671585083008, 0.009140928268432618, 0.008806367874145508, 0.008824383735656739, 0.008878527641296386, 0.008873984336853028, 0.009246496200561524, 0.00918950366973877, 0.009011296272277832, 0.008970080375671386, 0.008999072074890136, 0.009164799690246582, 0.00911359977722168, 0.00927948760986328, 0.00930799961090088, 0.00924454402923584, 0.00912332820892334, 0.009059103965759277, 0.009127936363220214, 0.008980480194091797, 0.009166303634643555, 0.008900511741638183, 0.009051936149597168, 0.008858688354492187, 0.008837984085083008, 0.008901535987854004, 0.00894364833831787, 0.008996864318847657, 0.008888319969177246, 0.008937184333801269, 0.00890499210357666, 0.008953856468200684, 0.0089683837890625, 0.008858528137207031, 0.00911036777496338, 0.009080287933349609, 0.008854111671447755, 0.00881065559387207, 0.008826720237731933, 0.008921088218688965, 0.008660927772521972, 0.008849472045898437, 0.008801504135131836, 0.008815391540527344, 0.008850527763366698, 0.008889151573181151, 0.008833120346069336, 0.009223584175109864, 0.008841535568237305, 0.00893564796447754, 0.008924896240234376, 0.00901360034942627, 0.008869888305664063, 0.008970239639282226, 0.008904704093933105, 0.00908681583404541, 0.008882335662841797, 0.008865311622619628, 0.008970463752746582, 0.008945919990539552, 0.008898176193237305, 0.008923328399658204, 0.008933664321899414, 0.008928511619567871, 0.00894223976135254, 0.008912896156311035, 0.009047167778015137, 0.008901503562927246, 0.008908703804016113, 0.008929375648498536, 0.00900476837158203, 0.009005151748657226, 0.008982720375061036, 0.00887615966796875, 0.008824383735656739, 0.008961343765258789, 0.008887295722961425, 0.008938495635986327, 0.008920063972473144, 0.009129983901977539, 0.009041343688964844, 0.009002976417541504, 0.00898960018157959, 0.009161919593811034, 0.008932191848754883, 0.008873824119567872, 0.008865823745727539, 0.008906368255615235, 0.008888480186462402, 0.008931327819824218, 0.008931327819824218, 0.009047776222229005, 0.009058591842651367, 0.008966143608093263, 0.008860735893249512, 0.008909760475158691, 0.009124896049499513, 0.009132512092590332, 0.008905216217041016, 0.009025535583496093, 0.009060352325439454, 0.008881312370300293, 0.008835455894470216, 0.008610112190246582, 0.008862751960754395, 0.008855999946594239, 0.0088721923828125, 0.008881664276123047, 0.008894911766052246, 0.008886591911315918, 0.009281503677368163, 0.008832063674926758, 0.008765727996826171, 0.008897215843200683, 0.008869088172912598, 0.008942208290100097, 0.008964287757873534, 0.008867839813232421, 0.008835040092468261, 0.008800479888916015, 0.0088220796585083, 0.009029120445251464, 0.009063360214233398, 0.008986111640930175, 0.008921152114868163, 0.00890931224822998, 0.008851455688476563, 0.008818047523498535, 0.008752832412719727, 0.008813504219055177, 0.008757247924804687, 0.008844927787780761, 0.008800928115844726, 0.008863871574401855, 0.00876643180847168, 0.008747648239135743, 0.00881980800628662, 0.008874912261962891, 0.008779775619506837, 0.008857600212097168, 0.008992639541625977, 0.008945088386535644, 0.008954015731811524, 0.008911231994628906, 0.009695391654968261, 0.008935423851013183, 0.008964096069335938, 0.00892080020904541, 0.008885760307312012, 0.00885206413269043, 0.008826175689697265, 0.008816639900207519, 0.008870911598205567, 0.008902784347534179, 0.008931072235107421, 0.008888480186462402, 0.008830816268920898, 0.008738816261291504, 0.008994815826416015, 0.008809887886047363, 0.00885206413269043, 0.008876031875610351, 0.008976384162902832, 0.008904704093933105, 0.009381888389587402, 0.008841216087341308, 0.008732704162597657, 0.009003392219543457, 0.008978240013122559, 0.009071999549865723, 0.008950143814086915, 0.008972543716430664, 0.008873984336853028, 0.008843263626098634, 0.00884768009185791, 0.008969311714172363, 0.00904368019104004, 0.008938336372375488, 0.008890175819396972, 0.008972512245178223, 0.008988672256469727, 0.008986623764038085, 0.009901920318603515, 0.009130144119262695, 0.008978431701660156, 0.008885631561279297, 0.00889510440826416, 0.009031935691833496, 0.00886143970489502, 0.008861696243286133, 0.00887615966796875, 0.010073984146118164, 0.008867839813232421, 0.00887993621826172, 0.008902463912963867, 0.008865856170654296, 0.00888044834136963, 0.008859295845031739, 0.008950112342834472, 0.009028863906860352, 0.008896415710449218, 0.008811552047729493, 0.008777536392211915, 0.008837216377258301, 0.00878816032409668, 0.008865119934082032, 0.01015436840057373, 0.010173983573913574, 0.00917955207824707, 0.008904864311218261, 0.008853407859802246, 0.008812543869018554, 0.008903008460998535, 0.008727392196655274, 0.008933343887329102, 0.008815648078918457, 0.00880620765686035, 0.00878819179534912, 0.008779552459716797, 0.008841312408447266, 0.008770912170410157, 0.008935999870300294, 0.008761343955993652, 0.00875216007232666, 0.008903072357177735, 0.008790592193603515, 0.008736767768859864, 0.008779328346252441, 0.008786368370056152, 0.008630463600158692, 0.008860159873962402, 0.008972384452819825, 0.008847104072570802, 0.00886614418029785, 0.00919961643218994, 0.00891651153564453, 0.009375712394714356, 0.009331071853637695, 0.008909184455871582, 0.008920831680297852, 0.008959391593933105, 0.008946271896362304, 0.009013248443603515, 0.008830911636352539, 0.008806719779968261, 0.008791808128356934, 0.008867839813232421, 0.00881049633026123, 0.00909721565246582, 0.009187328338623046, 0.009062623977661133, 0.009024831771850586, 0.009107616424560547, 0.009240896224975585, 0.009114975929260255, 0.008986495971679687, 0.008944128036499023, 0.008945152282714844, 0.008964799880981445, 0.008900704383850098, 0.008937472343444825, 0.008847104072570802, 0.009066752433776856, 0.008882176399230958, 0.008816896438598633, 0.00878985595703125, 0.008843168258666993, 0.008861536026000977, 0.00880832004547119, 0.009095071792602539, 0.008870271682739258, 0.008849408149719238, 0.008889375686645508, 0.008815263748168945, 0.008830880165100098, 0.008839327812194825, 0.008911104202270507, 0.008871935844421386, 0.00898252773284912, 0.00882688045501709, 0.008835071563720704, 0.008953248023986816, 0.008790623664855958, 0.008804351806640624, 0.00890880012512207, 0.008912639617919922, 0.008887999534606934, 0.008995391845703126, 0.008855551719665527, 0.008896512031555176, 0.008839167594909669, 0.008886272430419923, 0.008570816040039063, 0.008754048347473144, 0.00875820827484131, 0.0088406400680542, 0.008876640319824219, 0.008798175811767579, 0.008783072471618652, 0.008784671783447266, 0.008843263626098634, 0.008832544326782226, 0.008906368255615235, 0.008801119804382324, 0.008916383743286132, 0.008843680381774903, 0.008783424377441406, 0.008764320373535157, 0.0088570556640625, 0.008782079696655273, 0.008806303977966308, 0.008804415702819824, 0.00876483154296875, 0.008759200096130371, 0.008909536361694335, 0.008908927917480469, 0.008790047645568847, 0.00873686408996582, 0.008828672409057617, 0.008906784057617188, 0.008861120223999024, 0.008777503967285155, 0.008738592147827148, 0.00874953556060791, 0.008783967971801757, 0.008858016014099121, 0.008812704086303712, 0.008800095558166503, 0.00880793571472168, 0.008786432266235352, 0.008892671585083008, 0.009213312149047852, 0.008842656135559082, 0.008907744407653809, 0.008864831924438477, 0.008817600250244141, 0.008762687683105468, 0.008850111961364746, 0.00873846435546875, 0.008929280281066895, 0.008813247680664063, 0.008815744400024413, 0.008996416091918945, 0.008857664108276367, 0.008794015884399414, 0.008846464157104493, 0.008774815559387207, 0.008858336448669433, 0.008853471755981446, 0.008777759552001952, 0.00876905632019043, 0.008755680084228515, 0.008853504180908203, 0.008831232070922852, 0.008848480224609375, 0.008577568054199219, 0.008760767936706543, 0.008821727752685547, 0.008799263954162598, 0.008934368133544921, 0.009063712120056152, 0.00890339183807373, 0.008826848030090331, 0.008939552307128906, 0.008970239639282226, 0.008859519958496093, 0.008847647666931153, 0.008849023818969726, 0.008849120140075684, 0.008822784423828126, 0.008770048141479492, 0.008783871650695801, 0.008840736389160156, 0.008827712059020996, 0.008863200187683105, 0.008845503807067872, 0.009011103630065917, 0.008814687728881837, 0.00880031967163086, 0.008890111923217774, 0.008757439613342285, 0.008820735931396484, 0.008773632049560547, 0.008839167594909669, 0.008771583557128907, 0.008755200386047364, 0.008740863800048827, 0.00886518383026123, 0.00885001564025879, 0.008832832336425782, 0.00876153564453125, 0.008847423553466797, 0.008990655899047852, 0.008824319839477538, 0.008827391624450684, 0.008742176055908202, 0.008733344078063966, 0.008767552375793457, 0.008871935844421386, 0.00877785587310791, 0.008779647827148438, 0.008773504257202148, 0.008834367752075195, 0.008773759841918945, 0.008778240203857422, 0.008749343872070313, 0.008885791778564453, 0.008815072059631347, 0.008717951774597167, 0.008747296333312988, 0.008828479766845703, 0.00875766372680664, 0.008846464157104493, 0.009016223907470703, 0.008859135627746583, 0.008773695945739747, 0.008867679595947265, 0.00889254379272461, 0.00863920021057129, 0.008769344329833985, 0.008857919692993163, 0.008896512031555176, 0.00894156837463379, 0.008899999618530273, 0.009499072074890137, 0.008808128356933594, 0.008757344245910645, 0.008849791526794434, 0.008762368202209473, 0.008765439987182617, 0.00886844825744629, 0.008785951614379882, 0.008777600288391113, 0.008788479804992675, 0.008761311531066894, 0.008732928276062011, 0.008785696029663085, 0.008835136413574219, 0.008828351974487305, 0.008825247764587402, 0.008885600090026856, 0.008751487731933594, 0.009046112060546875, 0.008783935546875, 0.008712703704833985, 0.008728287696838378, 0.00872047996520996, 0.008795295715332031, 0.008835840225219726, 0.008801695823669433, 0.008720928192138672, 0.008720735549926757, 0.008759008407592774, 0.00874931240081787, 0.008945343971252441, 0.0088373441696167, 0.00878112030029297, 0.008938112258911134, 0.008949664115905762, 0.008801312446594238, 0.008770527839660645, 0.008891807556152344, 0.008792672157287598, 0.008763199806213378, 0.008794303894042968, 0.008757247924804687, 0.008792287826538086, 0.008924960136413574, 0.008841440200805665, 0.008828703880310058, 0.008828927993774414, 0.008843296051025391, 0.008871904373168945, 0.009116800308227539, 0.008915455818176269, 0.008954239845275878, 0.008984512329101562, 0.008844511985778809, 0.008819552421569824, 0.008830975532531739, 0.008928576469421386, 0.008539392471313476, 0.008749823570251464, 0.00880844783782959, 0.008757023811340333, 0.008847071647644042, 0.008870400428771973, 0.008867839813232421, 0.008812543869018554, 0.008755200386047364, 0.008787967681884766, 0.008971424102783203, 0.008829119682312012, 0.008770303726196289, 0.008722335815429687, 0.00871833610534668, 0.008798208236694336, 0.008830975532531739, 0.008730624198913574, 0.00870809555053711, 0.008744959831237792, 0.008793248176574706, 0.008810463905334473, 0.009030207633972168, 0.008826848030090331, 0.008778079986572266, 0.008894463539123536, 0.008752960205078125, 0.008726719856262208, 0.0087073917388916, 0.008811200141906738, 0.008825984001159668, 0.008813535690307617, 0.008815903663635254, 0.008796287536621093, 0.008794816017150878, 0.008882271766662597, 0.008862527847290039, 0.008805120468139648, 0.008767647743225098, 0.008742912292480469, 0.008901727676391602, 0.008842047691345214, 0.008734496116638183, 0.008737024307250976, 0.008753215789794922, 0.008816703796386719, 0.008912832260131835, 0.008795392036437989, 0.008844032287597656, 0.008763168334960937, 0.008839391708374023, 0.008873791694641113, 0.008906944274902344, 0.008930720329284669, 0.008785663604736328, 0.008827743530273437, 0.008775775909423827, 0.008730143547058105, 0.008912991523742676, 0.008868127822875977, 0.008863743782043456, 0.008822784423828126, 0.008804351806640624, 0.009036288261413575, 0.008863776206970216, 0.008851072311401368, 0.00883897590637207, 0.00878441619873047, 0.008890624046325684, 0.008850527763366698, 0.00881116771697998, 0.008814592361450196, 0.008930848121643067, 0.008802783966064454, 0.008787103652954101, 0.00877455997467041, 0.008758336067199708, 0.008917344093322755, 0.008733216285705567, 0.008816287994384766, 0.008773759841918945, 0.008700127601623536, 0.008742912292480469, 0.00887507152557373, 0.008868800163269044, 0.008837151527404784, 0.008726495742797852, 0.008720383644104004, 0.008726655960083008, 0.009335968017578125, 0.008852191925048828, 0.009571807861328125, 0.00894825553894043, 0.008861696243286133, 0.008806528091430664, 0.00880339241027832, 0.008902815818786622, 0.008870559692382813, 0.00881980800628662, 0.008767775535583496, 0.008821632385253906, 0.008794048309326171, 0.008863519668579102, 0.009127967834472657, 0.00897433567047119, 0.008904704093933105, 0.008919136047363281, 0.0088306884765625, 0.008873472213745117, 0.008800959587097168, 0.00880246353149414, 0.008867903709411621, 0.008821855545043946, 0.00878985595703125, 0.00889737606048584, 0.008783935546875, 0.008896448135375977, 0.008779392242431641, 0.008753536224365234, 0.008722784042358399, 0.0087325439453125, 0.008810272216796875, 0.008820480346679687, 0.008768863677978515, 0.008825632095336914, 0.008798336029052735, 0.008509440422058106, 0.008810272216796875, 0.008795552253723145, 0.008790399551391602, 0.008730143547058105, 0.008757247924804687, 0.008852448463439942, 0.008802240371704101, 0.008777503967285155, 0.008746527671813964, 0.008747424125671387, 0.008808192253112792, 0.008816384315490722, 0.008801055908203124, 0.00871014404296875, 0.008714240074157715, 0.00882595157623291, 0.008733599662780762, 0.008760479927062989, 0.008766304016113282, 0.008740863800048827, 0.008840479850769044, 0.008774368286132813, 0.008797823905944824, 0.008886655807495118, 0.008748096466064453, 0.008790431976318359, 0.008753664016723632, 0.008749088287353516, 0.008722432136535644, 0.008814592361450196, 0.008847359657287598, 0.008859583854675293, 0.008883616447448731, 0.00882960033416748, 0.008766752243041992, 0.008829248428344727, 0.008864159584045411, 0.008763392448425293, 0.008754336357116699, 0.008733087539672852, 0.008787584304809571, 0.008844096183776856, 0.008914143562316894, 0.008769920349121094, 0.008786175727844238, 0.00880246353149414, 0.008771039962768555, 0.008755040168762208, 0.008786751747131347, 0.008742848396301269, 0.00881657600402832, 0.00878003215789795, 0.008761119842529298, 0.00871228790283203, 0.008798080444335938, 0.008832415580749512, 0.008821344375610352, 0.009197376251220702, 0.00874720001220703, 0.008817791938781738, 0.00884006404876709, 0.008943455696105957, 0.008640512466430664, 0.00880844783782959, 0.00894156837463379, 0.008839167594909669, 0.008965408325195313, 0.008848095893859863, 0.008749055862426757, 0.008927231788635253, 0.008881759643554688, 0.008740384101867676, 0.00885043239593506, 0.008740351676940919, 0.008756832122802734, 0.008844063758850098, 0.00881049633026123, 0.008834112167358398, 0.008965056419372558, 0.00880454444885254, 0.008935232162475586, 0.008867584228515624, 0.008849663734436035, 0.008807583808898926, 0.008853952407836914, 0.008790207862854003, 0.008757696151733399, 0.009234208106994629, 0.008841183662414551, 0.009639967918395996, 0.009012895584106445, 0.008845024108886719, 0.00890124797821045, 0.008851455688476563, 0.008785920143127441, 0.008766464233398438, 0.008796416282653808, 0.00885427188873291, 0.008900575637817383, 0.008753087997436524, 0.008732128143310546, 0.008752896308898925, 0.008816864013671875, 0.008876704216003417, 0.009280896186828614, 0.008807040214538575, 0.008794112205505371, 0.008874143600463867, 0.008858688354492187, 0.008899552345275879, 0.008793696403503418, 0.008771807670593261, 0.008820735931396484, 0.008758432388305664, 0.008858464241027831, 0.009440640449523925, 0.008871904373168945, 0.00880463981628418, 0.008740544319152832, 0.008766143798828126, 0.008745247840881348, 0.00883683204650879, 0.008879679679870606, 0.008825568199157715, 0.008845024108886719, 0.008599648475646973, 0.008887136459350586, 0.008775039672851563, 0.008849920272827149, 0.008818816184997559, 0.008841183662414551, 0.00886787223815918, 0.00883414363861084, 0.008862624168395996, 0.008796256065368652, 0.008818592071533203, 0.008947711944580078, 0.00887980842590332, 0.008816127777099609, 0.008866463661193848, 0.008833087921142579, 0.008877984046936035, 0.008818592071533203, 0.008771871566772461, 0.008828415870666503, 0.008894335746765137, 0.008822848320007324, 0.008979007720947266, 0.008754207611083984, 0.00876028823852539, 0.008857248306274414, 0.008870240211486816, 0.008853407859802246, 0.008785887718200684, 0.008789407730102538, 0.008847807884216309, 0.008787327766418458, 0.008984767913818359, 0.008788736343383789, 0.008764800071716308, 0.008834783554077148, 0.008805120468139648, 0.00875113582611084, 0.008767200469970702, 0.008792448043823241, 0.008843263626098634, 0.008822784423828126, 0.009174495697021485, 0.008815072059631347, 0.008947903633117676, 0.008968064308166504, 0.008839167594909669, 0.008789119720458984, 0.008801088333129883, 0.008878144264221191, 0.008823904037475586, 0.008833951950073242, 0.008828512191772461, 0.008822463989257812, 0.0088951997756958, 0.008970239639282226, 0.008886272430419923, 0.008983584403991699, 0.009073599815368653, 0.008810527801513672, 0.008812000274658203, 0.008790464401245117, 0.008831071853637695, 0.008551487922668457, 0.008846272468566894, 0.008812543869018554, 0.008817888259887696, 0.008800224304199218, 0.008841312408447266, 0.008819135665893554, 0.008833184242248535, 0.008832480430603027, 0.008993184089660645, 0.008876288414001465, 0.008816415786743165, 0.009124064445495605, 0.008947839736938476, 0.008978464126586915, 0.008940544128417969, 0.008813407897949219, 0.008752703666687012, 0.00883148765563965, 0.008868895530700683, 0.008844191551208497, 0.00878326416015625, 0.008734368324279785, 0.008739775657653808, 0.008872032165527344, 0.008826208114624024, 0.008905280113220214, 0.00891113567352295, 0.008803839683532716, 0.008798591613769531, 0.008848896026611328, 0.00874672031402588, 0.008736384391784669, 0.00880742359161377, 0.008839167594909669, 0.008808639526367188, 0.00878163242340088, 0.00915065574645996, 0.008877535820007325, 0.008784223556518554, 0.008730112075805664, 0.008794912338256836, 0.008828160285949706, 0.008864224433898926, 0.008730624198913574, 0.008801600456237794, 0.008786144256591797, 0.008819168090820312, 0.008798208236694336, 0.009343168258666993, 0.008835968017578124, 0.00907260799407959, 0.009374591827392578, 0.008831071853637695, 0.008866080284118652, 0.008912608146667481, 0.008919072151184083, 0.008803872108459473, 0.008769856452941895, 0.008740127563476563, 0.008739839553833008, 0.00888815975189209, 0.008801664352416992, 0.008638688087463379, 0.008779904365539552, 0.008810015678405761, 0.008840864181518554, 0.008870719909667969, 0.00879753589630127, 0.00882755184173584, 0.008829119682312012, 0.008814687728881837, 0.00894761562347412, 0.008859295845031739, 0.00883523178100586, 0.008859647750854491, 0.008820063591003418, 0.008827520370483398, 0.008820832252502442, 0.00884553623199463, 0.008838272094726563, 0.00886240005493164, 0.008859552383422852, 0.008845312118530273, 0.008785823822021484, 0.00890384006500244, 0.008821696281433105, 0.008822784423828126, 0.008737024307250976, 0.008772768020629883, 0.008743616104125976, 0.008932255744934081, 0.008796223640441895, 0.00875001621246338, 0.008773183822631836, 0.008718784332275391, 0.008828927993774414, 0.008780927658081054, 0.008731648445129395, 0.008760640144348145, 0.008747584342956543, 0.008764543533325196, 0.008775615692138672, 0.008885184288024902, 0.00880624008178711, 0.00879849624633789, 0.008777600288391113, 0.00880838394165039, 0.008773152351379394, 0.008731264114379883, 0.008828831672668456, 0.008813632011413575, 0.00882579231262207, 0.008789248466491699, 0.008773951530456544, 0.008763872146606445, 0.008826592445373534, 0.008936032295227051, 0.008917887687683106, 0.008903712272644042, 0.00886143970489502, 0.008935423851013183, 0.009125887870788574, 0.009605119705200196, 0.009017696380615234, 0.009166175842285157, 0.0087193603515625, 0.008868864059448242, 0.00880620765686035, 0.008820927619934082, 0.008824864387512206, 0.008843232154846191, 0.00892518424987793, 0.008889439582824708, 0.008778335571289063, 0.008844960212707519, 0.008774016380310059, 0.008775360107421875, 0.008723039627075196, 0.008768575668334961, 0.008801216125488282, 0.009195232391357422, 0.008799967765808105, 0.008796704292297364, 0.008781855583190917, 0.008905823707580567, 0.008811424255371094, 0.008771583557128907, 0.008822336196899414, 0.008902079582214355, 0.008829216003417968, 0.008770272254943848, 0.008764960289001466, 0.00876147174835205, 0.008742976188659667, 0.008816767692565917, 0.008761216163635253, 0.008745247840881348, 0.008800224304199218, 0.008785663604736328, 0.008821023941040038, 0.008783840179443359, 0.008863648414611817, 0.008811871528625488, 0.008796192169189454, 0.008825599670410156, 0.008804351806640624, 0.008793215751647949, 0.008770432472229004, 0.008859423637390137, 0.008881759643554688, 0.008894559860229492, 0.008737312316894532, 0.008769248008728027, 0.008778335571289063, 0.008863264083862305, 0.008815936088562012, 0.008842016220092773, 0.008832768440246582, 0.008895872116088867, 0.008864704132080079, 0.008781824111938476, 0.008865983963012695, 0.00885091209411621, 0.008851936340332031, 0.008806400299072266, 0.00878707218170166, 0.008847135543823242, 0.00875823974609375]",tokens/s,112.78608499610277,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,8219.754496,11243.814912,0.0,10848.567296,10616.027648,s,1,14.2756416015625,14.2756416015625,0.0,14.2756416015625,14.2756416015625,14.2756416015625,14.2756416015625,[14.2756416015625],,kWh,0.00021442627039165626,2.3645609914202468e-05,6.747199842199736e-05,0.0003055438787278561,,MB,4062.838784,11665.342464,0.0,11255.414784,11070.470656,s,10,3.731231964111328,0.3731231964111328,0.0011575441375760197,0.3732413330078125,0.37406481323242186,0.3748029296875,0.37539342285156246,"[0.37119436645507814, 0.37189498901367185, 0.3733327331542969, 0.37314993286132814, 0.3737827453613281, 0.3720987243652344, 0.3734735412597656, 0.3728630981445312, 0.3739007873535156, 0.3755410461425781]",tokens/s,686.1004688594102,kWh,1.091028810925901e-05,1.2032047072948179e-06,7.232546938296628e-06,1.9346039754850457e-05,tokens/kWh,13232682.411696969,MB,4067.155968,11667.439616,0.0,11257.511936,11070.473216,s,10,28.777669921875,2.8777669921875004,0.004039830674810794,2.8787237548828126,2.8814861328125,2.8832177978515627,2.8846031298828128,"[2.87059619140625, 2.87385693359375, 2.873241455078125, 2.87652734375, 2.8801279296875, 2.878455810546875, 2.881101318359375, 2.87982177734375, 2.87899169921875, 2.884949462890625]",tokens/s,21.89197394056956,kWh,8.428800495532387e-05,9.29711071260248e-06,5.61396148705021e-05,0.0001497247305384285,tokens/kWh,420772.17152733734,,s,630,28.774752719879153,0.04567421066647485,0.0004152863056896368,0.04566843032836914,0.045996459197998045,0.04609201831817627,0.04765810729980469,"[0.0477325439453125, 0.04525689697265625, 0.04514815902709961, 0.045197311401367186, 0.04511334228515625, 0.04492697525024414, 0.04501619338989258, 0.04558732986450195, 0.04525875091552734, 0.04495974349975586, 0.045055999755859374, 0.04554499053955078, 0.04532681655883789, 0.04513587188720703, 0.04541219329833984, 0.045509822845458986, 0.045292510986328124, 0.04523622512817383, 0.045270687103271486, 0.04557830429077148, 0.045416736602783205, 0.0454901123046875, 0.045709217071533206, 0.04562335968017578, 0.04540985488891602, 0.04540060806274414, 0.04520959854125976, 0.04558848190307617, 0.04547375869750977, 0.04528047943115234, 0.04534764862060547, 0.04553062438964844, 0.045482494354248046, 0.04548825454711914, 0.04541977691650391, 0.04564035034179687, 0.04565923309326172, 0.045625438690185545, 0.045778976440429685, 0.045738529205322266, 0.045666526794433594, 0.045951038360595706, 0.045868545532226565, 0.045916606903076175, 0.045668319702148436, 0.04589324951171875, 0.04563190460205078, 0.04556729507446289, 0.04560351943969727, 0.045568000793457034, 0.04591820907592774, 0.04558028793334961, 0.04563763046264648, 0.04591408157348633, 0.04581584167480469, 0.0456190071105957, 0.04587948989868164, 0.04596332931518555, 0.04575839996337891, 0.04563558578491211, 0.04558848190307617, 0.04590796661376953, 0.04584175872802734, 0.0480522575378418, 0.045537246704101565, 0.044889888763427734, 0.04483913421630859, 0.0452006721496582, 0.04505059051513672, 0.04500889587402344, 0.04507209777832031, 0.04545264053344727, 0.04529446411132813, 0.045168704986572265, 0.04543283081054687, 0.04544688034057617, 0.04538531112670898, 0.04545753479003906, 0.04558905410766602, 0.04584774398803711, 0.04581232070922851, 0.045314273834228515, 0.045292766571044925, 0.04594972610473633, 0.04574316787719727, 0.04578345489501953, 0.045566497802734376, 0.045501983642578125, 0.045287296295166014, 0.0453125114440918, 0.04537558364868164, 0.045635551452636716, 0.04546563339233398, 0.04535500717163086, 0.04526079940795898, 0.045520896911621096, 0.0455530891418457, 0.04543094253540039, 0.04569494247436524, 0.045801025390625, 0.04575651168823242, 0.04574492645263672, 0.04566220855712891, 0.045889022827148435, 0.046002689361572265, 0.04598191833496094, 0.04584220886230469, 0.04592156982421875, 0.045515487670898434, 0.04579315185546875, 0.04564534378051758, 0.045736000061035155, 0.04557244873046875, 0.04574982452392578, 0.04575689697265625, 0.04566851043701172, 0.045471969604492186, 0.04548992156982422, 0.04567862319946289, 0.04580352020263672, 0.0458526725769043, 0.046241119384765626, 0.045920639038085936, 0.045777183532714844, 0.04561414337158203, 0.04609868621826172, 0.04836604690551758, 0.04594255828857422, 0.04524486541748047, 0.04480924987792969, 0.04500783920288086, 0.045197311401367186, 0.04501913452148437, 0.045072383880615234, 0.04503504180908203, 0.045009471893310546, 0.04537334442138672, 0.04514815902709961, 0.045139198303222654, 0.04550457763671875, 0.04567315292358398, 0.04530944061279297, 0.04547430419921875, 0.04551472091674805, 0.04539779281616211, 0.04534435272216797, 0.04559939193725586, 0.04592025756835937, 0.04605747222900391, 0.0456703987121582, 0.04545238494873047, 0.0455115852355957, 0.045313919067382816, 0.04506841659545899, 0.04528537750244141, 0.045445121765136716, 0.04532428741455078, 0.04533033752441406, 0.04536323165893555, 0.04554153442382813, 0.04559862518310547, 0.04551475143432617, 0.04588899230957031, 0.04593699264526367, 0.04588972854614258, 0.045453311920166016, 0.045742080688476565, 0.0461475830078125, 0.04592435073852539, 0.046134590148925785, 0.04595167922973633, 0.045864959716796876, 0.045638912200927736, 0.04581657409667969, 0.04562124633789062, 0.04546355056762695, 0.04545705413818359, 0.045580608367919925, 0.04576204681396484, 0.0456110725402832, 0.04556604766845703, 0.04591811370849609, 0.04564015960693359, 0.04564275360107422, 0.0459048957824707, 0.04627251052856445, 0.04580108642578125, 0.04570150375366211, 0.04603084945678711, 0.04742211151123047, 0.045461505889892576, 0.04511334228515625, 0.04483686447143555, 0.044886016845703126, 0.045156097412109374, 0.04538803100585938, 0.045218910217285156, 0.04511222457885742, 0.04541439819335937, 0.045700992584228516, 0.04534489440917969, 0.04515020751953125, 0.04522335815429687, 0.04556240081787109, 0.04565200042724609, 0.045754432678222656, 0.04584236907958984, 0.045699073791503904, 0.0457105598449707, 0.04594150543212891, 0.045760223388671875, 0.045559585571289064, 0.045343265533447266, 0.04520345687866211, 0.045379585266113284, 0.04530995178222656, 0.04530995178222656, 0.045442497253417966, 0.04568300628662109, 0.04565769577026367, 0.045684993743896486, 0.04582646560668945, 0.04578003311157226, 0.04563040161132813, 0.04567244720458984, 0.04595817565917969, 0.04600931167602539, 0.04583187103271484, 0.045682079315185545, 0.04593936157226562, 0.04602249526977539, 0.04592262268066406, 0.045826145172119144, 0.04565606307983398, 0.04550764846801758, 0.04552201461791992, 0.045547359466552736, 0.04579328155517578, 0.045690879821777344, 0.045547489166259766, 0.04581788635253906, 0.04597715377807617, 0.04570111846923828, 0.04568313598632812, 0.04591180801391601, 0.04599123382568359, 0.0457081298828125, 0.04592854309082031, 0.04598332977294922, 0.04605788803100586, 0.046047233581542966, 0.046137344360351565, 0.04845094299316406, 0.04585327911376953, 0.04522208023071289, 0.04488816070556641, 0.04491872024536133, 0.0451541748046875, 0.04512294387817383, 0.04530044937133789, 0.04519289779663086, 0.04542828750610352, 0.045628223419189456, 0.04560844802856445, 0.045443550109863284, 0.045625343322753906, 0.04559667205810547, 0.045446750640869144, 0.04576707077026367, 0.04563353729248047, 0.04559667205810547, 0.04542252731323242, 0.045674560546875, 0.045932350158691404, 0.04574227142333984, 0.04533657455444336, 0.04531520080566406, 0.04557699203491211, 0.045537376403808595, 0.0453570556640625, 0.045547359466552736, 0.04550876617431641, 0.045784351348876956, 0.04563017654418945, 0.045774848937988284, 0.04591129684448242, 0.04579983901977539, 0.045840736389160155, 0.04594883346557617, 0.04575609588623047, 0.045605281829833984, 0.04577254486083984, 0.045964672088623044, 0.04593907165527344, 0.04591606521606445, 0.04585276794433594, 0.045752254486083985, 0.04567510223388672, 0.04575129699707031, 0.04576764678955078, 0.04569494247436524, 0.04578003311157226, 0.0459186897277832, 0.04595267105102539, 0.0457957763671875, 0.04606556701660156, 0.04571184158325195, 0.0458045768737793, 0.04575065612792969, 0.04590655899047852, 0.04616387176513672, 0.04593638229370117, 0.0457743034362793, 0.04608918380737305, 0.046206878662109374, 0.04830179214477539, 0.04582428741455078, 0.045090816497802735, 0.045006847381591795, 0.045225311279296875, 0.04516476821899414, 0.04521315383911133, 0.04525564956665039, 0.045561569213867184, 0.04551046371459961, 0.045335006713867185, 0.04528486251831055, 0.04526515197753906, 0.04534636688232422, 0.04546630477905273, 0.04525056076049805, 0.046088191986083986, 0.04558848190307617, 0.04563132858276367, 0.04533036804199219, 0.04567062377929688, 0.04603875350952148, 0.04568681716918945, 0.04587545776367188, 0.04551891326904297, 0.04535433578491211, 0.04540060806274414, 0.04529568099975586, 0.04561641693115234, 0.04542867279052734, 0.04541708755493164, 0.04569664001464844, 0.045711296081542965, 0.0457344970703125, 0.04571750259399414, 0.045614974975585934, 0.04582320022583008, 0.04569295883178711, 0.04561337661743164, 0.04579385757446289, 0.04595465469360351, 0.045942943572998045, 0.04606351852416992, 0.045950431823730466, 0.04605759811401367, 0.04566502380371094, 0.045767807006835935, 0.045638526916503906, 0.04577648162841797, 0.04562505722045898, 0.04581356811523438, 0.045908863067626954, 0.0458342399597168, 0.04563497543334961, 0.04588140869140625, 0.04582620620727539, 0.04574860763549805, 0.045851905822753905, 0.04605763244628906, 0.04595315170288086, 0.04599827194213867, 0.04583251190185547, 0.04596246337890625, 0.04879795074462891, 0.04600428771972656, 0.04512550354003906, 0.04509254455566406, 0.04501542282104492, 0.04497593688964844, 0.04499110412597656, 0.045049823760986325, 0.04576668930053711, 0.04559798431396484, 0.04549296188354492, 0.04565737533569336, 0.04549043273925781, 0.04529558563232422, 0.04520505523681641, 0.04546636962890625, 0.04568252944946289, 0.04557612609863281, 0.04537184143066406, 0.04535228729248047, 0.04593231964111328, 0.045920639038085936, 0.04594736099243164, 0.04581292724609375, 0.045537120819091795, 0.0454128303527832, 0.04554598236083984, 0.045440799713134764, 0.0455, 0.04542652893066406, 0.04557852935791016, 0.04563772964477539, 0.04575068664550781, 0.04573788833618164, 0.045623294830322264, 0.045782432556152344, 0.045800128936767576, 0.04552054214477539, 0.046077919006347653, 0.045857311248779294, 0.04587299346923828, 0.04571088027954102, 0.04618492889404297, 0.04592355346679688, 0.04586511993408203, 0.045763198852539065, 0.04573183822631836, 0.04594217681884766, 0.04583046340942383, 0.04587747192382813, 0.045684799194335934, 0.04566835021972656, 0.04595097732543945, 0.046134815216064454, 0.04593916702270508, 0.04589158248901367, 0.04589363098144531, 0.04592639923095703, 0.04571446228027344, 0.04584684753417969, 0.046262943267822265, 0.046165729522705076, 0.04615536117553711, 0.047457313537597655, 0.04550124740600586, 0.0452402229309082, 0.045407806396484375, 0.04519379043579102, 0.045115520477294925, 0.045281024932861326, 0.04544307327270508, 0.04547343826293945, 0.04537200164794922, 0.04547993469238281, 0.04560688018798828, 0.04551068878173828, 0.04521984100341797, 0.04549836730957031, 0.045708576202392576, 0.04555388641357422, 0.04559920120239258, 0.04552092742919922, 0.045676544189453126, 0.04592355346679688, 0.045533824920654296, 0.04554975891113281, 0.04575379180908203, 0.04573443222045898, 0.04558607864379883, 0.045609310150146486, 0.04559836959838867, 0.04544944000244141, 0.045647457122802736, 0.04573443222045898, 0.045764606475830076, 0.0457891845703125, 0.04564787292480469, 0.04560076904296875, 0.04581990432739258, 0.04554342269897461, 0.045913150787353516, 0.045790145874023434, 0.045856769561767576, 0.04604524612426758, 0.04593388748168945, 0.045723552703857424, 0.04562931060791016, 0.04605177688598633, 0.0460681266784668, 0.04580966567993164, 0.045551616668701174, 0.0457523193359375, 0.045864959716796876, 0.04571136093139649, 0.04576169586181641, 0.04593340682983398, 0.04579452896118164, 0.0457053108215332, 0.04580767822265625, 0.046029441833496096, 0.04604927825927734, 0.045795360565185544, 0.045995903015136716, 0.04600636672973633, 0.04589977645874024, 0.045939743041992186, 0.04760575866699219, 0.045616191864013673, 0.04523619079589844, 0.0449705924987793, 0.04478188705444336, 0.045047840118408206, 0.0452525749206543, 0.04536463928222656, 0.0452960319519043, 0.04542819213867187, 0.04552169418334961, 0.04553932952880859, 0.045192798614501956, 0.045467456817626956, 0.04576537704467774, 0.04562723159790039, 0.04550857543945312, 0.04561318588256836, 0.04573174285888672, 0.04584447860717773, 0.045682689666748044, 0.046044960021972656, 0.04591843032836914, 0.04558438491821289, 0.045363201141357425, 0.04560486221313476, 0.04559667205810547, 0.04516454315185547, 0.04539311981201172, 0.045478687286376954, 0.04557136154174805, 0.04557440185546875, 0.045644256591796876, 0.04552908706665039, 0.045897727966308595, 0.04566220855712891, 0.04569091033935547, 0.046047199249267576, 0.0457891845703125, 0.04555571365356445, 0.045780990600585936, 0.045946750640869144, 0.04598723220825195, 0.04613808059692383, 0.04597132873535156, 0.045967071533203126, 0.04598748779296875, 0.0458493423461914, 0.045676544189453126, 0.04586700820922852, 0.04562124633789062, 0.04579663848876953, 0.04565884780883789, 0.04564582443237305, 0.04571955108642578, 0.045972606658935544, 0.04611065673828125, 0.04594537734985352, 0.04597983932495117, 0.04610054397583008, 0.045961376190185546, 0.0457154541015625, 0.046063617706298826, 0.04767948913574219, 0.045876480102539065, 0.04532275390625, 0.04503308868408203, 0.04509302520751953, 0.04543503952026367, 0.04541676712036133, 0.04523782348632813, 0.04544732666015625, 0.04568707275390625, 0.04567244720458984, 0.04557619094848633, 0.04550451278686524, 0.04534864044189453, 0.045813407897949215, 0.045732414245605466, 0.046094337463378904, 0.045757854461669925, 0.04581232070922851, 0.045674495697021485, 0.046034015655517575, 0.04604169464111328, 0.04577312088012695, 0.045631103515625, 0.04540454483032227, 0.04566835021972656, 0.045588096618652346, 0.04561753463745117, 0.04551459121704102, 0.045805824279785155, 0.04539587020874023, 0.04555939102172851, 0.04574044799804688, 0.04571263885498047, 0.04553305435180664, 0.045728641510009764, 0.04589494323730469, 0.045927040100097655, 0.04574627304077149, 0.0461475830078125, 0.04589683151245117, 0.04599625778198242, 0.045949600219726563, 0.04602880096435547, 0.04594233703613281, 0.045841121673583986, 0.045851905822753905, 0.04606000137329101, 0.04585827255249023, 0.045607295989990235, 0.045905406951904294, 0.045970081329345706, 0.04572979354858398, 0.04597350311279297, 0.04614924621582031, 0.04588787078857422, 0.04601651382446289, 0.04595302581787109, 0.04627046585083008, 0.04598524856567383, 0.045792896270751955, 0.04625065612792969, 0.04609868621826172]",tokens/s,21.894193362251276,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1845.997568,2760.835072,0.0,2365.587456,2314.318336,s,1,8.89519921875,8.89519921875,0.0,8.89519921875,8.89519921875,8.89519921875,8.89519921875,[8.89519921875],,kWh,5.4660155666647367e-05,6.017403879746309e-06,1.6371401986001177e-05,7.704896153239485e-05,,MB,1897.926656,3092.185088,0.0,2682.257408,2607.60832,s,10,0.48081442642211913,0.04808144264221191,0.00017205538202914872,0.04805052757263184,0.048120225143432616,0.04835307178497314,0.048539349098205564,"[0.04858591842651367, 0.04797695922851562, 0.048004062652587894, 0.0480684814453125, 0.04806121444702149, 0.048005023956298826, 0.048048126220703126, 0.04805516815185547, 0.04805292892456055, 0.04795654296875]",tokens/s,5324.299478802475,kWh,1.4727333594430756e-06,1.624139553476128e-07,9.766018421407165e-07,2.611749156931405e-06,tokens/kWh,98018601.56462322,MB,1902.24384,3092.185088,0.0,2682.257408,2607.61088,s,10,13.363730224609373,1.3363730224609376,0.007735199172256561,1.3361744995117188,1.3469821655273437,1.3478011413574218,1.3484563220214845,"[1.3357327880859375, 1.3290960693359375, 1.3468001708984374, 1.336394287109375, 1.340294921875, 1.3486201171875, 1.323949951171875, 1.340486328125, 1.32640087890625, 1.3359547119140625]",tokens/s,47.142526032129254,kWh,3.889775208722348e-05,4.289722245383801e-06,1.924219211065894e-05,6.242966644326624e-05,tokens/kWh,1009135.6175553503,,s,630,13.36166525077821,0.021208992461552695,0.00041553953410139157,0.021115599632263185,0.021474857711791993,0.021689506912231444,0.02319046390533448,"[0.02129305648803711, 0.021180543899536133, 0.021196672439575195, 0.02103091239929199, 0.02104115104675293, 0.021098495483398438, 0.02106582450866699, 0.021067680358886717, 0.021098207473754883, 0.021122848510742188, 0.021251712799072266, 0.021353343963623046, 0.021423744201660155, 0.021078336715698243, 0.02110451126098633, 0.021038656234741212, 0.021176959991455076, 0.02127257537841797, 0.02119785690307617, 0.02130646324157715, 0.02111680030822754, 0.02102783966064453, 0.02122444725036621, 0.021110240936279296, 0.020978048324584962, 0.02158198356628418, 0.02154889678955078, 0.02133967971801758, 0.02140755271911621, 0.021250911712646484, 0.021047136306762696, 0.02124812889099121, 0.021020671844482423, 0.021082111358642578, 0.02101180839538574, 0.021189279556274414, 0.021307392120361326, 0.021180416107177736, 0.021315584182739256, 0.021372224807739256, 0.021383712768554688, 0.02140380859375, 0.021399423599243163, 0.02138140869140625, 0.02134000015258789, 0.02157129669189453, 0.021334239959716797, 0.021293119430541994, 0.021174272537231444, 0.021140607833862304, 0.021111135482788087, 0.02106617546081543, 0.02106787109375, 0.020996095657348633, 0.020959232330322267, 0.021084096908569334, 0.021122976303100584, 0.021334304809570312, 0.02127039909362793, 0.021155839920043946, 0.020972543716430665, 0.02106060791015625, 0.021151744842529296, 0.021368831634521485, 0.021350400924682617, 0.021755712509155273, 0.021196191787719726, 0.0211822395324707, 0.021084896087646486, 0.021018911361694335, 0.021040767669677735, 0.020989568710327148, 0.021039648056030272, 0.02111631965637207, 0.021034912109375, 0.021082239151000978, 0.021086944580078124, 0.02099001693725586, 0.021042335510253907, 0.021154144287109374, 0.021143455505371094, 0.021142112731933595, 0.021155839920043946, 0.02126848030090332, 0.021217279434204102, 0.021143104553222655, 0.021322175979614257, 0.02098329544067383, 0.021658111572265625, 0.021204832077026368, 0.02096143913269043, 0.021548671722412108, 0.020979616165161134, 0.0210416316986084, 0.020912128448486327, 0.020926464080810548, 0.020992000579833983, 0.021034015655517577, 0.02091209602355957, 0.020855615615844727, 0.020863168716430663, 0.020946943283081054, 0.020926496505737305, 0.02113942337036133, 0.021172096252441406, 0.021250175476074218, 0.02089574432373047, 0.020936704635620116, 0.02089369583129883, 0.02096892738342285, 0.021162015914916992, 0.020886016845703126, 0.021323776245117186, 0.021045248031616212, 0.02108006477355957, 0.02130339241027832, 0.020977088928222656, 0.0209781436920166, 0.02090188789367676, 0.02110652732849121, 0.020981376647949218, 0.02099830436706543, 0.021023103713989258, 0.02096678352355957, 0.021254783630371095, 0.02098099136352539, 0.02143846321105957, 0.021618688583374023, 0.02132508850097656, 0.02137980842590332, 0.021354496002197267, 0.021250207901000975, 0.021538656234741212, 0.021157888412475585, 0.02104115104675293, 0.02127462387084961, 0.021511199951171876, 0.021150976181030273, 0.021108064651489258, 0.021082496643066405, 0.02106547164916992, 0.021182207107543944, 0.021368640899658203, 0.02099065589904785, 0.020965152740478516, 0.021358816146850586, 0.02105529594421387, 0.020983999252319335, 0.0210831356048584, 0.024739904403686522, 0.0228787841796875, 0.021362432479858397, 0.021254783630371095, 0.02116534423828125, 0.02111756706237793, 0.02106172752380371, 0.021104032516479493, 0.021132991790771483, 0.021003168106079103, 0.021217279434204102, 0.021114751815795897, 0.02104275131225586, 0.021023296356201173, 0.021061632156372072, 0.021060800552368163, 0.020963167190551756, 0.021052543640136718, 0.02116796875, 0.02113849639892578, 0.021437376022338868, 0.021114879608154297, 0.02102796745300293, 0.02115827178955078, 0.021101055145263673, 0.02247475242614746, 0.021249055862426758, 0.021365440368652344, 0.02134668731689453, 0.0214136962890625, 0.021428319931030275, 0.02347996711730957, 0.02214512062072754, 0.021247327804565428, 0.021750688552856445, 0.02141107177734375, 0.02150003242492676, 0.021273216247558593, 0.021304512023925783, 0.021391775131225584, 0.02135878372192383, 0.02228873634338379, 0.021049087524414062, 0.020902143478393555, 0.021244960784912108, 0.021127519607543947, 0.021000640869140625, 0.02100022315979004, 0.021049503326416016, 0.021017919540405272, 0.021086912155151367, 0.02127257537841797, 0.02121548843383789, 0.021052255630493164, 0.021250112533569336, 0.021453664779663085, 0.021243904113769533, 0.020992191314697265, 0.021112640380859374, 0.02104729652404785, 0.020961503982543945, 0.020909759521484376, 0.02107811164855957, 0.021440511703491212, 0.0230231990814209, 0.021638816833496093, 0.021410560607910155, 0.021470783233642578, 0.02130169677734375, 0.02104319953918457, 0.02122537612915039, 0.02126652717590332, 0.02101043128967285, 0.021135360717773437, 0.0223372802734375, 0.02143984031677246, 0.02131648063659668, 0.021026687622070314, 0.02106153678894043, 0.02107744026184082, 0.021086847305297852, 0.020926752090454102, 0.02100419235229492, 0.02123776054382324, 0.021271680831909178, 0.021131999969482423, 0.021161727905273438, 0.02112348747253418, 0.02117580795288086, 0.02114918327331543, 0.02121939277648926, 0.021301631927490235, 0.02090451240539551, 0.020944896697998046, 0.021379072189331053, 0.021102399826049806, 0.021158079147338867, 0.02101980781555176, 0.02097990417480469, 0.02089846420288086, 0.02103209686279297, 0.021019487380981444, 0.02102681541442871, 0.02105276870727539, 0.021016544342041015, 0.020980384826660155, 0.02101865577697754, 0.020869056701660157, 0.020944576263427734, 0.021173856735229493, 0.021473440170288086, 0.021213855743408203, 0.021769599914550783, 0.02137264060974121, 0.021226303100585937, 0.02122140884399414, 0.021154848098754883, 0.021187360763549806, 0.02121299171447754, 0.021281152725219726, 0.02146441650390625, 0.02180073547363281, 0.02128783988952637, 0.021124256134033202, 0.02154787254333496, 0.024763551712036133, 0.021267295837402344, 0.021190784454345704, 0.021176191329956056, 0.021106687545776368, 0.021333343505859376, 0.021391103744506836, 0.021160863876342775, 0.02120694351196289, 0.02111087989807129, 0.020961280822753905, 0.02130240058898926, 0.021023616790771485, 0.021182464599609374, 0.021147647857666017, 0.021124191284179687, 0.021119840621948244, 0.021026687622070314, 0.02119603157043457, 0.02099500846862793, 0.02149580764770508, 0.02148761558532715, 0.021542207717895508, 0.02124777603149414, 0.021016576766967773, 0.021097375869750978, 0.0211125431060791, 0.02106172752380371, 0.02121308708190918, 0.021152000427246093, 0.021128351211547852, 0.02091916847229004, 0.021182464599609374, 0.021315584182739256, 0.021339359283447264, 0.021307552337646484, 0.021279359817504884, 0.02125823974609375, 0.02104729652404785, 0.021249664306640624, 0.021423871994018556, 0.022934303283691407, 0.021489376068115233, 0.021776575088500977, 0.021768287658691408, 0.021327072143554688, 0.02118079948425293, 0.021159456253051757, 0.021162879943847655, 0.021185855865478515, 0.02129596710205078, 0.021337600708007814, 0.021194175720214845, 0.021160863876342775, 0.02125823974609375, 0.021544960021972655, 0.02130534362792969, 0.02107187271118164, 0.02114112091064453, 0.021062015533447265, 0.021058624267578124, 0.021046207427978515, 0.02107529640197754, 0.02122819137573242, 0.021118976593017577, 0.020908031463623047, 0.02104297637939453, 0.021042783737182616, 0.020967039108276367, 0.02286899185180664, 0.021313535690307618, 0.021323104858398438, 0.022659744262695312, 0.021001855850219728, 0.021038623809814454, 0.021162847518920898, 0.021088031768798827, 0.02098745536804199, 0.02092233657836914, 0.021424831390380858, 0.0232587833404541, 0.021631328582763672, 0.021325824737548828, 0.021252031326293944, 0.02111267280578613, 0.021259872436523438, 0.021455488204956054, 0.02211123275756836, 0.021692703247070313, 0.021601247787475585, 0.02295577621459961, 0.021519584655761717, 0.02138806343078613, 0.02131350326538086, 0.021057184219360352, 0.021156448364257813, 0.021131040573120118, 0.02107596778869629, 0.021188575744628905, 0.021182016372680666, 0.021457376480102538, 0.021169855117797853, 0.022363487243652343, 0.02112406349182129, 0.021180416107177736, 0.021076192855834962, 0.021159168243408202, 0.021070016860961913, 0.021108896255493163, 0.020961471557617187, 0.021303295135498047, 0.02109619140625, 0.02101696014404297, 0.020950912475585937, 0.020920320510864256, 0.020918272018432618, 0.02097385597229004, 0.021022560119628907, 0.02090729522705078, 0.02100806427001953, 0.020973567962646485, 0.02086390495300293, 0.02086502456665039, 0.02084454345703125, 0.020941823959350587, 0.02101759910583496, 0.021275871276855467, 0.020972320556640625, 0.021050432205200195, 0.021074880599975587, 0.020961280822753905, 0.02128825569152832, 0.021190656661987304, 0.020992704391479492, 0.02087936019897461, 0.021492767333984374, 0.021211328506469725, 0.020982559204101563, 0.021014528274536134, 0.021002464294433594, 0.020977439880371093, 0.020907360076904295, 0.021039775848388672, 0.020987903594970703, 0.021130815505981445, 0.021070207595825195, 0.021030975341796876, 0.02103910446166992, 0.021087871551513673, 0.020859264373779298, 0.020942623138427735, 0.021002464294433594, 0.020921567916870117, 0.020768768310546876, 0.020846399307250976, 0.020997087478637697, 0.020989887237548827, 0.02089369583129883, 0.020887615203857422, 0.02103910446166992, 0.020931840896606446, 0.020869375228881836, 0.020886016845703126, 0.020953088760375976, 0.02106777572631836, 0.02101817512512207, 0.021039487838745118, 0.021174272537231444, 0.021139455795288087, 0.021503711700439455, 0.021831968307495116, 0.02105958366394043, 0.02127359962463379, 0.021148672103881837, 0.021161983489990235, 0.020993343353271486, 0.024013376235961913, 0.021709983825683593, 0.021321760177612305, 0.021033920288085938, 0.021014528274536134, 0.02130512046813965, 0.021569759368896484, 0.021450431823730468, 0.02114182472229004, 0.021538816452026367, 0.02103193664550781, 0.021072895050048827, 0.021013887405395507, 0.02100204849243164, 0.02097760009765625, 0.021101312637329103, 0.021108863830566406, 0.02168560028076172, 0.02128505516052246, 0.02124847984313965, 0.02133206367492676, 0.021178112030029297, 0.021126495361328126, 0.02102764892578125, 0.02102272033691406, 0.02122444725036621, 0.02117849540710449, 0.02115814399719238, 0.02109913635253906, 0.021237247467041014, 0.02123529624938965, 0.021201791763305663, 0.021133344650268556, 0.021398847579956054, 0.02114134407043457, 0.021250911712646484, 0.021362272262573243, 0.021268735885620116, 0.021187936782836914, 0.021420864105224608, 0.0210402889251709, 0.021137535095214845, 0.021106559753417967, 0.0209785270690918, 0.021284448623657228, 0.021492128372192384, 0.021958656311035156, 0.021465087890625, 0.02128633689880371, 0.02125404739379883, 0.021213600158691406, 0.02106598472595215, 0.02094697570800781, 0.020950016021728517, 0.021710847854614256, 0.021114879608154297, 0.02103059196472168, 0.020961759567260742, 0.020993408203125, 0.020799072265625, 0.020853504180908203, 0.02097983932495117, 0.02103628730773926, 0.02087603187561035, 0.020876863479614257, 0.02090438461303711, 0.020914176940917968, 0.02086502456665039, 0.02084454345703125, 0.020964927673339843, 0.020910112380981446, 0.02095555114746094, 0.020936704635620116, 0.020954368591308593, 0.020929279327392577, 0.020887199401855468, 0.020951391220092774, 0.02093609619140625, 0.020855327606201172, 0.020875551223754882, 0.02101219177246094, 0.021071935653686525, 0.02116636848449707, 0.02098873519897461, 0.021003168106079103, 0.02105958366394043, 0.020940351486206054, 0.020904064178466797, 0.021063999176025392, 0.02088960075378418, 0.020873472213745116, 0.020927648544311523, 0.02104140853881836, 0.02104560089111328, 0.021445920944213867, 0.020975391387939454, 0.021016672134399415, 0.02095734405517578, 0.023843584060668947, 0.021544223785400392, 0.02129337692260742, 0.021107040405273437, 0.021060800552368163, 0.020976448059082033, 0.020960575103759767, 0.021392063140869142, 0.02094607925415039, 0.020853376388549803, 0.020895967483520506, 0.021219327926635743, 0.02093062400817871, 0.021053375244140624, 0.020991167068481444, 0.021060415267944336, 0.020916223526000977, 0.020924543380737303, 0.020932479858398436, 0.021146303176879884, 0.021149728775024416, 0.021008384704589843, 0.021166080474853514, 0.020971616744995116, 0.021002143859863282, 0.02106777572631836, 0.021004287719726563, 0.021097503662109374, 0.021005504608154296, 0.021102304458618163, 0.021071935653686525, 0.02119875144958496, 0.021602399826049806, 0.02132352066040039, 0.02114995193481445, 0.021141664505004883, 0.02107129669189453, 0.021019039154052736, 0.021129215240478515, 0.021169696807861328, 0.02121161651611328, 0.021331552505493165, 0.021259744644165038, 0.02111199951171875, 0.021544704437255858, 0.02109235191345215, 0.021151744842529296, 0.02113155174255371, 0.02097737693786621, 0.021137184143066406, 0.021589567184448242, 0.021234336853027343, 0.021570688247680665, 0.020976512908935548, 0.021024063110351564, 0.02099884796142578, 0.022760671615600588, 0.02390838432312012, 0.021390079498291015, 0.021200895309448242, 0.02103091239929199, 0.021743616104125976, 0.021024768829345702, 0.020891679763793945, 0.020966432571411134, 0.021060543060302736, 0.02098899269104004, 0.02093769645690918, 0.020985952377319338, 0.021132192611694335, 0.02106857681274414, 0.021004480361938478, 0.02098092842102051, 0.02099078369140625, 0.02097267150878906, 0.020839296340942382, 0.021020671844482423, 0.021018848419189454, 0.02107779121398926, 0.021022111892700195, 0.021662303924560547, 0.021121023178100586]",tokens/s,47.14981165714417,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,2226.302976,2551.119872,0.0,2155.872256,2032.413184,s,1,8.8302705078125,8.8302705078125,0.0,8.8302705078125,8.8302705078125,8.8302705078125,8.8302705078125,[8.8302705078125],,kWh,4.982181362083793e-05,5.4883185529186004e-06,1.5603901372000795e-05,7.091403354575732e-05,,MB,2278.109184,2827.943936,0.0,2418.016256,2279.563776,s,10,0.7768848495483398,0.07768848495483398,0.00018375020280323443,0.07763300704956055,0.07796125717163085,0.07802150688171387,0.07806970664978027,"[0.07808175659179688, 0.07794786834716796, 0.0775453109741211, 0.07749890899658203, 0.0775704345703125, 0.07762175750732422, 0.07768287658691406, 0.07777859497070312, 0.0775130844116211, 0.07764425659179687]",tokens/s,3295.211641066647,kWh,2.320956485185219e-06,2.5596015964888385e-07,1.5457397727461e-06,4.1226564175802024e-06,tokens/kWh,62095885.29093566,MB,2280.640512,2911.830016,0.0,2501.902336,2389.801984,s,10,13.968810546875003,1.3968810546875001,0.007208082407808386,1.3988131713867187,1.4043124389648438,1.4047796325683592,1.4051533874511717,"[1.4042086181640625, 1.399265380859375, 1.403767578125, 1.4041328125, 1.405246826171875, 1.3888050537109375, 1.389106201171875, 1.3983609619140625, 1.38671240234375, 1.3892047119140625]",tokens/s,45.10047565509713,kWh,4.043888521106479e-05,4.46003448440396e-06,2.2972029841453642e-05,6.787094953692238e-05,tokens/kWh,928232.1881429913,,s,630,13.961103496551505,0.022160481740557958,0.00038663754401263264,0.022070960044860838,0.022473354148864748,0.022643639183044434,0.023520151882171634,"[0.023783424377441405, 0.02206924819946289, 0.02187264060974121, 0.021822751998901366, 0.021869279861450194, 0.022290143966674805, 0.02199171257019043, 0.02190540885925293, 0.02216671943664551, 0.022102272033691406, 0.021979711532592774, 0.021938175201416017, 0.021950464248657226, 0.021906784057617187, 0.022032064437866213, 0.021890016555786134, 0.022204160690307617, 0.021960384368896486, 0.022028608322143553, 0.022403327941894532, 0.026284032821655274, 0.02223411178588867, 0.022187007904052734, 0.02222800064086914, 0.022481887817382813, 0.022255008697509765, 0.022736608505249025, 0.02326412773132324, 0.02292531204223633, 0.022677152633666993, 0.02248534393310547, 0.02237225532531738, 0.022280031204223633, 0.022093952178955076, 0.02204431915283203, 0.022130367279052734, 0.022099903106689453, 0.022219615936279295, 0.02222230339050293, 0.022047264099121094, 0.022208192825317382, 0.02295020866394043, 0.022237152099609376, 0.022106143951416017, 0.02213478469848633, 0.022255392074584962, 0.022191648483276368, 0.022223039627075194, 0.022204927444458008, 0.02227609634399414, 0.02227609634399414, 0.022468288421630858, 0.022290143966674805, 0.022190656661987305, 0.022165504455566407, 0.022073375701904298, 0.022046144485473634, 0.021994047164916992, 0.022001663208007814, 0.022024192810058595, 0.02209721565246582, 0.02201055908203125, 0.02207459259033203, 0.022956031799316406, 0.022390783309936522, 0.022339263916015626, 0.022362783432006837, 0.022232736587524414, 0.022413312911987306, 0.02225152015686035, 0.022179840087890625, 0.022124544143676757, 0.02200371170043945, 0.022013952255249023, 0.021951520919799804, 0.022024639129638673, 0.021946880340576173, 0.022091808319091796, 0.02214297676086426, 0.022788095474243163, 0.022384288787841797, 0.022202367782592772, 0.02214672088623047, 0.022090431213378905, 0.022108224868774413, 0.022372064590454103, 0.022130016326904298, 0.022012800216674806, 0.022026239395141603, 0.02191155242919922, 0.021977088928222657, 0.021936128616333008, 0.02191974449157715, 0.021935712814331054, 0.022019872665405272, 0.022013599395751954, 0.02231983947753906, 0.02264463996887207, 0.022671808242797853, 0.022517663955688477, 0.022202367782592772, 0.02224127960205078, 0.02215116882324219, 0.022138496398925782, 0.021980575561523438, 0.0220927677154541, 0.022255615234375, 0.021946048736572264, 0.021981151580810546, 0.023011680603027343, 0.021925888061523437, 0.02206719970703125, 0.022070816040039062, 0.02244041633605957, 0.022356063842773437, 0.022564512252807617, 0.02239923286437988, 0.022300384521484376, 0.022060384750366212, 0.022098880767822265, 0.02201190376281738, 0.022140928268432617, 0.02204182434082031, 0.022016799926757813, 0.022460416793823244, 0.022029727935791017, 0.022417856216430665, 0.022187295913696288, 0.022159584045410158, 0.022195775985717772, 0.02268992042541504, 0.02261075210571289, 0.022517440795898437, 0.02212076759338379, 0.02230067253112793, 0.022034431457519533, 0.022125696182250975, 0.022194591522216797, 0.02234976005554199, 0.022587423324584962, 0.022409727096557617, 0.0224768009185791, 0.022624256134033204, 0.02253824043273926, 0.022335487365722655, 0.022218751907348632, 0.02218121528625488, 0.022192575454711913, 0.02226924705505371, 0.02247488021850586, 0.022344480514526366, 0.022465599060058593, 0.022282943725585938, 0.022114559173583983, 0.022482656478881837, 0.022022432327270507, 0.02224083137512207, 0.022006111145019533, 0.022171743392944337, 0.02198019218444824, 0.022115135192871095, 0.021938047409057616, 0.022119712829589844, 0.022047264099121094, 0.022360544204711914, 0.022161407470703123, 0.022609920501708985, 0.022616352081298828, 0.022410112380981444, 0.02231587219238281, 0.022378496170043945, 0.022316608428955078, 0.022342079162597655, 0.022161407470703123, 0.02215936088562012, 0.02206675148010254, 0.02205740737915039, 0.0220446720123291, 0.022149120330810547, 0.022108160018920898, 0.02197427177429199, 0.021858335494995117, 0.02206332778930664, 0.022101760864257813, 0.022333696365356447, 0.022225151062011717, 0.02246272087097168, 0.022642688751220705, 0.022451839447021484, 0.02286185646057129, 0.022526464462280273, 0.022526975631713866, 0.02248940849304199, 0.022270656585693358, 0.022564863204956053, 0.022386655807495118, 0.02280841636657715, 0.022431936264038086, 0.022246719360351563, 0.022305471420288086, 0.022205440521240235, 0.022340543746948244, 0.022180959701538085, 0.02376550483703613, 0.023262847900390626, 0.02228646469116211, 0.021996192932128907, 0.022412384033203125, 0.02189411163330078, 0.022038463592529298, 0.021999711990356444, 0.02195452880859375, 0.02191564750671387, 0.022226367950439453, 0.021967008590698243, 0.022002080917358398, 0.02208563232421875, 0.02207561683654785, 0.022126367568969726, 0.02230067253112793, 0.02228620719909668, 0.022414783477783203, 0.022188735961914063, 0.022013952255249023, 0.02199078369140625, 0.02212723159790039, 0.022036575317382814, 0.022103967666625975, 0.021997568130493163, 0.02199295997619629, 0.022026752471923827, 0.02205286407470703, 0.02224742317199707, 0.022097728729248048, 0.022209823608398436, 0.02228316879272461, 0.02206822395324707, 0.02216969680786133, 0.02210908889770508, 0.022402431488037108, 0.022558719635009765, 0.022485376358032227, 0.022151424407958985, 0.022284063339233398, 0.022378719329833985, 0.022391807556152343, 0.022477535247802733, 0.022448415756225585, 0.022201471328735352, 0.022197248458862305, 0.02216643142700195, 0.022315999984741212, 0.022747007369995118, 0.02616524887084961, 0.023795360565185546, 0.02264441680908203, 0.022417184829711913, 0.02247318458557129, 0.02233996772766113, 0.022361440658569334, 0.022499488830566405, 0.022378751754760742, 0.02226521682739258, 0.022413503646850585, 0.02239356803894043, 0.022169599533081053, 0.02214476776123047, 0.0220797119140625, 0.02235372734069824, 0.022227071762084962, 0.022204511642456053, 0.022390432357788086, 0.022331743240356444, 0.022304479598999023, 0.022317344665527344, 0.0224399356842041, 0.022208511352539064, 0.022054912567138672, 0.02196803283691406, 0.021950592041015626, 0.021945056915283204, 0.021884927749633788, 0.023011327743530274, 0.02221612739562988, 0.023364128112792967, 0.022064735412597656, 0.02207379150390625, 0.021972415924072265, 0.021997312545776367, 0.022100799560546874, 0.022216352462768554, 0.022128671646118165, 0.022100032806396483, 0.022062463760375975, 0.021975103378295897, 0.022045215606689452, 0.02185651206970215, 0.021985055923461914, 0.021829887390136717, 0.022368255615234374, 0.0218787841796875, 0.02186355209350586, 0.02255961608886719, 0.022003679275512694, 0.02201398468017578, 0.02211840057373047, 0.022023775100708007, 0.02219664001464844, 0.022153215408325197, 0.02226371192932129, 0.02212873649597168, 0.02208697509765625, 0.021917472839355467, 0.021971872329711914, 0.02201190376281738, 0.022270175933837892, 0.021952512741088868, 0.021895040512084962, 0.021894752502441408, 0.02195510482788086, 0.022030336380004883, 0.02217932891845703, 0.02202470397949219, 0.02245427131652832, 0.021999616622924805, 0.02200364875793457, 0.021844032287597657, 0.021956672668457033, 0.021931615829467774, 0.02199177551269531, 0.021792768478393554, 0.02194819259643555, 0.021913728713989257, 0.022000831604003908, 0.021960639953613283, 0.022019039154052733, 0.022161407470703123, 0.02208563232421875, 0.021952512741088868, 0.021982688903808594, 0.021960927963256837, 0.02221878433227539, 0.02193027114868164, 0.022330944061279296, 0.022352319717407226, 0.022394880294799805, 0.022101984024047852, 0.02232499122619629, 0.022266143798828124, 0.022078880310058592, 0.022106719970703126, 0.022040576934814454, 0.022150943756103516, 0.02190332794189453, 0.021901567459106444, 0.021936128616333008, 0.02193164825439453, 0.021896928787231446, 0.0219204158782959, 0.022072608947753907, 0.022180736541748045, 0.022256799697875976, 0.02226041603088379, 0.021984607696533202, 0.021944095611572265, 0.021764991760253906, 0.02198944091796875, 0.021882816314697264, 0.021944320678710938, 0.022191104888916017, 0.022064128875732423, 0.021880416870117186, 0.021882623672485352, 0.021803680419921874, 0.02190438461303711, 0.02194054412841797, 0.021946687698364258, 0.02204265594482422, 0.022526111602783203, 0.022200159072875977, 0.021932031631469725, 0.021966848373413086, 0.021796096801757814, 0.022024799346923828, 0.021940223693847655, 0.021850271224975584, 0.021798912048339843, 0.02184726333618164, 0.021809247970581053, 0.021907903671264647, 0.021797056198120116, 0.021876800537109376, 0.021932031631469725, 0.022038528442382813, 0.02212819290161133, 0.02217731285095215, 0.022080415725708007, 0.021979135513305666, 0.021986400604248047, 0.02193292808532715, 0.021880863189697265, 0.02189516830444336, 0.02190336036682129, 0.02231062316894531, 0.022022144317626953, 0.022063392639160156, 0.022591487884521484, 0.021917695999145507, 0.021827583312988282, 0.021893119812011717, 0.02207043266296387, 0.02235887908935547, 0.02243699264526367, 0.022244224548339842, 0.022192127227783204, 0.021985279083251954, 0.0220546875, 0.021899488449096678, 0.02188649559020996, 0.02187104034423828, 0.02181532859802246, 0.022063104629516602, 0.02198271942138672, 0.022039039611816406, 0.02196201515197754, 0.021859039306640626, 0.02192355155944824, 0.0219072322845459, 0.022428064346313475, 0.023104896545410158, 0.02225430488586426, 0.022007648468017577, 0.02212236785888672, 0.022281503677368163, 0.02213337516784668, 0.02192617607116699, 0.021944416046142577, 0.021935680389404296, 0.021944671630859374, 0.021905183792114258, 0.021936447143554687, 0.02201260757446289, 0.02197817611694336, 0.021865407943725587, 0.02205286407470703, 0.02327756881713867, 0.025399295806884766, 0.022755327224731444, 0.022487039566040038, 0.022203968048095702, 0.022081024169921876, 0.02219718360900879, 0.022993919372558593, 0.022952959060668944, 0.022512800216674806, 0.02230672073364258, 0.022178752899169922, 0.022054336547851563, 0.0218855037689209, 0.022255008697509765, 0.021869152069091798, 0.021954559326171876, 0.021952384948730468, 0.021932159423828125, 0.02209721565246582, 0.022176448822021484, 0.022215808868408203, 0.021989856719970703, 0.022091936111450196, 0.021879039764404296, 0.02231500816345215, 0.02186444854736328, 0.021843967437744142, 0.02187017631530762, 0.021782943725585938, 0.021960704803466798, 0.021817344665527344, 0.021790143966674804, 0.022001216888427735, 0.021969919204711915, 0.021872095108032227, 0.02188751983642578, 0.021948415756225585, 0.022321151733398437, 0.02215116882324219, 0.022005664825439454, 0.021999711990356444, 0.02185603141784668, 0.021992992401123047, 0.021907136917114257, 0.023540512084960937, 0.023470304489135743, 0.022000959396362305, 0.021928831100463866, 0.021897024154663085, 0.021939456939697264, 0.0218505916595459, 0.022026752471923827, 0.022066879272460937, 0.022227039337158205, 0.02202614402770996, 0.021893375396728514, 0.021900224685668945, 0.021986207962036132, 0.02213039970397949, 0.021889888763427734, 0.021872671127319335, 0.021997535705566406, 0.02195644760131836, 0.022024383544921877, 0.022117631912231445, 0.021919551849365233, 0.02228665542602539, 0.021860128402709962, 0.02198819160461426, 0.021932031631469725, 0.02210767936706543, 0.022071104049682617, 0.022041088104248048, 0.02190118408203125, 0.02204425621032715, 0.022022560119628908, 0.0219015998840332, 0.02185775947570801, 0.0219116153717041, 0.021898880004882812, 0.02186467170715332, 0.02188966369628906, 0.021942176818847657, 0.021868640899658204, 0.02194144058227539, 0.02181407928466797, 0.022176895141601562, 0.02192438316345215, 0.02202412796020508, 0.022116767883300782, 0.022091007232666014, 0.022033151626586915, 0.021977088928222657, 0.021999040603637696, 0.02243168067932129, 0.022260351181030272, 0.02224742317199707, 0.02208563232421875, 0.02206719970703125, 0.02194540786743164, 0.021895328521728517, 0.02183225631713867, 0.02192131233215332, 0.021875295639038086, 0.021940319061279297, 0.02185139274597168, 0.02220515251159668, 0.02194175910949707, 0.022032224655151367, 0.02204537582397461, 0.022138879776000975, 0.022507455825805663, 0.02196665573120117, 0.022015840530395507, 0.021889440536499022, 0.021900896072387696, 0.021878559112548827, 0.021895200729370116, 0.021919519424438476, 0.02189593505859375, 0.02188889694213867, 0.022648895263671875, 0.022239231109619142, 0.021970815658569336, 0.022139007568359376, 0.021929983139038087, 0.022150976181030273, 0.02201580810546875, 0.022094207763671873, 0.021954559326171876, 0.02189676856994629, 0.02192019271850586, 0.02187468719482422, 0.021829023361206054, 0.021936159133911132, 0.022133312225341796, 0.021935935974121093, 0.0219150390625, 0.02194099235534668, 0.021970975875854493, 0.022107999801635744, 0.022081695556640624, 0.02206719970703125, 0.021932031631469725, 0.02191564750671387, 0.021940223693847655, 0.02190540885925293, 0.021843360900878905, 0.021852767944335938, 0.02191564750671387, 0.021945856094360353, 0.021965152740478517, 0.02187280082702637, 0.022231039047241212, 0.021972991943359374, 0.021893119812011717, 0.021897279739379882, 0.021968832015991212, 0.02192959976196289, 0.022032768249511718, 0.021997568130493163, 0.02220185661315918, 0.021995359420776368, 0.021978784561157226, 0.02211327934265137, 0.021995519638061522, 0.02187398338317871, 0.021826240539550783, 0.021803007125854493, 0.021834911346435545, 0.02179692840576172, 0.021790655136108398, 0.021902175903320314, 0.022269952774047853, 0.021979135513305666, 0.022200319290161134, 0.022423839569091795, 0.022502304077148438, 0.02258188819885254, 0.02243708801269531, 0.02234220886230469, 0.0224051513671875, 0.02214950370788574, 0.022185983657836913]",tokens/s,45.12537280134154,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3563.528192,4495.179776,0.0,4116.709376,3980.386816,s,1,10.4573623046875,10.4573623046875,0.0,10.4573623046875,10.4573623046875,10.4573623046875,10.4573623046875,[10.4573623046875],,kWh,9.463678974167351e-05,1.0428446453185679e-05,2.954335696799676e-05,0.00013460859316285595,,MB,3465.621504,4826.529792,0.0,4418.699264,4245.764608,s,10,6.514956481933594,0.6514956481933594,0.0008382393185001823,0.6516083984375001,0.6524576538085937,0.6526914428710937,0.6528784741210938,"[0.6507066650390625, 0.6516373901367187, 0.6515794067382813, 0.6514669799804688, 0.6501195068359376, 0.6517879638671875, 0.6524057006835937, 0.6503561401367187, 0.6529252319335938, 0.6519714965820312]",tokens/s,392.94199540688413,kWh,1.9035242236718612e-05,2.0992695936843544e-06,1.2672371248999888e-05,3.380688307940286e-05,tokens/kWh,7572422.438316127,MB,3469.758464,4837.015552,0.0,4429.185024,4245.767168,s,10,384.47273437499996,38.447273437499994,0.025700547755004608,38.459927734375,38.465746484375,38.4658712890625,38.4659711328125,"[38.38426171875, 38.41635546875, 38.44120703125, 38.4502265625, 38.4564609375, 38.46393359375, 38.46571875, 38.46339453125, 38.46599609375, 38.4651796875]",tokens/s,1.638607744250395,kWh,0.0011221179002866139,0.00012377796577120082,0.0007458437355633994,0.001991739601621214,tokens/kWh,31630.640847187035,,s,630,384.46834374999986,0.6102672123015873,0.0005672002210965215,0.6103543701171874,0.6108875366210937,0.6110109985351563,0.6112549932861329,"[0.6090960083007813, 0.6084502563476563, 0.608760498046875, 0.6085468139648438, 0.6086820068359375, 0.608964599609375, 0.6090198364257813, 0.6083390502929688, 0.60896337890625, 0.6084527587890625, 0.6092669677734375, 0.6092006225585938, 0.6084193115234375, 0.6095037231445313, 0.6087141723632813, 0.6089382934570312, 0.6088442993164063, 0.6087393188476562, 0.6091402587890625, 0.6090695190429688, 0.608712646484375, 0.6101893310546875, 0.6080819091796875, 0.6089801025390625, 0.6094119873046875, 0.608943603515625, 0.610287109375, 0.6082645874023438, 0.6091060180664063, 0.6097963256835938, 0.6085675659179688, 0.6099081420898438, 0.6093010864257813, 0.608392578125, 0.6096492309570313, 0.6088048706054687, 0.610361328125, 0.6084198608398438, 0.6096354370117187, 0.6103089599609375, 0.6092575073242188, 0.6096132202148438, 0.6098903198242187, 0.6089487915039062, 0.6100578002929687, 0.60937255859375, 0.6100594482421875, 0.6092112426757812, 0.6090424194335937, 0.6103367919921875, 0.6088253173828125, 0.6102559814453125, 0.6092584228515625, 0.609912841796875, 0.6095703735351562, 0.6097042846679688, 0.6093067626953125, 0.60988330078125, 0.6095225219726562, 0.6101954345703124, 0.6098411865234376, 0.6093475341796875, 0.6101852416992187, 0.6092809448242188, 0.6101094360351562, 0.6082826538085937, 0.6092533569335937, 0.6097572021484375, 0.6091590576171875, 0.6098058471679687, 0.609083740234375, 0.610011474609375, 0.609449462890625, 0.609554931640625, 0.6091915283203125, 0.6089580688476562, 0.6100978393554688, 0.60969384765625, 0.60918115234375, 0.6101787109375, 0.6088201293945312, 0.6105702514648438, 0.6092473754882812, 0.6092838134765625, 0.6100452270507812, 0.6097061767578125, 0.6102218627929688, 0.6087933959960937, 0.6097158813476562, 0.6104061889648438, 0.6090422973632813, 0.6100711059570313, 0.6098965454101563, 0.6100003051757813, 0.6095570678710938, 0.6095827026367188, 0.610037353515625, 0.60992333984375, 0.6097310791015625, 0.61005419921875, 0.6099200439453125, 0.6091724243164063, 0.6103319091796875, 0.6097229614257812, 0.609804443359375, 0.6102564697265624, 0.609752685546875, 0.6098746948242187, 0.6103369750976563, 0.6098450927734375, 0.6097754516601562, 0.6103055419921875, 0.6095953979492188, 0.6103026123046875, 0.6103894653320312, 0.6097640991210938, 0.6101337890625, 0.6101913452148438, 0.6103736572265624, 0.6095872192382813, 0.6099100952148437, 0.6101613159179687, 0.610305908203125, 0.6104202270507812, 0.6102186279296875, 0.6095318603515625, 0.6104039916992188, 0.6099992065429688, 0.6098433227539063, 0.6099674682617188, 0.6096532592773437, 0.6100801391601562, 0.6097854614257813, 0.6095120239257813, 0.6103056640625, 0.6099771728515625, 0.609578369140625, 0.6103779907226563, 0.6103719482421875, 0.6095155029296875, 0.6104514770507813, 0.6100208740234375, 0.6097679443359375, 0.6097694702148437, 0.6106480712890625, 0.6100399169921875, 0.6097529296875, 0.610355224609375, 0.609977783203125, 0.6100938720703125, 0.610328369140625, 0.6099795532226563, 0.6102411499023438, 0.609832763671875, 0.6103208618164062, 0.610081787109375, 0.6100912475585938, 0.6101895751953125, 0.610353515625, 0.6101071166992188, 0.6107816772460938, 0.6100471801757813, 0.6102208862304688, 0.6105856323242187, 0.6097660522460937, 0.6105784301757813, 0.6104160766601563, 0.6101141967773438, 0.6105151977539063, 0.60994970703125, 0.6100787353515625, 0.6105149536132812, 0.61008056640625, 0.6100582275390625, 0.6106473999023437, 0.6098645629882813, 0.6100541381835938, 0.6104146118164062, 0.6102568969726563, 0.610663818359375, 0.610531982421875, 0.6101392822265626, 0.6105437622070312, 0.6101736450195312, 0.6103326416015625, 0.61028759765625, 0.610763916015625, 0.6102324829101563, 0.6103866577148438, 0.6103729248046875, 0.6099683227539062, 0.6100995483398437, 0.610337890625, 0.6098373413085938, 0.6101339111328125, 0.61000927734375, 0.6096589965820313, 0.6109815063476562, 0.6097310180664063, 0.61061767578125, 0.610209716796875, 0.6096117553710938, 0.6103079223632812, 0.6105637817382813, 0.610521484375, 0.6099417114257812, 0.6102159423828125, 0.610492431640625, 0.6102261962890625, 0.610174072265625, 0.6103909301757813, 0.6102794189453125, 0.609967529296875, 0.6100049438476562, 0.6103330688476563, 0.6102509765625, 0.6103941040039063, 0.6103749389648437, 0.60979638671875, 0.6105010375976563, 0.610197509765625, 0.6100459594726563, 0.6109686889648438, 0.6098619384765624, 0.6103475952148437, 0.6103693237304687, 0.6103880615234375, 0.6099354858398438, 0.6102138671875, 0.6106185913085938, 0.6098746948242187, 0.6102774047851562, 0.6105184326171875, 0.6099586181640625, 0.6109733276367187, 0.6100340576171875, 0.6104267578125, 0.61057421875, 0.6102254638671875, 0.6105209350585937, 0.6104053955078125, 0.61082421875, 0.610802734375, 0.6102413940429687, 0.6108724975585937, 0.6108927001953125, 0.6102405395507813, 0.6106473999023437, 0.6105316772460937, 0.6103616943359375, 0.6100801391601562, 0.6112569580078125, 0.6104248046875, 0.6101829833984375, 0.6103634643554687, 0.6095133666992187, 0.6109862060546875, 0.610718994140625, 0.6098419189453125, 0.6104116821289063, 0.6095, 0.6103265380859375, 0.6106603393554687, 0.6099819946289062, 0.6097412719726563, 0.6111395874023438, 0.6095827026367188, 0.6108819580078125, 0.6099450073242187, 0.6100506591796875, 0.6106132202148438, 0.6102151489257812, 0.6099361572265625, 0.6103777465820313, 0.6101986083984375, 0.6105732421875, 0.61054931640625, 0.610621826171875, 0.6099002075195312, 0.61038818359375, 0.6103051147460937, 0.6107286376953125, 0.610433349609375, 0.6107156372070313, 0.6105252075195312, 0.6105189819335938, 0.61015576171875, 0.6110543823242187, 0.610620849609375, 0.6102533569335937, 0.6102498168945313, 0.6105712280273438, 0.6102937622070312, 0.6101273193359374, 0.610498291015625, 0.6101920166015625, 0.6104590454101563, 0.610794189453125, 0.6101744384765625, 0.6108883056640625, 0.610123779296875, 0.6103654174804688, 0.6105947875976563, 0.6106603393554687, 0.6108671264648438, 0.6105887451171875, 0.6101355590820312, 0.610887451171875, 0.610244873046875, 0.6103985595703125, 0.6108070068359375, 0.6105148315429687, 0.6110955200195313, 0.6108405151367188, 0.6107074584960938, 0.6110088500976563, 0.6105499267578125, 0.6099988403320312, 0.6107484130859375, 0.61009716796875, 0.6108262329101563, 0.6096029052734375, 0.610570556640625, 0.610397705078125, 0.609651611328125, 0.6106480712890625, 0.61031005859375, 0.6104925537109375, 0.6104390869140625, 0.6105394897460937, 0.6101621704101563, 0.6107075805664063, 0.6103699340820312, 0.6103582763671875, 0.6105354614257813, 0.610065185546875, 0.610385986328125, 0.6104017333984375, 0.6105086669921875, 0.6109661865234375, 0.610418701171875, 0.6102097778320312, 0.6107197265625, 0.6104658203125, 0.6108712768554687, 0.610318359375, 0.6100889892578125, 0.6107152709960938, 0.6109371948242187, 0.6102835083007813, 0.6110003051757813, 0.6104874267578125, 0.6102968139648437, 0.61108154296875, 0.6101611938476562, 0.6107177124023437, 0.6106275634765626, 0.6112010498046875, 0.6103121337890625, 0.6109384765625, 0.6103938598632812, 0.6107551879882812, 0.610673828125, 0.61046630859375, 0.610532958984375, 0.6106406860351562, 0.6106869506835938, 0.6105858154296875, 0.6110704956054688, 0.610211669921875, 0.610906005859375, 0.6102861328125, 0.6105409545898437, 0.6107675170898438, 0.61068603515625, 0.6106018676757813, 0.6112501831054687, 0.6102958374023437, 0.6106951904296875, 0.6100008544921875, 0.6104107666015625, 0.610318115234375, 0.6100132446289063, 0.6111651611328125, 0.6099130249023438, 0.610789794921875, 0.6106354370117187, 0.61014697265625, 0.6103236694335937, 0.610946044921875, 0.6106171264648438, 0.610324462890625, 0.6105066528320312, 0.6101213989257812, 0.6107918701171875, 0.6104920043945312, 0.61086083984375, 0.6102144775390625, 0.6106419067382812, 0.6106988525390625, 0.610336181640625, 0.6100687255859375, 0.6110331420898437, 0.6101918334960937, 0.6103512573242188, 0.6108096923828125, 0.6102547607421875, 0.6108285522460938, 0.6110157470703125, 0.6107221069335937, 0.6106929931640624, 0.6105497436523437, 0.610037841796875, 0.61115380859375, 0.6100897216796874, 0.6103983154296875, 0.610609130859375, 0.6102425537109375, 0.6104266967773437, 0.6110127563476563, 0.6101115112304687, 0.6108079833984374, 0.6104503784179688, 0.6108599243164062, 0.610407958984375, 0.6111585083007812, 0.6106439819335937, 0.6110303955078125, 0.610271240234375, 0.6106846313476563, 0.6108927001953125, 0.6101299438476563, 0.6107689208984375, 0.6109710693359375, 0.6105823364257813, 0.61077783203125, 0.6106378173828125, 0.6107095336914062, 0.610710693359375, 0.6108168334960937, 0.6104063720703125, 0.6110336303710937, 0.610076171875, 0.6098011474609375, 0.6101842651367188, 0.6108245239257812, 0.6096748657226563, 0.610658935546875, 0.6100380859375, 0.6109224853515625, 0.6098063354492187, 0.61053076171875, 0.610688720703125, 0.6106028442382813, 0.610356201171875, 0.6102913818359375, 0.6101486206054687, 0.6109524536132812, 0.610075439453125, 0.610819580078125, 0.6102649536132813, 0.6107093505859374, 0.6104130859375, 0.6104392700195312, 0.61022021484375, 0.6107393798828125, 0.6105497436523437, 0.6100529174804687, 0.6108324584960938, 0.61034228515625, 0.61023291015625, 0.6107208251953125, 0.6103804931640625, 0.6105541381835937, 0.61051904296875, 0.6109224853515625, 0.6100930786132812, 0.610405517578125, 0.6113425903320312, 0.61042724609375, 0.6109452514648438, 0.6101565551757813, 0.6107545776367187, 0.6108323974609375, 0.610150390625, 0.6103222045898438, 0.6109002075195312, 0.610995849609375, 0.6104231567382813, 0.6113660278320312, 0.6103663330078125, 0.6107053833007813, 0.6102097778320312, 0.610680419921875, 0.6104946899414062, 0.6103143920898437, 0.6110802001953125, 0.6103775024414062, 0.6107463989257812, 0.6105205078125, 0.6111751708984375, 0.6102006225585938, 0.61135498046875, 0.6102411499023438, 0.6107234497070313, 0.6103710327148437, 0.61014111328125, 0.6103770141601562, 0.6103634033203125, 0.61069384765625, 0.6104965209960938, 0.6104432373046875, 0.61039208984375, 0.61032373046875, 0.6102998657226563, 0.6108250122070312, 0.610334716796875, 0.6104146118164062, 0.6105001831054687, 0.6102429809570312, 0.6105613403320312, 0.6103067626953125, 0.6107095336914062, 0.6102866821289062, 0.6101697387695313, 0.6107027587890625, 0.61000927734375, 0.6103187866210937, 0.610703369140625, 0.610620849609375, 0.6109596557617187, 0.6103853149414062, 0.6109967651367187, 0.6100850830078125, 0.6110531616210938, 0.6100833740234375, 0.6104219360351563, 0.6108773803710937, 0.6101287231445313, 0.6106746826171875, 0.6106624145507813, 0.610909912109375, 0.6104019775390624, 0.61080029296875, 0.6104452514648437, 0.6104496459960937, 0.6108167724609375, 0.6103964233398438, 0.6106337890625, 0.6113442993164062, 0.6102157592773437, 0.610970458984375, 0.6105879516601562, 0.6110172729492187, 0.6101951293945312, 0.6109410400390625, 0.6104273681640625, 0.6108549194335937, 0.6107973022460937, 0.610593017578125, 0.6105426025390625, 0.6108866577148437, 0.6106618041992188, 0.610755126953125, 0.6107421875, 0.6102978515625, 0.6112400512695313, 0.6103338623046874, 0.6110248413085938, 0.6092952880859375, 0.6105497436523437, 0.6100065307617187, 0.6108591918945312, 0.6095916137695313, 0.6105489501953125, 0.6105137329101562, 0.6101810913085938, 0.6112948608398437, 0.60995849609375, 0.6097098388671875, 0.61123583984375, 0.6098510131835938, 0.6106725463867188, 0.6104515991210937, 0.6106319580078124, 0.6102650756835938, 0.61079736328125, 0.6099724731445313, 0.6109937744140626, 0.6100443115234375, 0.6105042724609375, 0.61080810546875, 0.6102652587890625, 0.6105252075195312, 0.61050830078125, 0.6104171142578125, 0.610428955078125, 0.610639892578125, 0.6108561401367187, 0.6106427612304688, 0.6103059692382813, 0.6109490966796876, 0.6110658569335937, 0.6107730102539063, 0.6106644287109375, 0.6104304809570312, 0.610922607421875, 0.6101253662109375, 0.6109519653320312, 0.6105042114257813, 0.610482666015625, 0.6106760864257812, 0.6104493408203125, 0.6108674926757812, 0.6101047973632813, 0.6105118408203125, 0.610850830078125, 0.6100556030273437, 0.6108903198242187, 0.6104965209960938, 0.6106492309570313, 0.61102685546875, 0.6107894287109376, 0.6108814697265625, 0.6110543823242187, 0.6104352416992187, 0.6114283447265625, 0.61051904296875, 0.6107484130859375, 0.6108098754882813]",tokens/s,1.6386264571359783,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-sdpa,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,sdpa,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,3159.3472,4423.876608,0.0,4028.628992,3944.723968,s,1,10.06894921875,10.06894921875,0.0,10.06894921875,10.06894921875,10.06894921875,10.06894921875,[10.06894921875],,kWh,9.33011871750106e-05,1.0284588581744736e-05,2.9152801099982528e-05,0.00013273857685673786,,MB,3048.185856,4763.615232,0.0,4353.687552,4305.05728,s,10,1.147124671936035,0.1147124671936035,0.00020432700330958774,0.11468398666381835,0.11498229293823242,0.1150433048248291,0.11509211433410645,"[0.11510431671142578, 0.11450886535644532, 0.11447369384765625, 0.11482249450683593, 0.11451148986816406, 0.11480099487304687, 0.11456610870361328, 0.11459334564208984, 0.11477462768554687, 0.11496873474121094]",tokens/s,2231.66676005618,kWh,3.418145743168676e-06,3.769615614673295e-07,2.2705283022092642e-06,6.06563560684527e-06,tokens/kWh,42204975.140790775,MB,2932.334592,4763.615232,0.0,4353.687552,4305.05984,s,10,25.44476782226563,2.544476782226563,0.019668975351995483,2.54449072265625,2.565529443359375,2.5716923339843754,2.5766226464843753,"[2.520806640625, 2.520442626953125, 2.52698388671875, 2.542894775390625, 2.56067822265625, 2.546086669921875, 2.524440185546875, 2.560419677734375, 2.564159912109375, 2.577855224609375]",tokens/s,24.759510654631082,kWh,7.292893752266355e-05,8.043900098729084e-06,3.751758686159039e-05,0.00011849042448298304,tokens/kWh,531688.5332708698,,s,630,25.442107032775883,0.04038429687742203,0.0007000421652442235,0.04031345558166504,0.04099657821655273,0.041246515274047844,0.043280706901550295,"[0.040855422973632816, 0.04014092636108398, 0.039540096282958986, 0.03972774505615234, 0.04019327926635742, 0.04052659225463867, 0.04020563125610352, 0.04050188827514648, 0.0403251838684082, 0.04016332626342774, 0.04009164810180664, 0.039913471221923826, 0.03970431900024414, 0.04036223983764648, 0.03982438278198242, 0.039672832489013675, 0.03988188934326172, 0.039881568908691406, 0.04000153732299805, 0.03993804931640625, 0.04004476928710937, 0.04014672088623047, 0.039874561309814455, 0.03991961669921875, 0.03984694290161133, 0.040043487548828124, 0.03980233764648437, 0.0402435188293457, 0.040106208801269534, 0.040567935943603514, 0.04097040176391602, 0.040549087524414065, 0.04090380859375, 0.0401596794128418, 0.04042387390136719, 0.0395425910949707, 0.039675201416015625, 0.0396984977722168, 0.039705120086669925, 0.03958403015136719, 0.039642337799072266, 0.039824062347412106, 0.03970579147338867, 0.03936486434936524, 0.03955779266357422, 0.03965542221069336, 0.0400445442199707, 0.039470592498779294, 0.03975363159179687, 0.03964358520507812, 0.03998060989379883, 0.03985776138305664, 0.0398812141418457, 0.03946697616577149, 0.03954332733154297, 0.03974137496948242, 0.03986841583251953, 0.039944255828857425, 0.039865375518798825, 0.03970943832397461, 0.03996489715576172, 0.04280934524536133, 0.040013824462890625, 0.04001177597045898, 0.03975372695922851, 0.03952009582519531, 0.040059040069580075, 0.04025139236450195, 0.04046790313720703, 0.040299072265625, 0.04029574584960938, 0.03996883010864258, 0.04125964736938476, 0.03980704116821289, 0.039559070587158206, 0.04222742462158203, 0.0403070068359375, 0.04029439926147461, 0.04017270278930664, 0.04177724838256836, 0.040790782928466794, 0.04057702255249023, 0.03998726272583008, 0.03977004623413086, 0.03967302322387695, 0.039609375, 0.03983510589599609, 0.04045993423461914, 0.03991139221191406, 0.03999609756469726, 0.039702529907226565, 0.03967935943603516, 0.0395043830871582, 0.03967007827758789, 0.03952751922607422, 0.0398507194519043, 0.039882015228271485, 0.039797470092773436, 0.039766014099121096, 0.0397496337890625, 0.039775520324707034, 0.039588382720947266, 0.03974934387207031, 0.039741920471191405, 0.03975075149536133, 0.03972393417358398, 0.03985612869262695, 0.04014182281494141, 0.040544929504394533, 0.040443775177001956, 0.040186336517333984, 0.04000153732299805, 0.03968761444091797, 0.039668193817138674, 0.03957974243164063, 0.03966345596313477, 0.03960457611083985, 0.0398743667602539, 0.04005855941772461, 0.03987843322753906, 0.04021916961669922, 0.040209503173828126, 0.03966864013671875, 0.03960601425170898, 0.03967948913574219, 0.0395305290222168, 0.041644031524658204, 0.0405766716003418, 0.04041353607177734, 0.039948287963867186, 0.039558368682861327, 0.03957132720947266, 0.03950070571899414, 0.03954073715209961, 0.03952217483520508, 0.03959321594238281, 0.03981401443481445, 0.03975196838378906, 0.039932830810546875, 0.03979756927490234, 0.03985408020019531, 0.03977011108398437, 0.04019331359863281, 0.03965568161010742, 0.0395720329284668, 0.039608222961425785, 0.03991961669921875, 0.040169086456298825, 0.040175743103027343, 0.04042982482910156, 0.0404398078918457, 0.04059660720825195, 0.040604545593261716, 0.040065025329589846, 0.03997081756591797, 0.039687553405761716, 0.03984832000732422, 0.03978601455688477, 0.04030332946777344, 0.040232288360595704, 0.04030752182006836, 0.040218017578125, 0.04012486267089844, 0.039796062469482425, 0.03991535949707031, 0.03978294372558594, 0.040304702758789064, 0.040519134521484375, 0.040325023651123046, 0.04028911972045898, 0.04012646484375, 0.04012441635131836, 0.04015468978881836, 0.0405549430847168, 0.04065871810913086, 0.04026595306396484, 0.04088156890869141, 0.040743328094482424, 0.042321311950683595, 0.04021894454956055, 0.04016502380371094, 0.03987907028198242, 0.039807456970214844, 0.03968780899047852, 0.03972854232788086, 0.039646080017089844, 0.03975785446166992, 0.03995033645629883, 0.04043161773681641, 0.040263553619384766, 0.039686145782470705, 0.039626750946044925, 0.03971635055541992, 0.03964915084838867, 0.040409568786621095, 0.04027606582641602, 0.04050742340087891, 0.04042140960693359, 0.04047568130493164, 0.0398612174987793, 0.03957145690917969, 0.0396404800415039, 0.03975433731079102, 0.04015436935424805, 0.0399633903503418, 0.04033126449584961, 0.04089974212646484, 0.043192832946777344, 0.04057535934448242, 0.04053807830810547, 0.040613887786865234, 0.040509441375732425, 0.040275966644287106, 0.04048691177368164, 0.04069200134277344, 0.040369407653808594, 0.04021526336669922, 0.040375137329101564, 0.03991567993164063, 0.039771968841552735, 0.039752574920654295, 0.039814559936523435, 0.039700702667236326, 0.04330499267578125, 0.04085391998291016, 0.041115646362304685, 0.040499198913574216, 0.040210430145263674, 0.04019507217407227, 0.0398653450012207, 0.03994214248657227, 0.039879871368408204, 0.03957843017578125, 0.03973734283447266, 0.040390655517578124, 0.04097228622436523, 0.040357440948486326, 0.04052217483520508, 0.040618175506591796, 0.04070995330810547, 0.04019404983520508, 0.040513534545898434, 0.0400937614440918, 0.04042156982421875, 0.040435455322265626, 0.040208286285400394, 0.04050543975830078, 0.04200188827514648, 0.040721023559570316, 0.040296031951904294, 0.040468799591064454, 0.040022014617919925, 0.041304256439208986, 0.040981983184814455, 0.04051801681518555, 0.040532577514648435, 0.041093120574951174, 0.04027391815185547, 0.040171134948730466, 0.040341632843017575, 0.04096201705932617, 0.04045596694946289, 0.04057753753662109, 0.041202816009521484, 0.040522624969482425, 0.04096387100219727, 0.040760929107666016, 0.040620670318603516, 0.04080230331420898, 0.040888320922851565, 0.041322494506835936, 0.04043718338012695, 0.04061430358886719, 0.0406918716430664, 0.04081369781494141, 0.04054412841796875, 0.040289279937744144, 0.04009983825683594, 0.0400766716003418, 0.03977593612670898, 0.04031584167480469, 0.03991049575805664, 0.040552513122558594, 0.04063692855834961, 0.04036438369750977, 0.040850433349609375, 0.04025187301635742, 0.04033526229858399, 0.0400574722290039, 0.040013248443603516, 0.04004121780395508, 0.04056864166259765, 0.040890369415283206, 0.04046992111206055, 0.04085321426391601, 0.04101824188232422, 0.040525825500488284, 0.04064828872680664, 0.044755359649658204, 0.04294655990600586, 0.04009344100952148, 0.040220062255859376, 0.04104399871826172, 0.04048569488525391, 0.040705696105957034, 0.0404637451171875, 0.04044063949584961, 0.04027817535400391, 0.04001587295532227, 0.03996985626220703, 0.04011513519287109, 0.039916702270507816, 0.041370368957519534, 0.040498401641845705, 0.04111859130859375, 0.04197750473022461, 0.041314655303955075, 0.040546302795410154, 0.04031875228881836, 0.04090700912475586, 0.04037580871582031, 0.04092361450195312, 0.040506561279296874, 0.040583358764648435, 0.040513534545898434, 0.04035238265991211, 0.040479873657226564, 0.040215423583984375, 0.04011142349243164, 0.040235710144042966, 0.04030822372436523, 0.041027137756347656, 0.04100396728515625, 0.04066918563842774, 0.040304607391357425, 0.040169086456298825, 0.04002207946777344, 0.04003670501708984, 0.039927616119384765, 0.040044097900390624, 0.04087007904052734, 0.04110947036743164, 0.04058566284179688, 0.040384544372558596, 0.04035343933105469, 0.03998492813110351, 0.040030784606933593, 0.039833824157714845, 0.03977807998657226, 0.04061798477172852, 0.04094771194458008, 0.04108083343505859, 0.04040499114990234, 0.040357887268066404, 0.04005068969726563, 0.03990902328491211, 0.040163681030273436, 0.03988655853271485, 0.03994972610473633, 0.0398996467590332, 0.03988313674926758, 0.04031203079223633, 0.040355743408203124, 0.04090969467163086, 0.040869537353515624, 0.04091305541992187, 0.04036156845092773, 0.040280479431152344, 0.03984975814819336, 0.03980265426635742, 0.039591678619384764, 0.04053443145751953, 0.040448478698730465, 0.04071014404296875, 0.04061183929443359, 0.04061798477172852, 0.04076339340209961, 0.03993600082397461, 0.040908702850341795, 0.040598369598388674, 0.04014080047607422, 0.040134654998779294, 0.03970035171508789, 0.039785694122314454, 0.04341843032836914, 0.040132190704345705, 0.03983827209472656, 0.03961561584472656, 0.039715648651123044, 0.04018294525146485, 0.040761249542236325, 0.04009494400024414, 0.039933662414550784, 0.03954687881469727, 0.039610111236572265, 0.039456832885742185, 0.039446720123291014, 0.03932796859741211, 0.039524383544921875, 0.04053948974609375, 0.040094112396240236, 0.04018380737304687, 0.040021183013916016, 0.03991839981079102, 0.039583744049072264, 0.03947520065307617, 0.039485439300537106, 0.039423103332519534, 0.03957030487060547, 0.04035583877563476, 0.040288257598876956, 0.04101715087890625, 0.040588703155517575, 0.039892833709716795, 0.03977104187011719, 0.03982275390625, 0.039523998260498044, 0.039435230255126956, 0.03961206436157227, 0.03984572982788086, 0.04018227386474609, 0.039772159576416014, 0.0401715202331543, 0.039798175811767575, 0.039735744476318356, 0.03971913528442383, 0.03964255905151367, 0.03972147369384765, 0.039809120178222655, 0.03963894271850586, 0.04028416061401367, 0.04029433441162109, 0.0406569595336914, 0.04037836837768555, 0.040401950836181644, 0.04032748794555664, 0.040618656158447265, 0.040705055236816404, 0.04058620834350586, 0.04067027282714844, 0.04071721649169922, 0.04123046493530273, 0.04053420639038086, 0.04466700744628906, 0.040308734893798825, 0.0401080322265625, 0.04000284957885742, 0.040552383422851564, 0.04073756790161133, 0.0406036491394043, 0.04048281478881836, 0.04002345657348633, 0.039750240325927735, 0.039684097290039064, 0.03976192092895508, 0.039925537109375, 0.0396473274230957, 0.03992793655395508, 0.04100096130371094, 0.043756542205810545, 0.041468929290771485, 0.04025753784179688, 0.03991363143920899, 0.04014883041381836, 0.0397496337890625, 0.03961644744873047, 0.039537792205810544, 0.03970553588867187, 0.0404398078918457, 0.04033536148071289, 0.040318977355957034, 0.04040502548217773, 0.04042121505737305, 0.04045836639404297, 0.04031488037109375, 0.04059519958496094, 0.040398750305175785, 0.040790336608886715, 0.040860767364501956, 0.04076809692382812, 0.04076784133911133, 0.040855552673339846, 0.04119884872436524, 0.04116761779785156, 0.040910846710205076, 0.04095382308959961, 0.040844383239746096, 0.04085855865478515, 0.04084326553344726, 0.040877761840820315, 0.04119174575805664, 0.040820735931396485, 0.04111974334716797, 0.0409345588684082, 0.04067155075073242, 0.04073321533203125, 0.04063436889648438, 0.04055244827270508, 0.04090060806274414, 0.040921089172363284, 0.04082876968383789, 0.04078211212158203, 0.04087590408325195, 0.04069375991821289, 0.04166783905029297, 0.041286399841308594, 0.04072006225585938, 0.040822654724121096, 0.040823230743408205, 0.04078742218017578, 0.04070556640625, 0.04061695861816406, 0.040546302795410154, 0.0404664306640625, 0.040677089691162106, 0.04086198425292969, 0.0408616943359375, 0.040613887786865234, 0.04039820861816406, 0.040101566314697266, 0.039989471435546875, 0.04001046371459961, 0.03966505432128906, 0.03960892868041992, 0.03983769607543945, 0.04006911849975586, 0.04015718460083008, 0.040046592712402344, 0.04073020935058594, 0.0407342414855957, 0.04256243133544922, 0.040914337158203126, 0.04026780700683594, 0.04578140640258789, 0.04020649719238281, 0.043675102233886716, 0.04073513412475586, 0.040523902893066406, 0.04036316680908203, 0.040037216186523436, 0.03997491073608399, 0.0399005126953125, 0.039908256530761715, 0.039731201171875, 0.03980438232421875, 0.04040937423706055, 0.04040703964233398, 0.040498241424560544, 0.041925567626953125, 0.04010089492797852, 0.040589920043945314, 0.04322124862670899, 0.041512161254882815, 0.04086876678466797, 0.04177081680297851, 0.04099631881713867, 0.04102012634277344, 0.040720382690429685, 0.040762783050537106, 0.040403553009033207, 0.0403642578125, 0.04015884780883789, 0.04045334243774414, 0.03982227325439453, 0.039913471221923826, 0.04019814300537109, 0.040567008972167966, 0.04065846252441406, 0.04108006286621094, 0.040855297088623045, 0.04092911911010742, 0.040882335662841794, 0.04099264144897461, 0.040994945526123046, 0.041082878112792966, 0.040943614959716795, 0.040941566467285154, 0.04115216064453125, 0.04091734313964844, 0.04089408111572266, 0.04093743896484375, 0.04099523162841797, 0.040862751007080075, 0.04101583862304688, 0.040790462493896486, 0.04078976058959961, 0.04087628936767578, 0.04074291229248047, 0.04073379135131836, 0.04079526519775391, 0.04054982376098633, 0.04075321578979492, 0.04090832138061523, 0.040780479431152344, 0.04066326522827148, 0.040815872192382814, 0.041089630126953124, 0.04089651107788086, 0.04069484710693359, 0.040690238952636716, 0.04064057540893555, 0.041551551818847655, 0.040702590942382814, 0.04087807846069336, 0.04095590209960937, 0.041010368347167966, 0.04089939117431641, 0.0409989128112793, 0.040830944061279295, 0.04084870529174805, 0.041075424194335936, 0.04095590209960937, 0.04080844879150391, 0.04099020767211914, 0.0407938232421875, 0.04083932876586914, 0.041089664459228514, 0.04077939224243164, 0.04084099197387695, 0.04096828842163086, 0.04103833770751953, 0.041193473815917966, 0.04082390213012695, 0.04106537628173828, 0.04107369613647461, 0.041262046813964844, 0.04091843032836914, 0.041388641357421874, 0.04087398529052735, 0.04076339340209961]",tokens/s,24.76210005674453,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1170.219008,1101.98784,0.0,706.740224,681.6384,s,1,7.8936787109375,7.8936787109375,0.0,7.8936787109375,7.8936787109375,7.8936787109375,7.8936787109375,[7.8936787109375],,kWh,3.011512195416799e-05,3.3143799531649245e-06,8.991673859995442e-06,4.242117576732835e-05,,MB,1514.057728,1406.07488,0.0,996.1472,949.238272,s,10,0.3091976623535156,0.03091976623535156,0.0008538072460815612,0.03063159942626953,0.031216042327880857,0.032319124603271486,0.03320159042358398,"[0.03048031997680664, 0.030715423583984373, 0.030547775268554688, 0.03097091293334961, 0.030498783111572267, 0.03342220687866211, 0.0304355525970459, 0.03088038444519043, 0.030446239471435547, 0.03080006408691406]",tokens/s,8279.493384633257,kWh,8.967287174462902e-07,9.889336138598275e-08,5.504401131533824e-07,1.5460621919856557e-06,tokens/kWh,165581954.80558982,MB,1547.411456,1414.463488,0.0,1004.535808,949.240832,s,10,15.011969116210938,1.501196911621094,0.006065398363650671,1.4994981079101564,1.5073589721679688,1.5110018737792967,1.5139161950683593,"[1.514644775390625, 1.494724853515625, 1.4974677734375, 1.5023614501953124, 1.5009422607421874, 1.4954993896484374, 1.498053955078125, 1.5062763671875, 1.4954488525390626, 1.5065494384765625]",tokens/s,41.96651319510666,kWh,4.3876149645470506e-05,4.839156124163211e-06,1.7077490655846606e-05,6.579279642548033e-05,tokens/kWh,957551.6382155367,,s,630,15.009932506561269,0.023825289692954416,0.0004177225653914419,0.02373446369171143,0.024083247756958005,0.024272825336456298,0.02621741447448731,"[0.023875583648681642, 0.023785472869873047, 0.023803903579711915, 0.02387353515625, 0.02369491195678711, 0.02679827117919922, 0.02461676788330078, 0.024101312637329102, 0.02366464042663574, 0.02370150375366211, 0.023621248245239257, 0.023894399642944337, 0.023719648361206054, 0.023734560012817384, 0.02372403144836426, 0.02370355224609375, 0.02371788787841797, 0.023792703628540038, 0.023747520446777345, 0.02388921546936035, 0.02401081657409668, 0.023719839096069336, 0.023870176315307617, 0.024176639556884767, 0.02389958381652832, 0.02389039993286133, 0.023762144088745118, 0.024040319442749022, 0.024091808319091797, 0.024021856307983397, 0.024206911087036133, 0.02432454490661621, 0.025222208023071287, 0.026256288528442383, 0.02446886444091797, 0.02406630325317383, 0.024072608947753905, 0.023932928085327147, 0.023913951873779298, 0.023689056396484377, 0.02409059143066406, 0.02378211212158203, 0.02365644836425781, 0.024152063369750978, 0.02379743957519531, 0.02373868751525879, 0.023871488571166992, 0.023799808502197265, 0.023963647842407225, 0.023812095642089845, 0.02371379280090332, 0.024164352416992187, 0.023771135330200196, 0.023837984085083006, 0.02476652717590332, 0.023673503875732423, 0.02371583938598633, 0.026605728149414063, 0.02386934471130371, 0.02370899200439453, 0.023580831527709963, 0.02368076705932617, 0.02359574317932129, 0.02410963249206543, 0.023945215225219727, 0.023807296752929686, 0.02367305564880371, 0.02364601516723633, 0.02360710334777832, 0.023509279251098632, 0.02356617546081543, 0.023507680892944336, 0.02363529586791992, 0.02369536018371582, 0.023642688751220702, 0.02373651123046875, 0.02371148872375488, 0.023713823318481445, 0.023730207443237304, 0.023830623626708985, 0.023889951705932617, 0.02374448013305664, 0.023680639266967774, 0.023701887130737304, 0.02392416000366211, 0.02358233642578125, 0.023670751571655272, 0.023843679428100586, 0.02373641586303711, 0.02378767967224121, 0.023639936447143555, 0.02371788787841797, 0.023665727615356444, 0.023688127517700195, 0.023787519454956055, 0.02371788787841797, 0.023735616683959963, 0.023784128189086914, 0.02375481605529785, 0.023736255645751953, 0.023595008850097656, 0.023574527740478517, 0.023472127914428712, 0.023788768768310545, 0.023886623382568358, 0.023754911422729494, 0.024133472442626952, 0.023977983474731446, 0.023860639572143554, 0.023724639892578125, 0.02370956802368164, 0.02371187210083008, 0.023508352279663088, 0.02358131217956543, 0.023476224899291992, 0.023734272003173826, 0.02356608009338379, 0.023536127090454103, 0.023495807647705078, 0.02368076705932617, 0.023894912719726564, 0.02384435272216797, 0.02379417610168457, 0.023830528259277343, 0.02377235221862793, 0.02376688003540039, 0.02365635108947754, 0.023665279388427735, 0.0235807991027832, 0.02361510467529297, 0.02383910369873047, 0.02425593566894531, 0.02398476791381836, 0.023856895446777344, 0.023685312271118163, 0.02368716812133789, 0.023613439559936524, 0.02369692802429199, 0.02364028739929199, 0.023552255630493166, 0.023619583129882812, 0.023629823684692384, 0.023611391067504883, 0.02356172752380371, 0.023648191452026367, 0.023531904220581056, 0.023652128219604492, 0.024197536468505858, 0.02422921562194824, 0.024018911361694335, 0.023732927322387694, 0.023799327850341796, 0.023560575485229492, 0.02374460792541504, 0.024065088272094727, 0.024243135452270508, 0.023995616912841796, 0.023941919326782225, 0.023732032775878906, 0.023443647384643555, 0.023610559463500977, 0.02365318489074707, 0.02352284812927246, 0.02353955268859863, 0.02364236831665039, 0.02359334373474121, 0.023638015747070314, 0.023613439559936524, 0.02376848030090332, 0.023583328247070313, 0.023606784820556642, 0.023626239776611328, 0.023631872177124022, 0.023797760009765623, 0.02370150375366211, 0.02381955146789551, 0.023882463455200197, 0.02378704071044922, 0.02376697540283203, 0.023679519653320314, 0.02369935989379883, 0.023889312744140623, 0.024936864852905274, 0.024049951553344728, 0.023783424377441405, 0.023821920394897462, 0.023746463775634767, 0.023793216705322265, 0.02379667282104492, 0.024821247100830078, 0.027457984924316406, 0.023902271270751955, 0.023799808502197265, 0.023627456665039064, 0.023628032684326172, 0.023896127700805663, 0.025265504837036133, 0.02428585624694824, 0.02452889633178711, 0.02410700798034668, 0.023952831268310548, 0.023695615768432616, 0.024369472503662108, 0.023754751205444336, 0.023934335708618165, 0.023847551345825196, 0.02373347282409668, 0.023593759536743163, 0.02353152084350586, 0.023472127914428712, 0.02352262306213379, 0.02364076805114746, 0.023582176208496095, 0.023691808700561524, 0.02371788787841797, 0.023809823989868164, 0.02357414436340332, 0.023784032821655275, 0.023729951858520507, 0.023772512435913086, 0.02370796775817871, 0.023939039230346678, 0.024135488510131836, 0.023933792114257814, 0.023821855545043947, 0.023675296783447267, 0.023768672943115233, 0.02363974380493164, 0.02345238494873047, 0.02349260711669922, 0.023560192108154295, 0.02437068748474121, 0.023842399597167968, 0.024001440048217772, 0.02384614372253418, 0.023671552658081053, 0.023506752014160158, 0.023396543502807617, 0.02356831932067871, 0.02361897659301758, 0.02360736083984375, 0.023511648178100586, 0.023504896163940428, 0.023680063247680665, 0.023636608123779296, 0.02354412841796875, 0.023496511459350587, 0.023482559204101562, 0.02374774360656738, 0.023645023345947265, 0.02371174430847168, 0.023617536544799804, 0.0237061767578125, 0.02360495948791504, 0.023775583267211915, 0.023648319244384767, 0.023637056350708008, 0.023574943542480468, 0.02380451202392578, 0.02366873550415039, 0.023692480087280275, 0.02373468780517578, 0.02368320083618164, 0.0237673282623291, 0.02370355224609375, 0.02371379280090332, 0.02371174430847168, 0.023654399871826173, 0.02360550308227539, 0.02379305648803711, 0.02369772720336914, 0.023756832122802735, 0.02464143943786621, 0.02414601516723633, 0.023867391586303712, 0.023895584106445312, 0.023914976119995116, 0.023820192337036132, 0.023742464065551756, 0.024264799118041993, 0.023909759521484376, 0.02374457550048828, 0.023788095474243164, 0.02388991928100586, 0.023875583648681642, 0.02386124801635742, 0.02387059211730957, 0.023771520614624023, 0.02385980796813965, 0.024012704849243165, 0.024350143432617186, 0.023960128784179687, 0.023877599716186523, 0.023922367095947264, 0.023869792938232423, 0.023767040252685546, 0.023750656127929686, 0.023937152862548827, 0.023671968460083008, 0.02363670349121094, 0.023838623046875, 0.023631967544555665, 0.023621631622314454, 0.02363910484313965, 0.023679935455322265, 0.023852607727050782, 0.024056255340576174, 0.024063392639160155, 0.023734880447387696, 0.023826431274414063, 0.023832096099853515, 0.023744991302490234, 0.023688703536987304, 0.02382614326477051, 0.02414668846130371, 0.02394870376586914, 0.024070432662963867, 0.023959871292114257, 0.023733823776245118, 0.023985664367675782, 0.02358742332458496, 0.0235807991027832, 0.0236824951171875, 0.02368979263305664, 0.023694847106933595, 0.023575040817260744, 0.023563423156738282, 0.02355695915222168, 0.023541759490966797, 0.02347398376464844, 0.023549184799194336, 0.023629983901977538, 0.02360393524169922, 0.023912511825561523, 0.023789567947387694, 0.02371379280090332, 0.023635616302490236, 0.02360086441040039, 0.023497184753417968, 0.02365635108947754, 0.02356393623352051, 0.02386774444580078, 0.0235545597076416, 0.023666431427001953, 0.023689184188842773, 0.02368671989440918, 0.02364259147644043, 0.023723552703857422, 0.02362771224975586, 0.02363155174255371, 0.023594911575317384, 0.023625759124755858, 0.023550880432128905, 0.023608831405639647, 0.02367145538330078, 0.02371567916870117, 0.0241213436126709, 0.023889888763427736, 0.02385103988647461, 0.02372198486328125, 0.02385251235961914, 0.02412326431274414, 0.02436521530151367, 0.024005119323730468, 0.023801759719848634, 0.02370992088317871, 0.023705472946166994, 0.023834623336791993, 0.02374812889099121, 0.023908832550048827, 0.02371788787841797, 0.02388787269592285, 0.023580575942993166, 0.023652448654174804, 0.023783424377441405, 0.023862720489501953, 0.023730112075805665, 0.023768831253051757, 0.023799999237060547, 0.023577152252197267, 0.023646495819091798, 0.023496192932128908, 0.02372140884399414, 0.023509248733520508, 0.023558528900146484, 0.02362713623046875, 0.023570655822753906, 0.02371436882019043, 0.023601375579833984, 0.02362710380554199, 0.023748096466064454, 0.02382291221618652, 0.023521663665771485, 0.02358502388000488, 0.023594240188598632, 0.023708160400390626, 0.023752992630004882, 0.02421228790283203, 0.02373110389709473, 0.023743520736694335, 0.023644159317016602, 0.023690208435058594, 0.02423811149597168, 0.02377724838256836, 0.023805952072143553, 0.02372403144836426, 0.023592575073242188, 0.023682687759399416, 0.023862016677856444, 0.023669952392578124, 0.02352351951599121, 0.02359359931945801, 0.023828479766845705, 0.023670783996582033, 0.02375587272644043, 0.023669599533081054, 0.02371993637084961, 0.02578598403930664, 0.02471776008605957, 0.02407596778869629, 0.023828800201416016, 0.023654048919677734, 0.023551616668701172, 0.02357052803039551, 0.023716480255126952, 0.023762943267822266, 0.023769088745117187, 0.023618560791015625, 0.02356915283203125, 0.02364646339416504, 0.023846912384033202, 0.02370560073852539, 0.023495744705200196, 0.023661504745483397, 0.023586687088012696, 0.023665792465209962, 0.023950336456298828, 0.024102912902832032, 0.02387763214111328, 0.024143871307373048, 0.024216896057128907, 0.02416640090942383, 0.02406399917602539, 0.024680448532104493, 0.02612224006652832, 0.02432156753540039, 0.023899871826171874, 0.023996320724487305, 0.023740287780761718, 0.023683103561401367, 0.023958463668823243, 0.02479516792297363, 0.02391446495056152, 0.023867391586303712, 0.0238623046875, 0.023849567413330077, 0.02377356719970703, 0.023803808212280272, 0.023920095443725586, 0.023844575881958006, 0.02383692741394043, 0.023746944427490233, 0.023660192489624022, 0.02369945526123047, 0.024009344100952148, 0.023775232315063476, 0.0237076473236084, 0.023740127563476564, 0.023822303771972655, 0.02677382469177246, 0.02384214401245117, 0.023870111465454102, 0.02390550422668457, 0.02376313591003418, 0.0237544002532959, 0.02382716751098633, 0.023754175186157227, 0.023628576278686524, 0.02375094413757324, 0.02373347282409668, 0.02420172882080078, 0.023838144302368164, 0.023824544906616212, 0.023753120422363282, 0.023866912841796876, 0.02373263931274414, 0.023652416229248047, 0.023733503341674806, 0.023741119384765624, 0.023732288360595703, 0.02361280059814453, 0.023791711807250978, 0.023620128631591797, 0.023572479248046875, 0.023590911865234376, 0.02372403144836426, 0.023631872177124022, 0.023486080169677733, 0.02368115234375, 0.02366080093383789, 0.023734272003173826, 0.02365398406982422, 0.023633663177490234, 0.02373811149597168, 0.023608896255493166, 0.023683263778686525, 0.023658943176269532, 0.023667808532714843, 0.02371046447753906, 0.02355766487121582, 0.02360793685913086, 0.023488512039184572, 0.02342911911010742, 0.023513088226318358, 0.023513088226318358, 0.02366464042663574, 0.023607231140136718, 0.023674943923950195, 0.023823871612548828, 0.023865856170654298, 0.023870719909667968, 0.02393164825439453, 0.02387763214111328, 0.02370476722717285, 0.023581504821777344, 0.023746559143066406, 0.02399555206298828, 0.023735136032104493, 0.02363382339477539, 0.02373580741882324, 0.0237259521484375, 0.023775264739990233, 0.023720640182495117, 0.02408243179321289, 0.023812095642089845, 0.0237238712310791, 0.023650463104248048, 0.023770111083984375, 0.023768064498901367, 0.023586719512939454, 0.023607391357421875, 0.023551647186279296, 0.023621984481811523, 0.023586816787719726, 0.023609312057495117, 0.023635263442993163, 0.023550687789916994, 0.02386124801635742, 0.023635967254638672, 0.023842815399169923, 0.023810047149658203, 0.02366054344177246, 0.023713567733764648, 0.0236363525390625, 0.023584224700927733, 0.023682880401611327, 0.023648832321166994, 0.02364944076538086, 0.023679136276245117, 0.023865407943725585, 0.02371206474304199, 0.024023359298706054, 0.023961280822753905, 0.023895584106445312, 0.02495568084716797, 0.02387081527709961, 0.023888544082641603, 0.023862943649291993, 0.023724384307861328, 0.02370947265625, 0.02367740821838379, 0.023629024505615236, 0.026835487365722655, 0.02406921577453613, 0.023784608840942384, 0.023837823867797852, 0.023814783096313477, 0.023773183822631837, 0.023746559143066406, 0.023797216415405272, 0.023759391784667967, 0.02366873550415039, 0.023756799697875978, 0.023777055740356445, 0.023660768508911134, 0.023652032852172853, 0.02359878349304199, 0.023625728607177734, 0.023861888885498048, 0.02362883186340332, 0.023626720428466797, 0.02368921661376953, 0.023768831253051757, 0.024657279968261718, 0.023714399337768553, 0.023855039596557617, 0.023996768951416017, 0.023803903579711915, 0.02373436737060547, 0.02386115264892578, 0.023644159317016602, 0.024195072174072265, 0.027305376052856444, 0.024035520553588867, 0.023902624130249024, 0.024221696853637696, 0.023748607635498048, 0.023855104446411132, 0.02446710395812988, 0.02427939224243164, 0.024213504791259766, 0.02412473678588867, 0.02405036735534668, 0.02369945526123047, 0.02354582405090332, 0.023688352584838868, 0.02351568031311035, 0.02363376045227051, 0.023545696258544923, 0.023597312927246095, 0.0236200008392334, 0.023777280807495117, 0.0235762882232666, 0.023718175888061525, 0.02389788818359375, 0.023765216827392577, 0.023604736328125, 0.02372230339050293, 0.023608928680419923, 0.023822944641113283]",tokens/s,41.97220738498381,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1583.255552,1596.915712,0.0,1201.668096,1189.151232,s,1,8.466310546875,8.466310546875,0.0,8.466310546875,8.466310546875,8.466310546875,8.466310546875,[8.466310546875],,kWh,3.5574402879161464e-05,3.916985400328343e-06,1.096223099199961e-05,5.045361927148942e-05,,MB,1582.055424,1791.950848,0.0,1382.023168,1351.367168,s,10,0.47527958679199217,0.04752795867919922,0.0001405060291031286,0.0475042724609375,0.047698503112792966,0.04776477127075195,0.04781778579711914,"[0.04783103942871094, 0.047349502563476566, 0.0474101448059082, 0.04753100967407226, 0.047494945526123045, 0.04768377685546875, 0.04737731170654297, 0.04761840057373047, 0.047513599395751956, 0.04746985626220703]",tokens/s,5386.303285776069,kWh,1.4258651037194828e-06,1.5724679265124117e-07,9.432636272390402e-07,2.5263755236097645e-06,tokens/kWh,101330937.38741547,MB,1582.055424,1833.893888,0.0,1423.966208,1407.328256,s,10,13.680080322265626,1.3680080322265626,0.005092286023816497,1.3692230224609374,1.372664990234375,1.3746703247070313,1.3762745922851563,"[1.3663924560546874, 1.3722193603515624, 1.36963427734375, 1.3708880615234376, 1.3766756591796876, 1.3609461669921874, 1.3623831787109375, 1.368811767578125, 1.360443603515625, 1.371685791015625]",tokens/s,46.05236118201845,kWh,3.959619600836351e-05,4.367061092489081e-06,1.8069751583160582e-05,6.203300868401318e-05,tokens/kWh,1015588.3349284658,,s,630,13.677172939300538,0.02170979831635006,0.0003257925203109579,0.021650959968566894,0.02201076183319092,0.022220206356048582,0.023109855136871343,"[0.02183737564086914, 0.021971391677856444, 0.021774335861206053, 0.02169036865234375, 0.021478784561157226, 0.021575775146484375, 0.021658143997192382, 0.021591840744018556, 0.02197711944580078, 0.021448287963867187, 0.021748319625854492, 0.02164531135559082, 0.021510143280029297, 0.02131155204772949, 0.021342144012451172, 0.021348352432250976, 0.021510143280029297, 0.0214466552734375, 0.021825536727905274, 0.02328985595703125, 0.023052288055419923, 0.021985279083251954, 0.021737472534179687, 0.02159395217895508, 0.02135820770263672, 0.021760543823242186, 0.022798336029052735, 0.022199455261230468, 0.022010656356811525, 0.02200720024108887, 0.021852672576904295, 0.021866655349731444, 0.021757759094238282, 0.021776575088500977, 0.021420032501220702, 0.02141548728942871, 0.02150239944458008, 0.021568864822387696, 0.02147190475463867, 0.021398944854736326, 0.02151059150695801, 0.02261724853515625, 0.02175187110900879, 0.021832639694213868, 0.021522144317626953, 0.021604639053344726, 0.021640447616577147, 0.021680192947387697, 0.02156819152832031, 0.021274368286132814, 0.02143401527404785, 0.021611103057861326, 0.021487071990966798, 0.0213319034576416, 0.021312095642089843, 0.02142790412902832, 0.02147929573059082, 0.021328128814697266, 0.02131577682495117, 0.021321727752685548, 0.02128451156616211, 0.02140176010131836, 0.021917888641357422, 0.021655744552612304, 0.021626495361328126, 0.021563840866088868, 0.021434560775756836, 0.021370880126953123, 0.021405696868896484, 0.02141983985900879, 0.02174790382385254, 0.0214355525970459, 0.021416799545288086, 0.021501951217651367, 0.021476959228515623, 0.021436832427978517, 0.02153267288208008, 0.021452159881591798, 0.021387168884277344, 0.021381824493408204, 0.02141391944885254, 0.02147123146057129, 0.021594112396240234, 0.021640224456787108, 0.02175484848022461, 0.022253440856933593, 0.021506175994873047, 0.021579776763916016, 0.021671648025512694, 0.021647552490234374, 0.021651264190673827, 0.021673919677734375, 0.0216661434173584, 0.02167398452758789, 0.021784576416015625, 0.022504543304443358, 0.021859296798706053, 0.021761247634887695, 0.021699296951293946, 0.02184419250488281, 0.021999391555786132, 0.022024032592773437, 0.021909151077270508, 0.021924352645874022, 0.021831520080566408, 0.021915775299072265, 0.022086719512939453, 0.021868928909301758, 0.02190300750732422, 0.022864831924438476, 0.022024032592773437, 0.02205302429199219, 0.022237184524536133, 0.023139839172363282, 0.022139392852783202, 0.021809152603149414, 0.022282047271728514, 0.021975231170654298, 0.021981184005737304, 0.021725183486938478, 0.02167171287536621, 0.021833951950073243, 0.021721088409423828, 0.02184601593017578, 0.021690208435058592, 0.021622112274169922, 0.02175987243652344, 0.02165235137939453, 0.0216944637298584, 0.02162483215332031, 0.02165065574645996, 0.021822240829467772, 0.021741567611694337, 0.021651456832885742, 0.023347200393676756, 0.021571584701538086, 0.021628511428833007, 0.021868959426879882, 0.021728511810302734, 0.021762815475463868, 0.02168422317504883, 0.021634176254272462, 0.021855104446411134, 0.022321151733398437, 0.021559295654296876, 0.02191257667541504, 0.021799936294555664, 0.02167398452758789, 0.02168217658996582, 0.021618112564086914, 0.02167046356201172, 0.021621856689453125, 0.021588895797729494, 0.021708799362182618, 0.021550304412841798, 0.021771039962768555, 0.021788095474243162, 0.021668415069580078, 0.02167807960510254, 0.021939487457275392, 0.02173411178588867, 0.021538816452026367, 0.021575935363769533, 0.021631776809692384, 0.021573663711547852, 0.021658208847045897, 0.021582176208496093, 0.021749759674072267, 0.02162483215332031, 0.021790304183959962, 0.021707168579101564, 0.021611743927001954, 0.02174236869812012, 0.021544960021972655, 0.021747711181640626, 0.022042303085327147, 0.021905279159545897, 0.02189561653137207, 0.021768192291259765, 0.021710399627685548, 0.021640928268432617, 0.02163580894470215, 0.021563392639160156, 0.02168966484069824, 0.02205504035949707, 0.021524927139282227, 0.02162905693054199, 0.021596160888671875, 0.02168329620361328, 0.0215947208404541, 0.02175708770751953, 0.022016864776611328, 0.02207257652282715, 0.02200150489807129, 0.021978015899658202, 0.02183782386779785, 0.02178438377380371, 0.0217007999420166, 0.021542367935180665, 0.021638879776000975, 0.02160054397583008, 0.02154550361633301, 0.021573631286621094, 0.02167807960510254, 0.0220214729309082, 0.021695135116577148, 0.023735424041748047, 0.022834047317504883, 0.02168217658996582, 0.02164531135559082, 0.021594207763671876, 0.02172435188293457, 0.02173411178588867, 0.021724735260009766, 0.021698144912719725, 0.02151100730895996, 0.02159811210632324, 0.02150409507751465, 0.02153593635559082, 0.021566080093383788, 0.021452735900878907, 0.021502208709716798, 0.021549055099487305, 0.02160963249206543, 0.02166012763977051, 0.02234998321533203, 0.021653728485107424, 0.021590015411376954, 0.02162073516845703, 0.021624704360961915, 0.021708927154541015, 0.021655040740966795, 0.021715456008911133, 0.02171494483947754, 0.021648479461669923, 0.021617151260375975, 0.021598623275756835, 0.0216759033203125, 0.021869983673095703, 0.021912288665771485, 0.022030336380004883, 0.021542144775390626, 0.021825920104980467, 0.0216231689453125, 0.021612543106079102, 0.02159324836730957, 0.021603168487548827, 0.02166713523864746, 0.02168288040161133, 0.021784191131591798, 0.02188502311706543, 0.021725471496582032, 0.021899328231811524, 0.021958976745605468, 0.02193315124511719, 0.021725439071655275, 0.02178895950317383, 0.021696575164794923, 0.021952512741088868, 0.02390630340576172, 0.02294528007507324, 0.021631296157836915, 0.021466880798339843, 0.0219880313873291, 0.023131904602050782, 0.022017248153686525, 0.021768991470336913, 0.021746719360351562, 0.021492704391479493, 0.021491519927978514, 0.021562944412231444, 0.02178835105895996, 0.021662656784057616, 0.021710336685180662, 0.021647872924804686, 0.021536767959594725, 0.021513599395751953, 0.02174835205078125, 0.021776384353637695, 0.021596160888671875, 0.021501951217651367, 0.021493759155273438, 0.021559072494506837, 0.02167830467224121, 0.023006271362304688, 0.0216114559173584, 0.021579776763916016, 0.02164531135559082, 0.021702079772949218, 0.02160915184020996, 0.021518207550048827, 0.021615711212158203, 0.021676959991455077, 0.022882303237915038, 0.02233100891113281, 0.023055871963500976, 0.02203926467895508, 0.021883039474487304, 0.021764095306396485, 0.021585472106933595, 0.021685888290405273, 0.02164579200744629, 0.02167788887023926, 0.021867040634155274, 0.02187468719482422, 0.02191564750671387, 0.021695903778076172, 0.02154147148132324, 0.021574783325195312, 0.021640064239501954, 0.02166374397277832, 0.02166713523864746, 0.021545663833618164, 0.02189107131958008, 0.021618688583374023, 0.02166476821899414, 0.021589599609375, 0.021747968673706056, 0.021606559753417968, 0.021809152603149414, 0.02157948875427246, 0.021686368942260743, 0.021678272247314452, 0.02155628776550293, 0.021498815536499023, 0.021338111877441408, 0.02132905578613281, 0.021635936737060546, 0.02145894432067871, 0.021622783660888673, 0.021510143280029297, 0.021548383712768553, 0.021942943572998048, 0.021370880126953123, 0.021404991149902342, 0.021426111221313476, 0.021405887603759766, 0.02141241645812988, 0.021458303451538086, 0.021371519088745117, 0.02144576072692871, 0.021429119110107423, 0.02146713638305664, 0.02132294464111328, 0.021500736236572265, 0.021407743453979493, 0.021335136413574218, 0.021429119110107423, 0.0213668155670166, 0.021663455963134765, 0.021549215316772462, 0.021553279876708985, 0.021579776763916016, 0.021440256118774415, 0.021451007843017577, 0.021552255630493164, 0.021453695297241213, 0.021604352951049805, 0.02163711929321289, 0.021700607299804688, 0.021626880645751953, 0.021825536727905274, 0.022101503372192383, 0.021578239440917968, 0.021725183486938478, 0.02179465675354004, 0.02183945655822754, 0.02163974380493164, 0.02174950408935547, 0.021835647583007812, 0.02169385528564453, 0.021611488342285157, 0.021695903778076172, 0.021874847412109374, 0.022085567474365235, 0.021901023864746093, 0.02167478370666504, 0.021771488189697267, 0.02161664009094238, 0.021573631286621094, 0.02161430358886719, 0.02176790428161621, 0.021520959854125978, 0.02138105583190918, 0.021440576553344727, 0.021454368591308594, 0.02150217628479004, 0.02161484718322754, 0.021370655059814454, 0.021493247985839844, 0.021654239654541017, 0.021753856658935547, 0.02176630401611328, 0.02172297668457031, 0.02175584030151367, 0.02172115135192871, 0.021647327423095702, 0.021540735244750978, 0.021481632232666015, 0.021372928619384765, 0.02138057518005371, 0.02145948791503906, 0.021432319641113282, 0.021549055099487305, 0.021442047119140627, 0.021565792083740234, 0.021588031768798827, 0.021586015701293947, 0.021493759155273438, 0.02145020866394043, 0.021469024658203124, 0.02144326400756836, 0.02151219177246094, 0.021563392639160156, 0.02175116729736328, 0.021555360794067384, 0.021531103134155273, 0.021475040435791015, 0.021522432327270507, 0.021545248031616213, 0.021413888931274414, 0.021366432189941408, 0.021383520126342773, 0.02181065559387207, 0.02151683235168457, 0.021609760284423827, 0.021719263076782225, 0.021817440032958983, 0.022796703338623048, 0.021710687637329102, 0.02185641670227051, 0.021753856658935547, 0.02185420799255371, 0.021934080123901366, 0.021602304458618164, 0.02185625648498535, 0.021464256286621092, 0.02264147186279297, 0.02157513618469238, 0.021856128692626955, 0.02152284812927246, 0.021712928771972655, 0.021458623886108398, 0.0218338565826416, 0.021415456771850586, 0.02130179214477539, 0.021204416275024413, 0.021631872177124024, 0.0216944637298584, 0.02166579246520996, 0.022117759704589842, 0.02160089683532715, 0.021530624389648437, 0.021489664077758788, 0.021395456314086913, 0.02144256019592285, 0.021325824737548828, 0.021542911529541017, 0.021366336822509765, 0.021359039306640626, 0.02146303939819336, 0.021362688064575194, 0.021569536209106444, 0.0216494083404541, 0.021800960540771484, 0.02346931266784668, 0.02169523239135742, 0.022111360549926757, 0.0217445125579834, 0.02170457649230957, 0.021819520950317382, 0.022346912384033205, 0.022270816802978516, 0.021993471145629884, 0.022122047424316407, 0.02201171112060547, 0.023003776550292968, 0.02169856071472168, 0.02210383987426758, 0.021919776916503906, 0.021866016387939453, 0.021930784225463868, 0.021731199264526366, 0.021714080810546876, 0.02170966339111328, 0.02170863914489746, 0.02165692710876465, 0.021672767639160158, 0.021542207717895508, 0.02233318328857422, 0.021593023300170898, 0.021681312561035157, 0.02161248016357422, 0.021869024276733397, 0.021745439529418945, 0.021553823471069336, 0.021511808395385742, 0.021597600936889647, 0.02156755256652832, 0.02146601676940918, 0.02146713638305664, 0.021341728210449218, 0.021370687484741212, 0.021381792068481446, 0.021871423721313475, 0.021936128616333008, 0.021618495941162108, 0.02164508819580078, 0.021371295928955078, 0.021399072647094727, 0.021905887603759767, 0.021495136260986328, 0.021379743576049805, 0.021354496002197267, 0.02143756866455078, 0.021713792800903322, 0.02154489517211914, 0.021526592254638672, 0.021362688064575194, 0.021311487197875977, 0.021359712600708007, 0.02137321662902832, 0.021631616592407227, 0.022008064270019532, 0.021827295303344728, 0.02156470489501953, 0.021451520919799804, 0.02136796760559082, 0.021461759567260742, 0.021653568267822266, 0.021664928436279297, 0.021415807723999022, 0.021279743194580078, 0.021477632522583008, 0.02129280090332031, 0.021335552215576172, 0.02133247947692871, 0.02155913543701172, 0.021481632232666015, 0.021598207473754884, 0.021447999954223633, 0.021626752853393556, 0.021709535598754885, 0.0215184326171875, 0.02141168022155762, 0.021379104614257814, 0.02139334487915039, 0.021368511199951173, 0.02152057647705078, 0.02147056007385254, 0.021396448135375976, 0.021398624420166015, 0.021403968811035155, 0.021557151794433595, 0.02169107246398926, 0.021626688003540038, 0.021745376586914063, 0.021502431869506837, 0.02168009567260742, 0.022105663299560548, 0.022116832733154297, 0.022240959167480468, 0.02241708755493164, 0.022077375411987305, 0.021758176803588866, 0.021804800033569337, 0.0217890567779541, 0.02182102394104004, 0.021904191970825194, 0.022130495071411134, 0.022003007888793946, 0.021805376052856446, 0.021662080764770508, 0.021897216796875, 0.02156723213195801, 0.02151759910583496, 0.021486560821533204, 0.02182963180541992, 0.021821279525756836, 0.02198953628540039, 0.021612224578857423, 0.02170022392272949, 0.0216296329498291, 0.021696512222290038, 0.02159779167175293, 0.021603776931762696, 0.021598207473754884, 0.021826528549194337, 0.0220214729309082, 0.02184239959716797, 0.021799104690551758, 0.02206105613708496, 0.021798912048339843, 0.021661663055419923, 0.02184182357788086, 0.021885055541992188, 0.02166374397277832, 0.021987327575683592, 0.02187059211730957, 0.02214646339416504, 0.021583871841430666, 0.021760128021240235, 0.02177222442626953, 0.0216396484375, 0.021792255401611327, 0.021723712921142578, 0.022554239273071288, 0.022104352951049806, 0.021970016479492187, 0.021517087936401367, 0.021742944717407228, 0.02165657615661621, 0.02158729553222656, 0.021438880920410155, 0.0214836483001709, 0.021510112762451173, 0.021610143661499024, 0.021563776016235353, 0.02161664009094238, 0.02169968032836914, 0.02182032012939453, 0.021587968826293946, 0.021479040145874023, 0.021940223693847655, 0.021735807418823243, 0.021635072708129883, 0.022015615463256834, 0.022018367767333985, 0.021801023483276366, 0.021777599334716798]",tokens/s,46.06215062103461,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1582.67392,1596.915712,0.0,1201.668096,1189.151232,s,1,8.203900390625,8.203900390625,0.0,8.203900390625,8.203900390625,8.203900390625,8.203900390625,[8.203900390625],,kWh,3.496767919166738e-05,3.849963228949563e-06,1.0954453207999426e-05,4.9772095628616364e-05,,MB,1564.16,1791.950848,0.0,1382.023168,1351.367168,s,10,0.47518137359619145,0.04751813735961914,0.0002168038865286773,0.04744075202941894,0.047669537353515624,0.04788238372802734,0.04805266082763672,"[0.04809523010253906, 0.04736966323852539, 0.04743475341796875, 0.04732377624511719, 0.04743775939941406, 0.04756444931030274, 0.047313503265380856, 0.04762223815917969, 0.04744374465942383, 0.047576255798339843]",tokens/s,5387.416557652121,kWh,1.426084696565e-06,1.5722692729590755e-07,9.489682388487577e-07,2.5322798627096657e-06,tokens/kWh,101094671.15773974,MB,1564.16,1833.893888,0.0,1423.966208,1407.328256,s,10,13.738055297851563,1.3738055297851564,0.003616846912428085,1.3729713134765624,1.378206689453125,1.3787253540039062,1.3791402856445312,"[1.3766226806640625, 1.3780914306640626, 1.3720076904296874, 1.369878662109375, 1.3776171875, 1.369964111328125, 1.371584228515625, 1.3739349365234375, 1.3792440185546875, 1.3691103515625]",tokens/s,45.85801893653194,kWh,3.954381329343452e-05,4.3613261565511e-06,1.8056352520951623e-05,6.196149197093724e-05,tokens/kWh,1016760.53942584,,s,630,13.735277492523181,0.02180202776590983,0.00033505996915220957,0.02172318458557129,0.022011130142211913,0.02230405149459839,0.023348841247558597,"[0.021792863845825194, 0.02171536064147949, 0.021740928649902343, 0.022104480743408202, 0.021720895767211913, 0.021602815628051757, 0.021725183486938478, 0.021708799362182618, 0.02162073516845703, 0.02167193603515625, 0.022177791595458983, 0.021825536727905274, 0.021644319534301758, 0.021639520645141602, 0.021813888549804688, 0.021712896347045898, 0.021765119552612306, 0.021570560455322265, 0.021763423919677734, 0.021709440231323242, 0.021766176223754884, 0.021712896347045898, 0.021567487716674806, 0.02166988754272461, 0.021839679718017577, 0.021624736785888672, 0.021889312744140625, 0.02546073532104492, 0.021745664596557617, 0.02179427146911621, 0.021656095504760744, 0.02175292778015137, 0.0224736328125, 0.02186182403564453, 0.02158799934387207, 0.021578271865844725, 0.021590015411376954, 0.022145023345947267, 0.023379743576049803, 0.022912351608276368, 0.02170524787902832, 0.021743967056274415, 0.02168217658996582, 0.021753631591796874, 0.021598432540893556, 0.02158736038208008, 0.02166204833984375, 0.021698816299438477, 0.021593376159667967, 0.021689056396484375, 0.021585376739501953, 0.021885120391845703, 0.02172323226928711, 0.021776639938354492, 0.021716991424560548, 0.021757280349731446, 0.021977247238159178, 0.02166124725341797, 0.021662656784057616, 0.021712608337402343, 0.021700895309448243, 0.02183782386779785, 0.021635072708129883, 0.02174835205078125, 0.021863935470581054, 0.021833728790283204, 0.021700895309448243, 0.02176041603088379, 0.021870399475097658, 0.02232121658325195, 0.021790847778320313, 0.021800960540771484, 0.021995519638061522, 0.022013952255249023, 0.021804927825927734, 0.021670015335083007, 0.02170639991760254, 0.021778783798217773, 0.021894943237304686, 0.021772512435913084, 0.021722623825073242, 0.021675552368164062, 0.021636064529418946, 0.021950304031372072, 0.02182467269897461, 0.02172313690185547, 0.021699583053588867, 0.02174937629699707, 0.021737855911254884, 0.02172835159301758, 0.021562271118164063, 0.02302297592163086, 0.022726463317871093, 0.021971744537353517, 0.021757984161376955, 0.021964448928833008, 0.021762399673461913, 0.021704704284667968, 0.021678016662597655, 0.02178873634338379, 0.02189107131958008, 0.02178278350830078, 0.021847007751464843, 0.02165020751953125, 0.02180860710144043, 0.02170275115966797, 0.02177043151855469, 0.021647296905517577, 0.02167977523803711, 0.021861024856567383, 0.021740959167480468, 0.021682559967041017, 0.021635295867919922, 0.021594112396240234, 0.02301692771911621, 0.021633567810058593, 0.021609888076782227, 0.021658208847045897, 0.02163043212890625, 0.0215614070892334, 0.02174745559692383, 0.023663328170776366, 0.02226585578918457, 0.02230067253112793, 0.02196463966369629, 0.021778079986572267, 0.02161177635192871, 0.021776351928710937, 0.02163167953491211, 0.021575935363769533, 0.021558687210083007, 0.02153660774230957, 0.021620960235595704, 0.021592096328735353, 0.021465599060058595, 0.021591615676879884, 0.021607999801635743, 0.023083295822143555, 0.022989408493041992, 0.02352332878112793, 0.02171494483947754, 0.021651168823242188, 0.021597824096679687, 0.02163983917236328, 0.02170675277709961, 0.021774335861206053, 0.021847583770751952, 0.021686752319335936, 0.021675039291381835, 0.021607391357421873, 0.021624544143676757, 0.021647552490234374, 0.021594112396240234, 0.02155939292907715, 0.021712896347045898, 0.02162073516845703, 0.021739295959472656, 0.02167625617980957, 0.02175939178466797, 0.021699167251586913, 0.022181407928466797, 0.02164169692993164, 0.021683616638183592, 0.021682783126831053, 0.021985279083251954, 0.022149120330810547, 0.021783903121948243, 0.021810943603515626, 0.021600576400756837, 0.02165190315246582, 0.021644927978515624, 0.02157948875427246, 0.02183247947692871, 0.02165558433532715, 0.021796863555908205, 0.021833728790283204, 0.021719039916992186, 0.02164531135559082, 0.021686111450195313, 0.021727392196655274, 0.021741567611694337, 0.021634687423706056, 0.021668224334716796, 0.021896575927734373, 0.02173388862609863, 0.021714431762695312, 0.021962976455688475, 0.021739839553833008, 0.021694368362426757, 0.021821632385253906, 0.021968832015991212, 0.021942527770996093, 0.021925535202026367, 0.021745311737060548, 0.021611200332641602, 0.0217488956451416, 0.02175062370300293, 0.02183919906616211, 0.021625503540039063, 0.02229043197631836, 0.021660896301269533, 0.021826175689697264, 0.02182547187805176, 0.02184582328796387, 0.021658016204833985, 0.021659263610839842, 0.02179110336303711, 0.02169036865234375, 0.021958656311035156, 0.02200371170043945, 0.02187446403503418, 0.021815519332885742, 0.02172313690185547, 0.021821056365966797, 0.021703039169311523, 0.021751808166503905, 0.02170639991760254, 0.02177039909362793, 0.021827775955200194, 0.021848031997680664, 0.021776256561279298, 0.02165478324890137, 0.02163715171813965, 0.02164620780944824, 0.021628192901611328, 0.021668127059936523, 0.021608896255493164, 0.021617759704589845, 0.02165648078918457, 0.02166374397277832, 0.02167193603515625, 0.021753856658935547, 0.021729280471801758, 0.021736991882324218, 0.021582304000854494, 0.02168012809753418, 0.021654687881469726, 0.021617504119873048, 0.021821216583251955, 0.021717216491699217, 0.021565439224243164, 0.021592063903808592, 0.021595680236816406, 0.02164963150024414, 0.02159436798095703, 0.021602304458618164, 0.021669408798217774, 0.021567968368530272, 0.021766143798828123, 0.021823007583618163, 0.021803487777709962, 0.0217509765625, 0.021703359603881835, 0.02184796714782715, 0.021753599166870117, 0.021706880569458006, 0.021842144012451173, 0.02162892723083496, 0.02188694381713867, 0.021833759307861328, 0.021786624908447266, 0.021665567398071288, 0.02167625617980957, 0.02269152069091797, 0.021626304626464844, 0.021735872268676758, 0.021807552337646485, 0.021638944625854493, 0.021737695693969727, 0.02171494483947754, 0.021702655792236326, 0.02164246368408203, 0.021635776519775392, 0.021640960693359374, 0.021758304595947266, 0.021859392166137696, 0.021659936904907227, 0.021680351257324218, 0.021682624816894532, 0.021702655792236326, 0.0216246395111084, 0.021647552490234374, 0.021708351135253906, 0.021815423965454103, 0.021800607681274415, 0.021651199340820312, 0.021666048049926757, 0.021796607971191408, 0.021805631637573243, 0.021721439361572267, 0.021719039916992186, 0.023518239974975586, 0.022268896102905274, 0.022314687728881837, 0.02189548873901367, 0.02169209671020508, 0.021776704788208007, 0.021862464904785155, 0.02280195236206055, 0.022339712142944335, 0.02185158348083496, 0.02192470359802246, 0.023119871139526366, 0.021951583862304686, 0.021842464447021485, 0.02233526420593262, 0.021801567077636717, 0.021747007369995117, 0.021731264114379884, 0.021822208404541014, 0.02186444854736328, 0.021693952560424806, 0.021674495697021484, 0.02170675277709961, 0.021650848388671876, 0.0215285758972168, 0.021638624191284178, 0.021666336059570312, 0.02191155242919922, 0.022071296691894532, 0.021729280471801758, 0.02182143974304199, 0.021962751388549806, 0.02219558334350586, 0.02194905662536621, 0.021573631286621094, 0.022183263778686523, 0.022041248321533202, 0.021810623168945314, 0.021717567443847657, 0.02151628875732422, 0.02166783905029297, 0.021630975723266603, 0.021551103591918946, 0.021606399536132814, 0.021725120544433593, 0.021624895095825197, 0.022220800399780274, 0.021761407852172853, 0.021645055770874024, 0.021658496856689455, 0.022054912567138672, 0.021857343673706054, 0.02160736083984375, 0.02161664009094238, 0.02165555191040039, 0.02163020706176758, 0.02169113540649414, 0.02168832015991211, 0.021745664596557617, 0.021581760406494142, 0.021643327713012694, 0.021544960021972655, 0.02166374397277832, 0.021656671524047853, 0.021617183685302733, 0.021739007949829102, 0.02171993637084961, 0.02175763130187988, 0.022328800201416015, 0.0216595516204834, 0.021586048126220704, 0.0216297607421875, 0.02161840057373047, 0.02173529624938965, 0.021710687637329102, 0.02169913673400879, 0.021722688674926757, 0.021744064331054688, 0.021610591888427736, 0.02164931106567383, 0.021600160598754883, 0.021573728561401367, 0.021700607299804688, 0.021753631591796874, 0.021758176803588866, 0.021740736007690428, 0.021823392868041993, 0.021796960830688477, 0.021600255966186522, 0.021719039916992186, 0.02209916877746582, 0.021606943130493165, 0.02166364860534668, 0.02247923278808594, 0.021751455307006836, 0.022157215118408204, 0.021613983154296874, 0.021647552490234374, 0.02169523239135742, 0.021692480087280273, 0.021607456207275392, 0.021865440368652345, 0.021879840850830078, 0.021788703918457032, 0.02175276756286621, 0.021710847854614256, 0.021811199188232423, 0.021740543365478517, 0.021724159240722657, 0.021958656311035156, 0.022087135314941407, 0.021795360565185547, 0.02202134323120117, 0.021977184295654296, 0.022110464096069336, 0.021756000518798828, 0.02187913513183594, 0.02189107131958008, 0.021702655792236326, 0.021755903244018555, 0.021766143798828123, 0.021985279083251954, 0.021724863052368162, 0.02176646423339844, 0.021811199188232423, 0.021853504180908204, 0.0216494083404541, 0.021686975479125976, 0.02164531135559082, 0.021593376159667967, 0.021752159118652345, 0.021612800598144532, 0.021571264266967774, 0.021659616470336915, 0.02160688018798828, 0.021768192291259765, 0.0220446720123291, 0.021542015075683593, 0.021588863372802733, 0.021660703659057617, 0.02201081657409668, 0.021806976318359376, 0.0216615047454834, 0.02158153533935547, 0.02165376091003418, 0.02155353546142578, 0.021618688583374023, 0.02164646339416504, 0.02154319953918457, 0.0216494083404541, 0.02179782485961914, 0.021716991424560548, 0.02162073516845703, 0.021647104263305662, 0.021686399459838867, 0.021678207397460937, 0.021831680297851562, 0.021622783660888673, 0.021610015869140624, 0.02162719917297363, 0.021780256271362305, 0.021837312698364256, 0.02161097526550293, 0.021682592391967775, 0.021817312240600586, 0.021935583114624024, 0.021770784378051758, 0.021773984909057617, 0.02175424003601074, 0.021764095306396485, 0.02171494483947754, 0.02165555191040039, 0.021774335861206053, 0.021754976272583007, 0.02180803108215332, 0.02189926338195801, 0.021746944427490235, 0.021836544036865236, 0.021635072708129883, 0.021882272720336913, 0.022131296157836915, 0.021833728790283204, 0.021743616104125976, 0.021890111923217773, 0.022125503540039063, 0.022128639221191407, 0.02175935935974121, 0.021770656585693358, 0.021820831298828124, 0.021713727951049804, 0.02169759941101074, 0.021704927444458007, 0.021946239471435546, 0.021916511535644532, 0.021958656311035156, 0.02187264060974121, 0.021985279083251954, 0.02190505599975586, 0.021789024353027344, 0.02174284744262695, 0.02170102310180664, 0.021731679916381835, 0.02234163284301758, 0.021845695495605468, 0.022308511734008787, 0.021745920181274414, 0.02169487953186035, 0.021780288696289063, 0.02175200080871582, 0.021767391204833984, 0.021616928100585936, 0.021826047897338868, 0.021772287368774415, 0.022202655792236327, 0.021602432250976564, 0.021749824523925782, 0.02171638488769531, 0.02166192054748535, 0.021701055526733397, 0.021741472244262695, 0.021755935668945313, 0.021791135787963867, 0.02211020851135254, 0.022345727920532226, 0.021646495819091796, 0.021586784362792967, 0.02159152030944824, 0.021940671920776367, 0.021757984161376955, 0.02211027145385742, 0.021766143798828123, 0.021819391250610352, 0.021757280349731446, 0.021650079727172852, 0.021721088409423828, 0.021719039916992186, 0.021708799362182618, 0.021708799362182618, 0.02181715202331543, 0.02179212760925293, 0.021663616180419922, 0.021805023193359373, 0.021819711685180664, 0.02245903968811035, 0.023595008850097656, 0.021786624908447266, 0.021882463455200195, 0.02186854362487793, 0.021884639739990233, 0.02163692855834961, 0.021741632461547852, 0.022858560562133787, 0.02177539253234863, 0.0216396484375, 0.021641727447509765, 0.021751808166503905, 0.02168009567260742, 0.021717023849487305, 0.02165551948547363, 0.02182761573791504, 0.02180271911621094, 0.021690656661987304, 0.0216494083404541, 0.02167807960510254, 0.021794815063476563, 0.021669792175292968, 0.021661792755126953, 0.021707807540893555, 0.02168726348876953, 0.022155263900756835, 0.021597824096679687, 0.02163283157348633, 0.021537343978881837, 0.022401023864746093, 0.022345567703247072, 0.02483216094970703, 0.022258880615234376, 0.02166864013671875, 0.021501983642578125, 0.02168627166748047, 0.021604352951049805, 0.021530624389648437, 0.021620031356811523, 0.0216746883392334, 0.021554496765136717, 0.02156819152832031, 0.021587968826293946, 0.021622783660888673, 0.021716991424560548, 0.021579776763916016, 0.02230681610107422, 0.021538400650024415, 0.023273183822631837, 0.021777088165283204, 0.021712799072265625, 0.021631071090698242, 0.021604223251342772, 0.02164748764038086, 0.021630975723266603, 0.02205081558227539, 0.0215817928314209, 0.021788703918457032, 0.021826656341552734, 0.021828128814697267, 0.021688703536987305, 0.021618623733520508, 0.0215982723236084, 0.021581760406494142, 0.021663808822631837, 0.021598207473754884, 0.021562528610229493, 0.021647712707519532, 0.02169465637207031, 0.0218668155670166, 0.021577728271484374, 0.021566848754882812, 0.021719680786132813, 0.02164121627807617, 0.02150809669494629, 0.0218024959564209, 0.021950143814086914, 0.02159062385559082, 0.021915712356567384, 0.0218175048828125, 0.021724512100219726, 0.021647615432739256, 0.021558944702148437, 0.02155801582336426, 0.021628320693969725, 0.021719072341918947, 0.021784160614013674, 0.021880800247192383, 0.02186342430114746, 0.021780479431152345, 0.021811199188232423, 0.0216693115234375, 0.02178060722351074, 0.021729248046875, 0.021746143341064453]",tokens/s,45.86729320488362,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4376.895488,4566.482944,0.0,4188.012544,4187.049984,s,1,10.3305439453125,10.3305439453125,0.0,10.3305439453125,10.3305439453125,10.3305439453125,10.3305439453125,[10.3305439453125],,kWh,9.650066008333719e-05,1.0637245674047769e-05,3.166196977399949e-05,0.00013879987553138445,,MB,4312.846336,4962.844672,0.0,4555.014144,4514.269184,s,10,7.85486279296875,0.785486279296875,0.0024385657671590765,0.7846548767089844,0.7884500244140625,0.7891213439941406,0.7896583996582032,"[0.78331787109375, 0.7868609619140625, 0.7877884521484375, 0.7831114501953125, 0.7833239135742187, 0.783201416015625, 0.78598583984375, 0.7883008422851563, 0.7831793823242188, 0.7897926635742187]",tokens/s,325.9127584369232,kWh,2.2828943265063682e-05,2.516557984143609e-06,1.5149542034153764e-05,4.049504328336105e-05,tokens/kWh,6321761.362462538,MB,4320.833536,4979.621888,0.0,4571.79136,4514.271744,s,10,466.9446015625,46.69446015625,0.009211138575253765,46.69581640625,46.701953515625,46.704838085937496,46.7071457421875,"[46.67080078125, 46.69037109375, 46.7013125, 46.69963671875, 46.69367578125, 46.69544140625, 46.69619140625, 46.70772265625, 46.69769140625, 46.6917578125]",tokens/s,1.3491964526238884,kWh,0.0013617363878057702,0.0001502109238077487,0.0009058930003548463,0.0024178403119683653,tokens/kWh,26056.31136520826,,s,630,466.9331598510745,0.7411637457953559,0.0004398744652296437,0.7411553955078125,0.7415886169433593,0.741754150390625,0.7420652239990234,"[0.7400548706054687, 0.7412684326171874, 0.7400137939453125, 0.7404874267578125, 0.7405681762695312, 0.7407911376953125, 0.740642333984375, 0.7402091674804687, 0.740773193359375, 0.7406885986328124, 0.74061376953125, 0.7400984497070312, 0.7404476928710938, 0.7406184692382812, 0.7407650146484375, 0.7409305419921876, 0.7405218505859374, 0.7407485961914062, 0.7407849731445313, 0.740691650390625, 0.7404711303710938, 0.7407369995117188, 0.7407920532226563, 0.740763916015625, 0.740427734375, 0.7405476684570312, 0.7409570922851563, 0.7412613525390624, 0.74046875, 0.7403253784179687, 0.7409314575195313, 0.7408845825195313, 0.7408425903320313, 0.7404266967773437, 0.7407796020507813, 0.7410220947265626, 0.7409541015625, 0.7407222900390625, 0.7410399169921875, 0.7417101440429688, 0.740493408203125, 0.7410515747070312, 0.7407597045898437, 0.741287841796875, 0.740619140625, 0.7408491821289063, 0.7407881469726563, 0.7413148803710937, 0.7415169067382813, 0.7405165405273437, 0.7405834350585937, 0.7412981567382813, 0.74104150390625, 0.7410548095703124, 0.740962646484375, 0.741011474609375, 0.7411691284179688, 0.7408289794921875, 0.7414130859375, 0.7407860107421875, 0.741963134765625, 0.7403405151367187, 0.74083740234375, 0.7407962646484375, 0.7412327880859375, 0.7407361450195312, 0.7408401489257812, 0.7409166870117188, 0.7415664672851563, 0.7402646484375, 0.7407185668945313, 0.7409295654296875, 0.7411096801757813, 0.7403663940429688, 0.7409575805664063, 0.7412445678710937, 0.7411536865234375, 0.7405241088867187, 0.7409991455078125, 0.7411691284179688, 0.741085205078125, 0.7407554321289063, 0.740642822265625, 0.7411220703125, 0.7422764892578125, 0.7411022338867187, 0.74110498046875, 0.7409793701171875, 0.7408450317382812, 0.7406897583007812, 0.7414053955078125, 0.7411097412109375, 0.7411240844726562, 0.7409183349609375, 0.7414363403320312, 0.7412568359375, 0.7411265258789063, 0.7414898071289062, 0.7413748168945312, 0.7415459594726562, 0.7411568603515625, 0.7411302490234375, 0.7410421752929688, 0.74123876953125, 0.7412080078125, 0.7415253295898437, 0.7408212280273437, 0.741011474609375, 0.741369873046875, 0.741525390625, 0.7403992309570312, 0.741412841796875, 0.7414989013671875, 0.7410319213867187, 0.741306396484375, 0.7412183227539062, 0.741035888671875, 0.7411995239257813, 0.7411327514648437, 0.7411178588867188, 0.74104638671875, 0.7415275268554687, 0.7411786499023437, 0.7417346801757813, 0.7408972778320313, 0.7411565551757813, 0.74149169921875, 0.7405444946289063, 0.7411159057617187, 0.7413350219726562, 0.7413760375976562, 0.7407493286132812, 0.7412242431640625, 0.7418446044921875, 0.7410775756835938, 0.7404031982421875, 0.7409903564453125, 0.7414483032226562, 0.7410680541992187, 0.74062451171875, 0.7414396362304687, 0.741398193359375, 0.7410178833007812, 0.7408229370117188, 0.7414319458007812, 0.7412367553710938, 0.7406735229492187, 0.7419535522460937, 0.741868896484375, 0.740987548828125, 0.7405936889648438, 0.7413206787109375, 0.7413677978515625, 0.741185546875, 0.7414883422851563, 0.7411674194335938, 0.74111181640625, 0.7407308959960938, 0.741491943359375, 0.7411206665039063, 0.7415253295898437, 0.7414500732421875, 0.7409674682617188, 0.7418802490234375, 0.7409812622070312, 0.7410646362304687, 0.7412675170898437, 0.7410360107421875, 0.741416015625, 0.7407230224609375, 0.74164013671875, 0.7409830322265625, 0.7409074096679688, 0.7415291748046875, 0.7415167846679688, 0.7413599853515624, 0.7414026489257812, 0.741384765625, 0.7411292724609375, 0.741028564453125, 0.7413885498046875, 0.7414886474609375, 0.7408046264648438, 0.7417279663085937, 0.7412145385742187, 0.7414307250976563, 0.7414728393554687, 0.7443988647460937, 0.7417261962890624, 0.74151123046875, 0.74071875, 0.7410575561523437, 0.7411285400390625, 0.7408866577148437, 0.7407396240234375, 0.7418423461914062, 0.74116357421875, 0.740701904296875, 0.7411981201171876, 0.7411087646484374, 0.7412780151367188, 0.7409827880859375, 0.7410835571289063, 0.7407659301757813, 0.741185546875, 0.7409679565429688, 0.74139697265625, 0.7413186645507812, 0.7406237182617188, 0.741683837890625, 0.7403906860351562, 0.7412840576171875, 0.7410258178710938, 0.7409801635742187, 0.74120361328125, 0.7415632934570312, 0.7408532104492187, 0.741116455078125, 0.7411136474609376, 0.7415145874023438, 0.7412662963867187, 0.7409889526367187, 0.7410872192382812, 0.7411751708984375, 0.7410032348632812, 0.7412933349609375, 0.7412293701171875, 0.741222412109375, 0.7412467651367187, 0.740702392578125, 0.7414190063476562, 0.7414312744140625, 0.741305908203125, 0.7415014038085938, 0.7416770629882813, 0.7416893310546875, 0.7411199951171875, 0.7407368774414063, 0.7420499267578125, 0.7413145751953125, 0.7412017211914063, 0.7411181640625, 0.741326171875, 0.7411607666015625, 0.7411056518554687, 0.7413658447265625, 0.741214111328125, 0.74111474609375, 0.7406795043945312, 0.7464931640625, 0.7411426391601562, 0.7410634765625, 0.7404827880859375, 0.7409974365234375, 0.7406197509765625, 0.7408665771484375, 0.7403984375, 0.7413561401367188, 0.7419658203125, 0.7407144165039062, 0.7410791015625, 0.7407882080078125, 0.7407738647460937, 0.7412030029296875, 0.741058837890625, 0.7410695190429688, 0.7415043334960938, 0.7412430419921875, 0.7411819458007812, 0.740724609375, 0.7415598754882813, 0.7413863525390625, 0.74105615234375, 0.740856689453125, 0.7412633666992188, 0.7410808715820313, 0.7409461059570313, 0.7410293579101562, 0.7410462646484375, 0.7412589111328125, 0.7407010498046875, 0.7408455810546875, 0.7406441650390625, 0.7417471313476562, 0.7409865112304688, 0.7412426147460938, 0.74111181640625, 0.7409611206054687, 0.7407144165039062, 0.7407513427734375, 0.7415823364257812, 0.7408370361328125, 0.7415029907226562, 0.740903564453125, 0.7415789794921875, 0.74149072265625, 0.7410846557617188, 0.741435791015625, 0.7410320434570312, 0.7414353637695312, 0.741074951171875, 0.7409930419921875, 0.7410699462890625, 0.7412860107421875, 0.7413436279296876, 0.7414398803710938, 0.7414678955078124, 0.7416117553710937, 0.74132421875, 0.7413458862304687, 0.7408488159179687, 0.7418765258789063, 0.7413718872070313, 0.7415316772460937, 0.7410808715820313, 0.741275390625, 0.7411348876953125, 0.7408580322265625, 0.7411875610351563, 0.7405813598632812, 0.7406832275390625, 0.7408024291992188, 0.7411677856445312, 0.74102783203125, 0.74060595703125, 0.741514404296875, 0.7412142944335938, 0.740965087890625, 0.7410953979492187, 0.7418016357421875, 0.7406708374023437, 0.7412825317382813, 0.741028076171875, 0.7408599243164062, 0.741296142578125, 0.7411630249023438, 0.7415357666015625, 0.7415214233398437, 0.74069921875, 0.7410963745117187, 0.7411138305664062, 0.741212158203125, 0.7413514404296875, 0.7405642700195313, 0.741257080078125, 0.7412816162109375, 0.7410144653320313, 0.7413077392578125, 0.7413639526367187, 0.7413846435546875, 0.74137939453125, 0.7410100708007813, 0.7410584106445313, 0.7407945556640625, 0.7417665405273437, 0.740880859375, 0.7411976928710937, 0.7413947143554688, 0.7411568603515625, 0.741291748046875, 0.7409461669921875, 0.7417200927734375, 0.741274658203125, 0.7410894775390625, 0.7413556518554687, 0.7417534790039062, 0.74169140625, 0.7408414916992188, 0.7413616943359375, 0.74169873046875, 0.7417782592773438, 0.7409581909179688, 0.7410831298828126, 0.7413800659179688, 0.741080322265625, 0.741001953125, 0.7416782836914062, 0.7413665771484375, 0.74156640625, 0.7408585815429688, 0.7410933837890625, 0.7409397583007813, 0.740996826171875, 0.7409339599609375, 0.7410524291992188, 0.7409766235351563, 0.7410626831054687, 0.7407861938476562, 0.741518310546875, 0.7409890747070312, 0.7406717529296875, 0.741853759765625, 0.7413754272460937, 0.7404221801757812, 0.7417546997070312, 0.7414581298828125, 0.7407673950195313, 0.7408295288085938, 0.7406038818359375, 0.7417908935546875, 0.7411633911132812, 0.7414458618164063, 0.7409154052734375, 0.7411790771484374, 0.7408560791015625, 0.741474365234375, 0.740706298828125, 0.741369873046875, 0.7410830688476563, 0.74087841796875, 0.7412449340820313, 0.7413771362304687, 0.7411264038085937, 0.7408414916992188, 0.7414598999023437, 0.741509765625, 0.7406919555664062, 0.7413411865234375, 0.7411691284179688, 0.7416173706054687, 0.7413078002929687, 0.741866455078125, 0.7411542358398437, 0.7416036987304687, 0.7412963256835937, 0.740874267578125, 0.741128173828125, 0.7413411865234375, 0.74148046875, 0.7407715454101562, 0.7412323608398438, 0.741462646484375, 0.7415228881835938, 0.7410775756835938, 0.7413575439453125, 0.7420906372070313, 0.7412470703125, 0.7411732177734375, 0.7411302490234375, 0.7413616943359375, 0.7414722290039063, 0.7408867797851563, 0.7420254516601562, 0.7411176147460937, 0.7410732421875, 0.7404628295898438, 0.7416627197265625, 0.741654541015625, 0.741158935546875, 0.7411773681640625, 0.7414108276367187, 0.7412153930664063, 0.7408607788085938, 0.7411317749023437, 0.741876220703125, 0.7417835693359375, 0.7407921142578126, 0.7413551025390624, 0.74128857421875, 0.741025390625, 0.74086962890625, 0.7408670043945312, 0.7433052368164063, 0.741336181640625, 0.741034912109375, 0.74132275390625, 0.7412633666992188, 0.74140673828125, 0.7411273803710937, 0.7411863403320312, 0.7417216796875, 0.741171630859375, 0.74113818359375, 0.74107275390625, 0.7415269775390625, 0.7411803588867187, 0.7416565551757812, 0.7418121948242188, 0.7415275268554687, 0.7414517822265625, 0.7410155639648438, 0.7417405395507812, 0.7411896362304687, 0.7407821044921875, 0.7414673461914062, 0.7416921997070313, 0.7413944091796875, 0.7407239379882813, 0.7417884521484375, 0.7412769165039063, 0.7408805541992187, 0.7412127685546875, 0.7414353637695312, 0.7416436767578125, 0.7408827514648437, 0.741300537109375, 0.7416688842773438, 0.74085302734375, 0.7411145629882813, 0.741289306640625, 0.7416286010742188, 0.7413043212890625, 0.7413575439453125, 0.7412879028320313, 0.740908203125, 0.7408115844726563, 0.7414262084960938, 0.7415858764648438, 0.740864013671875, 0.7411909790039063, 0.7413412475585938, 0.7407028198242187, 0.7415029907226562, 0.7410174560546875, 0.7412430419921875, 0.7408756713867187, 0.7415670776367187, 0.7412177124023438, 0.7410222778320312, 0.7408429565429687, 0.7411594848632812, 0.7414948120117187, 0.740800537109375, 0.7413162231445313, 0.7411687622070312, 0.7415235595703125, 0.7405779418945313, 0.7415884399414062, 0.7405798950195313, 0.7411806030273438, 0.7407767944335938, 0.7414476928710938, 0.7411036376953125, 0.7408927001953125, 0.7414456176757812, 0.741211181640625, 0.740918212890625, 0.7409500122070313, 0.7412920532226562, 0.741231689453125, 0.7421244506835938, 0.7411846313476562, 0.7412574462890625, 0.7411528930664063, 0.7410980224609375, 0.740861328125, 0.7416243896484375, 0.7414328002929688, 0.7416283569335937, 0.741484619140625, 0.74087158203125, 0.7415220336914062, 0.7411978149414062, 0.7420714721679688, 0.7412723999023437, 0.7412981567382813, 0.7415902099609375, 0.7411629638671875, 0.7409154663085937, 0.7412301635742188, 0.7416303100585937, 0.7414974975585937, 0.7410515747070312, 0.7414230346679688, 0.7410341796875, 0.741006103515625, 0.741768310546875, 0.7406672973632813, 0.7406749877929687, 0.7412117919921875, 0.7410226440429688, 0.7402691650390625, 0.7408823852539063, 0.74189306640625, 0.7408681030273437, 0.74082470703125, 0.7407844848632813, 0.741823974609375, 0.7409332885742187, 0.7408006591796875, 0.7410634155273438, 0.7409213256835937, 0.7413677978515625, 0.7405787963867188, 0.7414502563476563, 0.741238525390625, 0.7408397216796875, 0.7412633666992188, 0.7413800659179688, 0.741254150390625, 0.74080908203125, 0.74107275390625, 0.7413040771484375, 0.7409694213867187, 0.7408125610351562, 0.74138037109375, 0.7410497436523438, 0.741210693359375, 0.7412342529296875, 0.741245361328125, 0.741232666015625, 0.7413637084960938, 0.7414763793945313, 0.741001220703125, 0.7413013916015625, 0.7409385986328125, 0.7413507690429687, 0.74101123046875, 0.7411248779296875, 0.7411139526367188, 0.7416995849609375, 0.7412953491210937, 0.7412572631835938, 0.74071728515625, 0.7409677734375, 0.7418569946289062, 0.7414486694335938, 0.7406571655273437, 0.7415848999023438, 0.7412244262695312, 0.741185546875, 0.7410769653320313, 0.7414312744140625, 0.7413309326171875, 0.7411056518554687, 0.7408967895507812, 0.7413881225585938, 0.7412020874023437, 0.7409971313476562, 0.740896240234375]",tokens/s,1.349229513279663,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,811.737088,554.631168,0.0,159.383552,143.673856,s,1,7.2645595703125,7.2645595703125,0.0,7.2645595703125,7.2645595703125,7.2645595703125,7.2645595703125,[7.2645595703125],,kWh,1.059855921249664e-05,1.1614199558078427e-06,3.5919473179990558e-06,1.535192648630354e-05,,MB,1332.49024,609.15712,0.0,199.22944,186.684928,s,26,0.1986882557868958,0.007641855991803682,0.00010765275712770247,0.007627088069915772,0.007689568042755127,0.007762360215187072,0.008034847855567932,"[0.007783520221710205, 0.007632544040679931, 0.007615615844726562, 0.007631135940551758, 0.007592576026916504, 0.007626304149627686, 0.007538559913635254, 0.008118623733520508, 0.007698880195617676, 0.007650271892547607, 0.007627871990203858, 0.007642591953277588, 0.007630976200103759, 0.007672863960266113, 0.007640255928039551, 0.00756166410446167, 0.0076802558898925784, 0.007628064155578613, 0.007584799766540527, 0.0075781760215759275, 0.007624320030212402, 0.0075511040687561036, 0.0075608639717102055, 0.0076089282035827635, 0.0076212158203125, 0.007586271762847901]",tokens/s,33499.71528835067,kWh,2.2710448227302365e-07,2.5039945156926532e-08,9.852234427392751e-08,3.506667717038777e-07,tokens/kWh,730037804.1412503,MB,1371.762688,611.254272,0.0,201.326592,186.687488,s,26,10.00890411376953,0.38495785052959736,0.0016175626169597206,0.3846318359375,0.38742640686035157,0.38829644012451175,0.3885595932006836,"[0.3870013427734375, 0.38459976196289064, 0.3859169616699219, 0.384282470703125, 0.3852095642089844, 0.3845240783691406, 0.38484475708007815, 0.3884447631835938, 0.3885978698730469, 0.38477554321289065, 0.3828612976074219, 0.3863381042480469, 0.38619061279296873, 0.38514959716796876, 0.38294338989257815, 0.38269284057617187, 0.38385476684570313, 0.3836585388183594, 0.38410577392578127, 0.38320263671875, 0.38466390991210936, 0.38455780029296877, 0.38785147094726563, 0.3855151672363281, 0.38340081787109376, 0.3837202758789062]",tokens/s,163.65428036687425,kWh,1.1244997103624623e-05,1.240140582539681e-06,3.929803527956919e-06,1.641494121412122e-05,tokens/kWh,3837966.8363236794,,s,1638,9.997071547031386,0.006103218282680955,0.00012193710248929396,0.0060904319286346435,0.006164614391326905,0.006209982371330262,0.006590835213661193,"[0.006099040031433105, 0.0060965118408203125, 0.006154816150665283, 0.00604095983505249, 0.00616425609588623, 0.006230591773986816, 0.006178815841674804, 0.006094624042510986, 0.00619865608215332, 0.006209407806396484, 0.006185696125030517, 0.006164735794067383, 0.006086656093597412, 0.006123519897460937, 0.006047743797302246, 0.006168896198272705, 0.006061759948730469, 0.006155551910400391, 0.0061036162376403805, 0.006166368007659912, 0.006070591926574707, 0.006203392028808594, 0.006240255832672119, 0.0061658558845520016, 0.006145855903625488, 0.006069087982177734, 0.0061931519508361815, 0.006078559875488282, 0.006131616115570069, 0.006065248012542724, 0.006124512195587158, 0.006045536041259765, 0.006127711772918701, 0.006042719841003418, 0.006149312019348144, 0.006063839912414551, 0.006166143894195557, 0.0060538239479064945, 0.006422463893890381, 0.00618336009979248, 0.006080031871795654, 0.006107711791992187, 0.0060553278923034665, 0.006209919929504395, 0.006084799766540527, 0.00611737585067749, 0.006307648181915283, 0.006162079811096191, 0.006007328033447266, 0.006127232074737548, 0.00604963207244873, 0.0062349758148193355, 0.0060310401916503905, 0.006153952121734619, 0.006572319984436035, 0.006065855979919434, 0.006162176132202149, 0.0060544638633728024, 0.006111008167266846, 0.006068448066711426, 0.006127295970916748, 0.00605625581741333, 0.006141952037811279, 0.005943903923034668, 0.006113120079040527, 0.006031551837921143, 0.006188704013824463, 0.006022848129272461, 0.006118048191070557, 0.006088031768798828, 0.0060850238800048825, 0.006090976238250732, 0.006091872215270996, 0.006142367839813232, 0.0061420159339904785, 0.006123104095458984, 0.006067039966583252, 0.006170623779296875, 0.006061215877532959, 0.006161248207092285, 0.006045567989349365, 0.006142079830169678, 0.006053088188171386, 0.0061519680023193355, 0.006061024188995361, 0.00616483211517334, 0.006089759826660156, 0.006165311813354492, 0.006079999923706054, 0.00609657621383667, 0.006113952159881592, 0.006086175918579102, 0.006113759994506836, 0.006055647850036621, 0.006100543975830078, 0.006048799991607666, 0.006123295783996582, 0.0060529599189758304, 0.006128448009490967, 0.006039008140563965, 0.006160927772521973, 0.006036928176879883, 0.006169151782989502, 0.006067776203155518, 0.006164927959442138, 0.006039391994476318, 0.006125152111053467, 0.006033792018890381, 0.006117824077606201, 0.006059199810028076, 0.00607916784286499, 0.006053440093994141, 0.006058303833007812, 0.006107135772705078, 0.006074368000030517, 0.006103040218353272, 0.006059072017669678, 0.0061092801094055176, 0.006125664234161377, 0.0061543679237365725, 0.006027904033660889, 0.006265183925628662, 0.006013855934143066, 0.006243072032928467, 0.006037504196166992, 0.006123519897460937, 0.005929120063781738, 0.006117216110229492, 0.00605625581741333, 0.006286079883575439, 0.006222752094268799, 0.006074399948120117, 0.006158239841461181, 0.006090911865234375, 0.006168511867523194, 0.006053887844085694, 0.006148128032684326, 0.006051328182220459, 0.0061279358863830565, 0.006058303833007812, 0.006149983882904052, 0.006044672012329101, 0.006156544208526612, 0.006052608013153076, 0.006150144100189209, 0.006032512187957763, 0.006142848014831543, 0.006072480201721192, 0.0061008319854736325, 0.006104671955108642, 0.006070240020751953, 0.006175168037414551, 0.006105440139770508, 0.0061660480499267575, 0.00606774377822876, 0.006145887851715088, 0.006070720195770264, 0.006177087783813476, 0.00611084794998169, 0.006447904109954834, 0.006059616088867187, 0.006187007904052734, 0.00612556791305542, 0.0060661759376525876, 0.006135807991027832, 0.006135807991027832, 0.006184447765350342, 0.006101503849029541, 0.006133471965789795, 0.006080800056457519, 0.006170559883117676, 0.0060739521980285646, 0.006160192012786865, 0.006085279941558838, 0.006155456066131592, 0.006041408061981201, 0.006130559921264649, 0.006051360130310058, 0.006144832134246827, 0.0061001920700073245, 0.0060657281875610355, 0.006113791942596435, 0.006106624126434326, 0.006095871925354004, 0.006055935859680176, 0.006144000053405762, 0.006049536228179932, 0.006369311809539795, 0.006070655822753906, 0.00601087999343872, 0.0060065598487854, 0.006118720054626465, 0.006013855934143066, 0.006125408172607422, 0.006049952030181885, 0.006119423866271972, 0.00602342414855957, 0.006133600234985352, 0.006073760032653809, 0.006137792110443115, 0.006163008213043213, 0.006064256191253662, 0.006081535816192627, 0.006060256004333496, 0.006124351978302002, 0.006045631885528565, 0.006096864223480224, 0.006012864112854004, 0.00609881591796875, 0.006031455993652343, 0.006112480163574218, 0.00601580810546875, 0.006131360054016113, 0.006009535789489746, 0.006142720222473145, 0.0059909758567810055, 0.006125887870788574, 0.006096928119659424, 0.006260960102081299, 0.0061212477684020996, 0.006158336162567139, 0.006149983882904052, 0.006059296131134033, 0.006097856044769287, 0.006253600120544434, 0.006115935802459717, 0.006032927989959717, 0.00612175989151001, 0.006031968116760254, 0.006104000091552734, 0.006431712150573731, 0.006182911872863769, 0.006037504196166992, 0.006121568202972412, 0.0060128321647644044, 0.006158048152923584, 0.006088128089904785, 0.006089439868927002, 0.006155935764312745, 0.006089119911193847, 0.006090816020965576, 0.006033152103424072, 0.006095104217529297, 0.00602726411819458, 0.006095967769622803, 0.006015103816986084, 0.006091839790344238, 0.006029024124145508, 0.006118879795074463, 0.0060126399993896485, 0.006124351978302002, 0.00601907205581665, 0.006031424045562744, 0.006003392219543457, 0.0061171197891235355, 0.00611846399307251, 0.006131872177124024, 0.0060178241729736326, 0.006145120143890381, 0.006039552211761475, 0.006124512195587158, 0.006114463806152343, 0.006365983963012695, 0.006104479789733887, 0.006070655822753906, 0.006082272052764893, 0.0060033597946166995, 0.006098015785217285, 0.006040319919586181, 0.006091104030609131, 0.0060804481506347655, 0.006098368167877197, 0.006043935775756836, 0.006131519794464111, 0.006074368000030517, 0.006135456085205078, 0.006025760173797607, 0.0061337599754333495, 0.006004479885101319, 0.006139232158660889, 0.006056128025054931, 0.006219871997833252, 0.00607913589477539, 0.0060704960823059085, 0.006123263835906983, 0.006074399948120117, 0.006135359764099121, 0.006064511775970459, 0.0061047358512878415, 0.00605017614364624, 0.00611952018737793, 0.006207071781158448, 0.006131328105926513, 0.006058688163757324, 0.006111519813537598, 0.006270112037658692, 0.006169407844543457, 0.006038559913635254, 0.006224959850311279, 0.006083712100982666, 0.006101312160491944, 0.00614131212234497, 0.006118239879608155, 0.006144000053405762, 0.006082560062408447, 0.00612550401687622, 0.006076191902160645, 0.0061413440704345705, 0.006163328170776367, 0.006145567893981934, 0.006041567802429199, 0.006121119976043701, 0.006046559810638428, 0.006189280033111573, 0.006110527992248535, 0.006060031890869141, 0.006350560188293457, 0.0061197118759155275, 0.006146207809448242, 0.006072127819061279, 0.006120512008666992, 0.00603542423248291, 0.006112480163574218, 0.0060516161918640135, 0.0061188478469848635, 0.006012991905212402, 0.006099455833435059, 0.006027103900909424, 0.006144159793853759, 0.006051839828491211, 0.006131519794464111, 0.006027455806732178, 0.006151423931121826, 0.006060768127441407, 0.006102784156799317, 0.006082848072052002, 0.006067615985870361, 0.006074143886566162, 0.006036416053771972, 0.006087711811065674, 0.0060342721939086914, 0.006113279819488526, 0.006131711959838867, 0.006146143913269043, 0.006092864036560059, 0.006137824058532715, 0.00604966402053833, 0.006147903919219971, 0.006020639896392822, 0.006158783912658692, 0.006107232093811035, 0.006141503810882568, 0.006013279914855957, 0.006125792026519776, 0.00601907205581665, 0.006115327835083008, 0.0060663681030273435, 0.006076223850250244, 0.00606822395324707, 0.006178944110870361, 0.0062128958702087405, 0.006089503765106201, 0.006111040115356446, 0.006057695865631103, 0.006091360092163086, 0.006149087905883789, 0.006152927875518799, 0.006070367813110352, 0.006147583961486816, 0.0060215358734130855, 0.006089727878570556, 0.006012959957122803, 0.006162975788116455, 0.005999008178710938, 0.006176799774169922, 0.006060031890869141, 0.006074431896209717, 0.006100543975830078, 0.006034048080444336, 0.006078752040863037, 0.006112927913665771, 0.006105408191680908, 0.006057983875274659, 0.006082560062408447, 0.006042975902557373, 0.006084928035736084, 0.006023519992828369, 0.006082880020141602, 0.006014656066894531, 0.006078464031219482, 0.0061211838722229, 0.0064067840576171875, 0.006059679985046387, 0.006111231803894043, 0.0060234880447387696, 0.006188735961914062, 0.006094783782958984, 0.006196959972381592, 0.006188640117645264, 0.006115871906280518, 0.006154463768005371, 0.006104351997375489, 0.006118112087249756, 0.006060031890869141, 0.006123295783996582, 0.006041791915893555, 0.006108672142028809, 0.006025760173797607, 0.006176191806793213, 0.006078239917755127, 0.006210336208343506, 0.006049791812896729, 0.006129759788513184, 0.006180672168731689, 0.006107583999633789, 0.006137504100799561, 0.006121664047241211, 0.006114463806152343, 0.006049536228179932, 0.0061019201278686526, 0.006048799991607666, 0.006108479976654053, 0.006084256172180176, 0.006109151840209961, 0.006038847923278808, 0.0062039680480957034, 0.006009247779846192, 0.006120927810668945, 0.006030784130096435, 0.0061242241859436036, 0.006057983875274659, 0.006152224063873291, 0.006097023963928223, 0.006111231803894043, 0.006051104068756103, 0.0061058239936828615, 0.006099232196807861, 0.006090047836303711, 0.00609116792678833, 0.00605731201171875, 0.00610371208190918, 0.0060152320861816405, 0.006131487846374512, 0.006014944076538086, 0.0061562881469726565, 0.006107135772705078, 0.006137728214263916, 0.0060555520057678225, 0.0061055998802185055, 0.006088031768798828, 0.0060991358757019045, 0.006261216163635254, 0.006074368000030517, 0.006199295997619629, 0.0060412797927856445, 0.006152512073516846, 0.006027520179748535, 0.006198048114776611, 0.006112224102020264, 0.006113471984863281, 0.006002528190612793, 0.006160064220428467, 0.006080800056457519, 0.006161695957183838, 0.0060193600654602055, 0.006138495922088623, 0.005998303890228271, 0.006107232093811035, 0.006081535816192627, 0.006091392040252686, 0.006060416221618652, 0.006033408164978027, 0.006084832191467285, 0.006160416126251221, 0.006088448047637939, 0.00607587194442749, 0.006093344211578369, 0.006080512046813965, 0.006203487873077392, 0.006123136043548584, 0.0065550398826599125, 0.007563968181610107, 0.00660643196105957, 0.00670684814453125, 0.006532192230224609, 0.006109024047851562, 0.006158080101013184, 0.006080704212188721, 0.006160607814788818, 0.006051680088043213, 0.00615228796005249, 0.0060496959686279295, 0.006141952037811279, 0.00606822395324707, 0.006123519897460937, 0.006139743804931641, 0.006079872131347656, 0.006118303775787354, 0.006067264080047608, 0.006134592056274414, 0.0061151041984558105, 0.006164703845977783, 0.006030879974365235, 0.006162752151489257, 0.00599894380569458, 0.006110015869140625, 0.006032224178314209, 0.00611084794998169, 0.005988736152648926, 0.006122848033905029, 0.00601145601272583, 0.0061175041198730466, 0.006004703998565674, 0.006093952178955078, 0.0060488319396972655, 0.0060700798034667965, 0.006082528114318848, 0.006061312198638916, 0.006098944187164307, 0.006272928237915039, 0.0061121277809143065, 0.006096255779266357, 0.006127679824829101, 0.006027135848999023, 0.00610745620727539, 0.006196703910827637, 0.007695168018341064, 0.007882944107055664, 0.006240447998046875, 0.0060495038032531735, 0.0061718721389770505, 0.006066048145294189, 0.006126495838165283, 0.006031360149383545, 0.006109183788299561, 0.006028351783752442, 0.006114431858062744, 0.006059743881225586, 0.0061133761405944825, 0.006065343856811524, 0.006230432033538819, 0.0062137279510498045, 0.006058527946472168, 0.006128767967224121, 0.006041759967803955, 0.00610537576675415, 0.006039775848388672, 0.00611081600189209, 0.0060832958221435545, 0.006143680095672607, 0.00603545618057251, 0.00658022403717041, 0.006032671928405762, 0.006138591766357422, 0.0060347838401794435, 0.006092639923095703, 0.00608355188369751, 0.006070112228393555, 0.0062911038398742675, 0.006109151840209961, 0.006142591953277588, 0.0060919361114501955, 0.006184544086456299, 0.006085792064666748, 0.006186272144317627, 0.006040256023406982, 0.0061561598777771, 0.0059155840873718266, 0.006141952037811279, 0.0060878081321716305, 0.006160639762878418, 0.006061791896820068, 0.006073247909545898, 0.006196735858917236, 0.006037600040435791, 0.006093215942382812, 0.0060351681709289555, 0.006103328227996826, 0.006064127922058105, 0.006172416210174561, 0.006048319816589355, 0.006147776126861572, 0.006097184181213379, 0.0061140480041503905, 0.00604259204864502, 0.006126688003540039, 0.006011807918548584, 0.006120512008666992, 0.0060503678321838375, 0.006291200160980224, 0.006578815937042236, 0.006028575897216797, 0.006071008205413818, 0.006045695781707764, 0.006140223979949951, 0.006049215793609619, 0.006115647792816162, 0.006043583869934082, 0.006118688106536865, 0.00605456018447876, 0.006116799831390381, 0.006067071914672852, 0.006159264087677002, 0.006011648178100586, 0.006129759788513184, 0.006016160011291504, 0.006139967918395996, 0.006031455993652343, 0.006128575801849365, 0.006036448001861572, 0.006107711791992187, 0.006310527801513672, 0.006153632164001465, 0.0061298561096191405, 0.006074272155761719, 0.006183008193969727, 0.006049791812896729, 0.00612556791305542, 0.006092735767364502, 0.006110879898071289, 0.0060665922164916996, 0.006106719970703125, 0.005994336128234863, 0.006091328144073487, 0.006004608154296875, 0.006113408088684082, 0.0060119681358337404, 0.006121535778045654, 0.006095808029174804, 0.006119359970092773, 0.00595689582824707, 0.0060953922271728515, 0.006076608180999756, 0.006051839828491211, 0.006066431999206543, 0.006032800197601319, 0.006066656112670899, 0.006033184051513672, 0.006078271865844726, 0.006048064231872558, 0.0060845761299133305, 0.006029407978057861, 0.0061049599647521975, 0.005994751930236817, 0.0060713281631469725, 0.006021696090698242, 0.00607366418838501, 0.005995391845703125, 0.006078688144683838, 0.006022336006164551, 0.006097055912017822, 0.00601251220703125, 0.006080800056457519, 0.0060424962043762204, 0.006129312038421631, 0.0060414400100708004, 0.006107327938079834, 0.006012608051300048, 0.006118783950805664, 0.006009791851043701, 0.006129216194152832, 0.006037792205810547, 0.006121984004974365, 0.006202400207519531, 0.006088352203369141, 0.006161375999450684, 0.006127615928649902, 0.006119616031646728, 0.006061888217926025, 0.0060943360328674315, 0.0060349760055541995, 0.0060917439460754395, 0.006025216102600098, 0.006094848155975342, 0.006010240077972412, 0.006097631931304932, 0.005996448040008545, 0.006099199771881104, 0.006008575916290284, 0.006114975929260254, 0.006133408069610596, 0.0061242241859436036, 0.006075488090515137, 0.006119743824005127, 0.006034239768981934, 0.006089759826660156, 0.006053664207458496, 0.006067168235778808, 0.006039103984832764, 0.006034048080444336, 0.006091616153717041, 0.006040544033050537, 0.006154240131378174, 0.006378304004669189, 0.006119200229644775, 0.006504127979278565, 0.006744607925415039, 0.006352960109710693, 0.0060538239479064945, 0.006125823974609375, 0.006051199913024902, 0.006189663887023925, 0.00611516809463501, 0.006154047966003418, 0.006042975902557373, 0.006128352165222168, 0.006035679817199707, 0.006122623920440674, 0.006044159889221192, 0.006129983901977539, 0.006073984146118164, 0.00612995195388794, 0.006062399864196777, 0.006057663917541504, 0.006109344005584717, 0.006045536041259765, 0.0060661759376525876, 0.006044960021972657, 0.006165215969085694, 0.006052095890045166, 0.006094624042510986, 0.006016992092132569, 0.006206495761871338, 0.006026271820068359, 0.006102975845336914, 0.005992447853088379, 0.006106847763061523, 0.006617472171783447, 0.006460832118988037, 0.006097631931304932, 0.00603113603591919, 0.006086656093597412, 0.006016895771026611, 0.00612550401687622, 0.0061296639442443845, 0.006123104095458984, 0.006029920101165771, 0.006141952037811279, 0.006012928009033203, 0.006145823955535889, 0.006024576187133789, 0.006136672019958496, 0.006120448112487793, 0.006112063884735107, 0.006057695865631103, 0.006124000072479248, 0.00601308822631836, 0.006122432231903076, 0.006044479846954345, 0.006080863952636718, 0.006085696220397949, 0.006058688163757324, 0.006076416015625, 0.006051839828491211, 0.006100543975830078, 0.006027616024017334, 0.005961760044097901, 0.0060299839973449705, 0.006102911949157715, 0.006037407875061035, 0.006073599815368653, 0.006081503868103027, 0.006115327835083008, 0.0060183038711547855, 0.006093344211578369, 0.005998847961425781, 0.006080031871795654, 0.0060375361442565915, 0.006096799850463867, 0.005994495868682862, 0.006083072185516358, 0.006192575931549072, 0.0061363840103149415, 0.00606825590133667, 0.006119359970092773, 0.006064159870147705, 0.006086656093597412, 0.006088064193725586, 0.00609772777557373, 0.006080319881439209, 0.006025216102600098, 0.006096672058105468, 0.006078879833221435, 0.006091839790344238, 0.006046495914459229, 0.006059967994689942, 0.005987616062164307, 0.006079520225524902, 0.006041088104248047, 0.006076255798339844, 0.0060189437866210935, 0.006098847866058349, 0.006029024124145508, 0.006087135791778564, 0.006004288196563721, 0.0060936641693115235, 0.005977568149566651, 0.006119967937469483, 0.00601423978805542, 0.006310624122619629, 0.00707583999633789, 0.006176767826080322, 0.006633471965789795, 0.006054912090301514, 0.006121920108795166, 0.006855231761932373, 0.006351103782653808, 0.006156032085418701, 0.006082399845123291, 0.006154399871826172, 0.006103040218353272, 0.006161791801452637, 0.00602784013748169, 0.006149951934814453, 0.0060561919212341305, 0.0061337599754333495, 0.006108895778656006, 0.00611356782913208, 0.0061394238471984865, 0.0060293121337890625, 0.006131743907928467, 0.0060490560531616215, 0.0061283202171325685, 0.006041600227355957, 0.0061155838966369626, 0.006034304141998291, 0.006162911891937256, 0.006039968013763428, 0.006115424156188965, 0.006021024227142334, 0.006127615928649902, 0.00604918384552002, 0.006104991912841797, 0.006006495952606201, 0.006144991874694824, 0.005993567943572998, 0.006117919921875, 0.00605017614364624, 0.006094111919403076, 0.006077343940734863, 0.006127840042114258, 0.006090335845947266, 0.006019008159637451, 0.006109248161315918, 0.006028319835662842, 0.006063072204589843, 0.00603545618057251, 0.006094848155975342, 0.006051839828491211, 0.006104447841644287, 0.0060013761520385745, 0.006127007961273193, 0.006008768081665039, 0.006096704006195068, 0.006044415950775146, 0.006135807991027832, 0.0059985918998718265, 0.006106400012969971, 0.0060538239479064945, 0.006113887786865235, 0.006019264221191406, 0.006100992202758789, 0.005973311901092529, 0.006082240104675293, 0.006009856224060059, 0.006169792175292969, 0.006030015945434571, 0.006091040134429931, 0.006047584056854248, 0.0060702719688415525, 0.006360127925872803, 0.006351808071136475, 0.006922239780426025, 0.0065474557876586915, 0.006060256004333496, 0.00611030387878418, 0.0060722241401672365, 0.006128064155578613, 0.00603545618057251, 0.006175072193145752, 0.006090943813323975, 0.006181888103485108, 0.005944928169250488, 0.006095263957977295, 0.0060026879310607914, 0.006111104011535645, 0.006040768146514892, 0.006095808029174804, 0.006027328014373779, 0.006108352184295654, 0.006025983810424805, 0.006120639801025391, 0.006057919979095459, 0.006089600086212158, 0.006094848155975342, 0.006051392078399658, 0.00609935998916626, 0.006049983978271485, 0.006086495876312256, 0.006043647766113281, 0.006083807945251465, 0.006048255920410156, 0.006144288063049316, 0.006043647766113281, 0.00610313606262207, 0.006030655860900879, 0.006099455833435059, 0.006022687911987305, 0.006086656093597412, 0.006023744106292725, 0.00610700798034668, 0.005988831996917725, 0.006139552116394043, 0.006024640083312988, 0.0061075201034545895, 0.006013120174407959, 0.006108352184295654, 0.006031424045562744, 0.0061178879737854, 0.006014336109161377, 0.006113408088684082, 0.006002528190612793, 0.00614902400970459, 0.006053184032440186, 0.006046400070190429, 0.0060759038925170894, 0.006111775875091553, 0.006077919960021973, 0.00602569580078125, 0.006055679798126221, 0.006019519805908203, 0.0060752639770507814, 0.0061756157875061035, 0.00609657621383667, 0.006052256107330322, 0.006184959888458252, 0.00602947187423706, 0.006162464141845703, 0.0060332159996032714, 0.006166592121124268, 0.006027200222015381, 0.006116479873657227, 0.00600710391998291, 0.00608460807800293, 0.0060104641914367676, 0.006013120174407959, 0.006080800056457519, 0.006125279903411865, 0.006102047920227051, 0.006079040050506592, 0.006085375785827637, 0.006065824031829834, 0.0061147198677062985, 0.006041215896606445, 0.006087647914886475, 0.006037792205810547, 0.006096479892730713, 0.006029439926147461, 0.006115071773529053, 0.006030911922454834, 0.006136767864227295, 0.0060395197868347164, 0.006117152214050293, 0.006036960124969483, 0.006103775978088379, 0.006067647933959961, 0.006105472087860107, 0.006037504196166992, 0.006123839855194092, 0.005994175910949707, 0.006107135772705078, 0.006025055885314942, 0.006115327835083008, 0.006077983856201172, 0.00608028793334961, 0.006082784175872802, 0.006048543930053711, 0.006063839912414551, 0.006054175853729248, 0.006102880001068115, 0.006011168003082276, 0.006069983959197998, 0.006053887844085694, 0.006078464031219482, 0.006031360149383545, 0.006168575763702393, 0.00601907205581665, 0.006086656093597412, 0.006006368160247803, 0.0060965118408203125, 0.0059911999702453615, 0.006098400115966797, 0.005984928131103516, 0.006137343883514404, 0.006005119800567627, 0.006078815937042236, 0.006004384040832519, 0.0061042881011962894, 0.005983007907867432, 0.006080639839172363, 0.005982079982757568, 0.006089824199676514, 0.006047711849212646, 0.006165599822998047, 0.006025055885314942, 0.006098944187164307, 0.006030752182006836, 0.00609984016418457, 0.005958655834197998, 0.006043903827667237, 0.006097119808197021, 0.006044191837310791, 0.006149888038635254, 0.006027520179748535, 0.006115520000457763, 0.006038784027099609, 0.0061138558387756345, 0.006062111854553223, 0.006108352184295654, 0.0060731201171875, 0.006123424053192139, 0.006006591796875, 0.006138463973999023, 0.006179520130157471, 0.006116352081298828, 0.006008831977844238, 0.006098144054412842, 0.006034207820892334, 0.006120639801025391, 0.006045919895172119, 0.006152512073516846, 0.006084991931915283, 0.006039455890655517, 0.006078464031219482, 0.006042751789093017, 0.006078559875488282, 0.00602396821975708, 0.00618393611907959, 0.00602623987197876, 0.00614515209197998, 0.0060182719230651854, 0.006061791896820068, 0.006037439823150635, 0.006094848155975342, 0.00605292797088623, 0.006115712165832519, 0.006005152225494385, 0.006123680114746094, 0.006024479866027832, 0.00652566385269165, 0.006076416015625, 0.006078464031219482, 0.006395455837249756, 0.006068640232086182, 0.006094880104064941, 0.006053760051727295, 0.006109087944030762, 0.00605398416519165, 0.006072447776794433, 0.006041376113891601, 0.006084095954895019, 0.006025504112243652, 0.0061262397766113285, 0.005998496055603027, 0.00616864013671875, 0.006018879890441894, 0.00611356782913208, 0.006024928092956543, 0.00610700798034668, 0.005992576122283936, 0.006095935821533203, 0.005888000011444092, 0.006104703903198242, 0.00600054407119751, 0.006103519916534424, 0.006017119884490967, 0.00609225606918335, 0.006158048152923584, 0.006060544013977051, 0.006098336219787598, 0.006168384075164795, 0.006118400096893311, 0.006033408164978027, 0.006168575763702393, 0.006031072139739991, 0.0060910720825195315, 0.006027040004730225, 0.006101183891296387, 0.006027040004730225, 0.006099167823791504, 0.0060018239021301266, 0.006101408004760742, 0.00601043176651001, 0.0062473278045654295, 0.00606982421875, 0.006124991893768311, 0.0060234880447387696, 0.006132351875305176, 0.006042816162109375, 0.006097760200500488, 0.006049471855163574, 0.006047200202941894, 0.00607747220993042, 0.0060548801422119145, 0.006148767948150635, 0.006041791915893555, 0.006110976219177246, 0.006125823974609375, 0.006094848155975342, 0.006018784046173096, 0.006072383880615234, 0.006000832080841064, 0.006080480098724366, 0.0060059518814086915, 0.006084928035736084, 0.0060769920349121095, 0.006141695976257324, 0.006017280101776123, 0.0061562881469726565, 0.006019264221191406, 0.006164576053619385, 0.006026976108551026, 0.006584383964538574, 0.006116320133209228, 0.006111839771270752, 0.0060993280410766605, 0.006045695781707764, 0.006076159954071045, 0.0060145602226257325, 0.006077151775360107, 0.006045631885528565, 0.006072319984436035, 0.006017024040222168, 0.006090752124786377, 0.00593123197555542, 0.0060845441818237304, 0.006006847858428955, 0.00611737585067749, 0.005980160236358643, 0.006187007904052734, 0.006137504100799561, 0.006121664047241211, 0.006044991970062256, 0.00613647985458374, 0.006004928112030029, 0.006103263854980469, 0.006133535861968994, 0.006075456142425537, 0.006099904060363769, 0.006059391975402832, 0.006105728149414062, 0.0060555200576782224, 0.006101408004760742, 0.006056032180786133, 0.006111135959625244, 0.006168575763702393, 0.006116479873657227, 0.006100895881652832, 0.006146848201751709, 0.006003136157989502, 0.00609830379486084, 0.0059985599517822265, 0.006097311973571777, 0.006232063770294189, 0.006129312038421631, 0.00600713586807251, 0.006137119770050049, 0.006101727962493897, 0.006150144100189209, 0.0060764479637146, 0.00602668809890747, 0.006091584205627441, 0.0060497279167175295, 0.00607209587097168, 0.006033408164978027, 0.006073791980743409, 0.006064703941345215, 0.0060661759376525876, 0.006021120071411133, 0.0060841598510742185, 0.006013376235961914, 0.006594624042510986, 0.006074592113494873, 0.00613369607925415, 0.00599564790725708, 0.006148640155792236, 0.005988480091094971, 0.006107295989990234, 0.006110176086425782, 0.006097536087036132, 0.0061521601676940915, 0.006063712120056152, 0.0061356801986694335, 0.006022304058074951, 0.006078207969665527, 0.006031199932098389, 0.006096960067749024, 0.005920767784118652, 0.006104608058929443, 0.006017183780670166, 0.006125984191894532, 0.005994912147521973, 0.0060783357620239255, 0.006049856185913086, 0.006156223773956299, 0.006415808200836181, 0.006105887889862061, 0.0060128321647644044, 0.006111231803894043, 0.006059552192687988, 0.006114848136901855, 0.006121791839599609, 0.0061008319854736325, 0.006149919986724853, 0.006056032180786133, 0.006118656158447266, 0.006083839893341064, 0.006095615863800049, 0.006047391891479492, 0.006068128108978272, 0.006119296073913574, 0.0061073598861694335, 0.005985407829284668, 0.006107071876525879, 0.0060115838050842285, 0.006093056201934815, 0.00603545618057251, 0.006104864120483398, 0.00601094388961792, 0.00610265588760376, 0.005986847877502441, 0.006113279819488526, 0.006006015777587891, 0.006081088066101074, 0.0059845118522644045, 0.006088640213012695, 0.006013279914855957, 0.006176415920257568, 0.006033535957336426, 0.0060721921920776365, 0.0060928001403808595, 0.006038943767547608, 0.00606217622756958, 0.006050303936004638, 0.00611737585067749, 0.0060160961151123045, 0.006056064128875732, 0.006023583889007568, 0.006082335948944092, 0.006008480072021484, 0.0061363840103149415, 0.0060193600654602055, 0.006063936233520507, 0.0060850238800048825, 0.0061910400390625, 0.006025152206420898, 0.006147103786468506, 0.006017951965332031, 0.006107071876525879, 0.006049088001251221, 0.005980224132537842, 0.006062079906463623, 0.006081791877746582, 0.006020127773284912, 0.006163424015045166, 0.006039648056030273, 0.006075039863586425, 0.0060657281875610355, 0.006139935970306397, 0.006093215942382812, 0.006053887844085694, 0.006105088233947754, 0.006044896125793457, 0.0060813121795654295, 0.00602342414855957, 0.006100736141204834, 0.006062079906463623, 0.006098944187164307, 0.006066463947296143, 0.00646073579788208, 0.006035871982574463, 0.006139776229858398, 0.006037631988525391, 0.006137856006622314, 0.006024320125579834, 0.006132607936859131, 0.0060702719688415525, 0.006090144157409668, 0.0060854401588439945, 0.006368095874786377, 0.006142496109008789, 0.006074848175048828, 0.00613369607925415, 0.006078464031219482, 0.006160384178161621, 0.006004735946655273, 0.00613100814819336, 0.006019711971282959, 0.006127168178558349, 0.006023263931274414, 0.00611737585067749, 0.0060215358734130855, 0.006174592018127442, 0.00605401611328125, 0.006164480209350586, 0.006073887825012207, 0.006092735767364502, 0.006156832218170166, 0.006086656093597412, 0.00615180778503418, 0.006069952011108398, 0.0061344318389892575, 0.0060759038925170894, 0.0061456642150878905, 0.006052063941955566, 0.006126048088073731, 0.006125792026519776, 0.006155935764312745, 0.006029664039611816, 0.006123519897460937, 0.006035295963287354, 0.006119103908538819, 0.006033599853515625, 0.006162975788116455, 0.006112576007843018, 0.006101952075958252, 0.006110239982604981, 0.006050879955291748, 0.006059679985046387, 0.006052063941955566, 0.006082304000854492, 0.006062111854553223, 0.006096896171569824, 0.006043680191040039, 0.006084512233734131, 0.0060349760055541995, 0.0061066880226135255, 0.00604259204864502, 0.00608892822265625, 0.00601475191116333, 0.006148096084594727, 0.006026303768157959, 0.006179647922515869, 0.006037792205810547, 0.00613318395614624, 0.006080383777618408, 0.006130208015441894, 0.006071296215057373, 0.006104063987731933, 0.006086368083953858, 0.0060524802207946775, 0.006118624210357666, 0.006047935962677002, 0.006119135856628418, 0.006076576232910157, 0.0061270718574523925, 0.006050271987915039, 0.00609119987487793, 0.006049088001251221, 0.006125792026519776, 0.00603334379196167, 0.006131648063659668, 0.006103648185729981, 0.006127615928649902, 0.006013216018676758, 0.006116415977478027, 0.006001632213592529, 0.006108736038208008, 0.00667855978012085, 0.006311488151550293, 0.006097439765930176, 0.006041088104248047, 0.006105120182037353, 0.006038303852081299, 0.006119103908538819, 0.006055903911590576, 0.006110559940338134, 0.0060440640449523925, 0.0061504321098327635, 0.006021471977233886, 0.0061231679916381836, 0.006021408081054688, 0.006184671878814697, 0.006075647830963135, 0.006089375972747803, 0.006014688014984131, 0.006020736217498779, 0.006488416194915771, 0.006039360046386719, 0.006076288223266601, 0.006027743816375732, 0.0061047677993774415, 0.006067647933959961, 0.006099232196807861, 0.006040160179138184, 0.006558879852294922, 0.0060342721939086914, 0.006133600234985352, 0.006061503887176514, 0.0061561279296875, 0.006050687789916992, 0.006086656093597412, 0.006092512130737305, 0.006037792205810547, 0.0061171197891235355, 0.006037759780883789, 0.006086656093597412, 0.006047808170318604, 0.006115263938903809, 0.006170623779296875, 0.006129280090332031, 0.00605452823638916, 0.00613267183303833, 0.00609164810180664, 0.006318016052246094, 0.006119423866271972, 0.006426623821258545, 0.006148096084594727, 0.006838272094726563, 0.007007552146911621, 0.006165440082550049, 0.006115071773529053, 0.0061972479820251464, 0.006086656093597412, 0.006210912227630616, 0.006158368110656738, 0.0061569280624389645, 0.006038911819458008, 0.006229695796966553, 0.006038047790527344, 0.006156703948974609, 0.005992447853088379, 0.006135807991027832, 0.006017024040222168, 0.006116799831390381, 0.006009407997131348, 0.006107423782348633, 0.006047455787658691, 0.006109407901763916, 0.006102208137512207, 0.006099487781524658, 0.006108543872833252, 0.006193664073944092, 0.00622815990447998, 0.006105088233947754, 0.006107135772705078, 0.006057151794433594, 0.0062568001747131344, 0.0060340800285339355, 0.006021120071411133, 0.006011903762817383, 0.007173376083374023, 0.006127359867095947, 0.006037504196166992, 0.006119423866271972, 0.006117663860321045, 0.006205152034759522, 0.006049312114715576, 0.006117856025695801, 0.006013984203338623, 0.006106080055236817, 0.006028351783752442, 0.006089663982391357, 0.00603872013092041, 0.006137887954711914, 0.006065087795257568, 0.0066722240447998045, 0.006217728137969971, 0.006082560062408447, 0.006161695957183838, 0.006058623790740967, 0.006146143913269043, 0.0060210561752319335, 0.006141248226165771, 0.0061138558387756345, 0.006144192218780518, 0.00603334379196167, 0.006131072044372559, 0.006087488174438477, 0.0061049599647521975, 0.006085760116577148, 0.0060588159561157226, 0.006111392021179199, 0.00608019208908081, 0.006350080013275147, 0.006062687873840332, 0.006127200126647949, 0.006054751873016358, 0.006128960132598877, 0.006023808002471924, 0.006107135772705078, 0.0060124797821044925, 0.006106783866882324, 0.006004992008209228, 0.006121471881866455, 0.005995039939880371, 0.006115488052368164, 0.006012415885925293, 0.006107295989990234, 0.006008863925933838, 0.00611568021774292, 0.006035071849822998, 0.006090240001678467, 0.00610700798034668, 0.006068511962890625, 0.006087007999420166, 0.006019264221191406, 0.0060928001403808595, 0.00603545618057251, 0.006069695949554444, 0.006040063858032227, 0.00606601619720459, 0.005933184146881104, 0.006119423866271972, 0.006051839828491211, 0.006092127799987793, 0.00599948787689209, 0.006075744152069092, 0.006013376235961914, 0.006072480201721192, 0.006005631923675537, 0.006136799812316894, 0.0060128321647644044, 0.00608787202835083, 0.006022240161895752, 0.006121471881866455, 0.005998400211334229, 0.006103104114532471, 0.006001984119415283, 0.006133376121520996, 0.0060382719039917, 0.006148128032684326, 0.006074592113494873, 0.0061040959358215335, 0.006079455852508545, 0.006061151981353759, 0.006097663879394531, 0.006060192108154297, 0.006096704006195068, 0.006105279922485352, 0.006113599777221679, 0.006051519870758057, 0.006128640174865723, 0.006062431812286377, 0.00610595178604126, 0.006110688209533691, 0.006142591953277588, 0.006022880077362061, 0.006551136016845703, 0.006021312236785889, 0.006093023777008056, 0.006067359924316406, 0.0060711359977722165, 0.006079936027526855, 0.006047679901123047, 0.006080671787261963, 0.006055935859680176, 0.006162911891937256, 0.006080512046813965, 0.006083936214447022, 0.006023839950561523, 0.006110335826873779, 0.0060424962043762204, 0.0060661759376525876, 0.006019008159637451, 0.006150207996368408, 0.005992447853088379, 0.006115327835083008, 0.006002143859863281, 0.00610316801071167, 0.006015168190002441, 0.006136256217956543, 0.006014848232269287, 0.0061131839752197265, 0.006017055988311768, 0.005997344017028809, 0.0060234560966491695, 0.006090688228607178, 0.005996416091918946, 0.0061415362358093264, 0.006029344081878662, 0.00613372802734375, 0.00612992000579834, 0.0060356159210205075, 0.006096159934997559, 0.006052576065063477, 0.006111328125, 0.006036992073059082, 0.006093215942382812, 0.006047264099121093, 0.006140384197235107, 0.006023168087005615, 0.006067327976226807, 0.006038080215454102, 0.006105760097503662, 0.006034207820892334, 0.006098879814147949, 0.006016223907470703, 0.006147136211395263, 0.006036128044128418, 0.006211584091186524, 0.0060430078506469725, 0.006195839881896973, 0.0061356801986694335, 0.0061669120788574215, 0.0061212158203125, 0.006118912220001221, 0.006123775959014892, 0.006088736057281494, 0.006150591850280762, 0.006049824237823486, 0.006102784156799317, 0.006076032161712646, 0.006104479789733887, 0.006013919830322265, 0.006126944065093994, 0.006024064064025879, 0.006124991893768311, 0.006021312236785889, 0.006147903919219971, 0.006039008140563965, 0.006132607936859131, 0.006016223907470703, 0.006140927791595459, 0.006090528011322022, 0.006122719764709472, 0.0060854082107543945, 0.006052127838134766, 0.006100480079650879, 0.006049119949340821, 0.006093696117401123, 0.006042943954467773, 0.006103519916534424, 0.006037727832794189, 0.006092959880828857, 0.006022751808166504, 0.00608460807800293, 0.006098847866058349]",tokens/s,163.84798211096114,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,853.331968,556.72832,0.0,178.25792,176.52224,s,1,7.511060546875,7.511060546875,0.0,7.511060546875,7.511060546875,7.511060546875,7.511060546875,[7.511060546875],,kWh,2.013667340417366e-05,2.214166881086207e-06,6.45611627600462e-06,2.8806956561264485e-05,,MB,1176.674304,669.974528,0.0,262.144,221.118976,s,10,0.2373123188018799,0.02373123188018799,7.72173514862464e-05,0.023694639205932615,0.023846604537963865,0.023847382164001465,0.023848004264831545,"[0.023846431732177733, 0.023769792556762696, 0.023693119049072266, 0.02362953567504883, 0.023674528121948243, 0.023655296325683594, 0.023848159790039063, 0.02381488037109375, 0.023684415817260742, 0.023696159362792967]",tokens/s,10787.472023891078,kWh,6.970796484486802e-07,7.687053776317147e-08,4.0972453886394427e-07,1.183674725075796e-06,tokens/kWh,216275632.63514575,MB,1211.006976,684.654592,0.0,276.824064,221.271552,s,10,13.6217958984375,1.3621795898437499,0.005329277517955597,1.3617802124023437,1.3692102783203126,1.3709354614257812,1.3723156079101562,"[1.3575599365234374, 1.3600166015625, 1.3583939208984375, 1.368826904296875, 1.3543009033203126, 1.37266064453125, 1.3644005126953125, 1.3580308837890624, 1.364061767578125, 1.3635438232421875]",tokens/s,46.24940827899681,kWh,3.945427498654954e-05,4.3513940986203914e-06,2.053856999753807e-05,6.4344239082708e-05,tokens/kWh,979108.6334709761,,s,630,13.616925313949594,0.02161416716499934,0.00044554585507595816,0.0215066556930542,0.021869215393066407,0.0222325496673584,0.023323972034454347,"[0.021236480712890624, 0.021513376235961914, 0.021559551239013673, 0.021807424545288084, 0.021418655395507812, 0.021406335830688475, 0.021258880615234375, 0.021897600173950194, 0.021334016799926758, 0.02127462387084961, 0.021506048202514647, 0.021445632934570313, 0.021560319900512694, 0.021444896697998046, 0.021406431198120118, 0.021496511459350585, 0.021620447158813477, 0.02152262306213379, 0.021377023696899415, 0.021294591903686523, 0.02125686454772949, 0.021400192260742187, 0.021376031875610352, 0.021254976272583007, 0.021309215545654295, 0.02146099281311035, 0.02182143974304199, 0.021465087890625, 0.02154105567932129, 0.02138297653198242, 0.0215285758972168, 0.021423744201660155, 0.021451135635375977, 0.021352767944335938, 0.021373823165893556, 0.0214653434753418, 0.021315488815307617, 0.021363168716430663, 0.021469600677490236, 0.024030271530151366, 0.0217542724609375, 0.021818784713745116, 0.021697439193725587, 0.021587167739868164, 0.02165635108947754, 0.021979455947875978, 0.021725215911865235, 0.02145987129211426, 0.02147439956665039, 0.021526176452636717, 0.022349855422973634, 0.021488832473754882, 0.021376895904541015, 0.02139638328552246, 0.02154911994934082, 0.02137696075439453, 0.021604352951049805, 0.0214769287109375, 0.021598175048828126, 0.02154745674133301, 0.021344287872314453, 0.021366783142089844, 0.021515615463256837, 0.02103910446166992, 0.021428096771240236, 0.021523616790771485, 0.02137392044067383, 0.021559551239013673, 0.02133580780029297, 0.021301248550415038, 0.021358591079711914, 0.021294240951538087, 0.021968000411987303, 0.02149087905883789, 0.02148828887939453, 0.021571424484252928, 0.021542783737182616, 0.021405759811401366, 0.021499839782714844, 0.02141404724121094, 0.021464672088623047, 0.022016416549682616, 0.021377023696899415, 0.021331968307495116, 0.02183782386779785, 0.021456159591674805, 0.021559616088867188, 0.021505983352661132, 0.021764575958251955, 0.021630975723266603, 0.02229574394226074, 0.02196361541748047, 0.02179836845397949, 0.021625343322753905, 0.021481472015380858, 0.022567264556884764, 0.021362079620361327, 0.021455488204956054, 0.021685888290405273, 0.02166783905029297, 0.0214334716796875, 0.02133046340942383, 0.021445247650146486, 0.021576704025268553, 0.021385951995849608, 0.02145075225830078, 0.02139468765258789, 0.021360992431640625, 0.02156716728210449, 0.021318368911743164, 0.021366304397583007, 0.02145280075073242, 0.021376703262329103, 0.021602815628051757, 0.021485855102539062, 0.0213090877532959, 0.0218767032623291, 0.02401113510131836, 0.021763200759887694, 0.02183660888671875, 0.02154435157775879, 0.02144937515258789, 0.021519519805908202, 0.021488447189331055, 0.021364063262939454, 0.02138591957092285, 0.021095584869384766, 0.02143539237976074, 0.021462879180908202, 0.02152681541442871, 0.021454111099243164, 0.021505823135375978, 0.021439456939697267, 0.021528255462646483, 0.0215284481048584, 0.021602399826049806, 0.02222457695007324, 0.021737695693969727, 0.02164339256286621, 0.021497856140136717, 0.02161782455444336, 0.022481760025024413, 0.021597471237182617, 0.021271263122558594, 0.02153267288208008, 0.02141798400878906, 0.021300928115844726, 0.021309440612792968, 0.02148080062866211, 0.02167087936401367, 0.02307891273498535, 0.023346271514892578, 0.021427104949951172, 0.021526527404785157, 0.02138966369628906, 0.021448352813720702, 0.021378175735473633, 0.021322175979614257, 0.021395904541015625, 0.021366336822509765, 0.021342655181884766, 0.021215232849121093, 0.021369888305664064, 0.02134934425354004, 0.021639232635498048, 0.021739200592041017, 0.02140166473388672, 0.021434560775756836, 0.021565216064453125, 0.02146892738342285, 0.02161712074279785, 0.02147020721435547, 0.021308095932006835, 0.02142585563659668, 0.021338367462158205, 0.021242176055908203, 0.021329631805419923, 0.02126268768310547, 0.02137049674987793, 0.021432479858398436, 0.02135001564025879, 0.02145955276489258, 0.021856607437133788, 0.02143824005126953, 0.02148543930053711, 0.021528863906860353, 0.021448768615722657, 0.02254198455810547, 0.021444608688354492, 0.021233823776245116, 0.02158470344543457, 0.02138092803955078, 0.021612543106079102, 0.021438432693481446, 0.021710847854614256, 0.02139548873901367, 0.02126233673095703, 0.021428224563598632, 0.021377023696899415, 0.021393312454223632, 0.02146633529663086, 0.021441408157348633, 0.021370880126953123, 0.022338655471801756, 0.02152332878112793, 0.021620927810668947, 0.021360479354858398, 0.021301248550415038, 0.021393407821655275, 0.021346303939819337, 0.021821760177612306, 0.021613279342651368, 0.021425119400024416, 0.02141798400878906, 0.021368831634521485, 0.021389312744140625, 0.021393184661865235, 0.021822975158691405, 0.028106592178344728, 0.023689855575561525, 0.02150614356994629, 0.021493919372558595, 0.02158415985107422, 0.021788543701171875, 0.021432159423828125, 0.02142972755432129, 0.021537151336669922, 0.02193833541870117, 0.021755903244018555, 0.021513856887817383, 0.02152662467956543, 0.02160691261291504, 0.022642656326293944, 0.02157548713684082, 0.02149996757507324, 0.021469120025634766, 0.021436416625976562, 0.0213602237701416, 0.021483936309814454, 0.02154003143310547, 0.021692480087280273, 0.022926080703735353, 0.021868383407592774, 0.021767936706542968, 0.021552799224853515, 0.02137785530090332, 0.021379072189331053, 0.021987552642822265, 0.02208745574951172, 0.021632160186767578, 0.02144540786743164, 0.021427871704101563, 0.02114784049987793, 0.021381919860839843, 0.021385215759277345, 0.021882688522338867, 0.021602495193481445, 0.021585376739501953, 0.02145510482788086, 0.02143052864074707, 0.021573663711547852, 0.02146892738342285, 0.021491552352905275, 0.021446815490722658, 0.021419296264648436, 0.021679296493530273, 0.021521663665771483, 0.021440927505493163, 0.02150003242492676, 0.02126790428161621, 0.02143289566040039, 0.021368928909301758, 0.02165670394897461, 0.021641151428222656, 0.02160111999511719, 0.02149190330505371, 0.021603488922119142, 0.021748384475708007, 0.022570112228393554, 0.021510208129882812, 0.02151299285888672, 0.021689952850341795, 0.02138912010192871, 0.021396095275878907, 0.021436256408691408, 0.02161680030822754, 0.021418176651000976, 0.02135379219055176, 0.021361152648925782, 0.02136787223815918, 0.021292255401611327, 0.02136649513244629, 0.021348512649536133, 0.021396928787231446, 0.021399423599243163, 0.02142892837524414, 0.021361759185791016, 0.02150716781616211, 0.02141276741027832, 0.021352575302124022, 0.021504447937011718, 0.021362016677856446, 0.021740352630615235, 0.02172480010986328, 0.021442592620849608, 0.021463424682617187, 0.02154412841796875, 0.021480255126953125, 0.021506048202514647, 0.02141798400878906, 0.021415935516357423, 0.021483295440673827, 0.021291231155395506, 0.021380447387695314, 0.021363391876220703, 0.021203104019165038, 0.021699424743652343, 0.021726112365722656, 0.022511199951171876, 0.021791231155395507, 0.021799999237060545, 0.021648319244384765, 0.021608448028564452, 0.022517759323120116, 0.02173734474182129, 0.02153913688659668, 0.021912895202636718, 0.02168502426147461, 0.021475040435791015, 0.021719039916992186, 0.02185215950012207, 0.021931615829467774, 0.021713312149047852, 0.02166374397277832, 0.021796863555908205, 0.021571584701538086, 0.021753856658935547, 0.021683584213256835, 0.021701248168945312, 0.021776384353637695, 0.02178665542602539, 0.021830751419067384, 0.02181193542480469, 0.021757120132446288, 0.0218239688873291, 0.021856767654418945, 0.0216760311126709, 0.021751808166503905, 0.022245376586914063, 0.021845760345458983, 0.021792831420898436, 0.021808544158935548, 0.021952384948730468, 0.021726112365722656, 0.021707839965820312, 0.021689504623413087, 0.02170217514038086, 0.02162099266052246, 0.021502208709716798, 0.021669408798217774, 0.021523040771484377, 0.021489280700683594, 0.021467424392700194, 0.02176585578918457, 0.021926048278808594, 0.02217763137817383, 0.02186412811279297, 0.021649696350097655, 0.021668224334716796, 0.022607519149780275, 0.021911104202270507, 0.021637920379638673, 0.021941919326782227, 0.021501920700073243, 0.02174569511413574, 0.021964319229125978, 0.022018207550048827, 0.02172934341430664, 0.021215103149414063, 0.021654848098754884, 0.021450944900512695, 0.021463680267333984, 0.021476831436157227, 0.021384832382202148, 0.021523584365844728, 0.021538591384887694, 0.021530176162719728, 0.021807552337646485, 0.02147942352294922, 0.021550592422485353, 0.021504608154296875, 0.021501663208007813, 0.021645824432373048, 0.021761375427246092, 0.022051359176635744, 0.021648256301879883, 0.021705663681030274, 0.021592063903808592, 0.02143779182434082, 0.021566112518310546, 0.021395776748657228, 0.023150527954101562, 0.021544704437255858, 0.021659872055053712, 0.02168832015991211, 0.02164486312866211, 0.021528255462646483, 0.021572128295898437, 0.021745920181274414, 0.021972736358642577, 0.021752864837646484, 0.02178761672973633, 0.021981472015380858, 0.021750848770141603, 0.022692512512207032, 0.021782527923583983, 0.021788288116455078, 0.02184185600280762, 0.02171129608154297, 0.02167807960510254, 0.02164735984802246, 0.021727455139160155, 0.021724832534790038, 0.02165977668762207, 0.02154300880432129, 0.02133907127380371, 0.0214619197845459, 0.021438207626342774, 0.02154521560668945, 0.02156675148010254, 0.021545759201049806, 0.022007871627807617, 0.02141779136657715, 0.0214836483001709, 0.021448703765869142, 0.021372991561889647, 0.021419904708862306, 0.021506111145019532, 0.021420095443725588, 0.02153392028808594, 0.02195884895324707, 0.021135200500488283, 0.02152448081970215, 0.021420032501220702, 0.021526432037353514, 0.021352319717407225, 0.021341888427734376, 0.02133660888671875, 0.021372095108032226, 0.02150275230407715, 0.021373151779174804, 0.02140550422668457, 0.021366783142089844, 0.021950464248657226, 0.021575679779052736, 0.02169241523742676, 0.02153171157836914, 0.02156844711303711, 0.02156915283203125, 0.02149603271484375, 0.022657344818115235, 0.021507904052734374, 0.021608320236206055, 0.021773632049560548, 0.021376895904541015, 0.02155404853820801, 0.021467231750488282, 0.02162892723083496, 0.021494943618774413, 0.02142207908630371, 0.02140598487854004, 0.021397600173950194, 0.021281343460083008, 0.021360864639282228, 0.02146886444091797, 0.021516223907470704, 0.02133852767944336, 0.021405471801757812, 0.021343488693237305, 0.02146588706970215, 0.021483360290527345, 0.02125388717651367, 0.021575935363769533, 0.021437503814697265, 0.021586143493652343, 0.021332704544067382, 0.02195043182373047, 0.02157904052734375, 0.021408096313476562, 0.02149043273925781, 0.021531679153442382, 0.021385568618774414, 0.021508544921875, 0.021430112838745116, 0.02132371139526367, 0.023760351181030273, 0.022306880950927734, 0.02149190330505371, 0.02148387145996094, 0.02141321563720703, 0.02173766326904297, 0.021580255508422852, 0.021537952423095703, 0.021437280654907225, 0.02126233673095703, 0.022544384002685547, 0.02185625648498535, 0.021630975723266603, 0.021977088928222657, 0.021675519943237305, 0.021795232772827147, 0.021745792388916017, 0.0215817928314209, 0.021440511703491212, 0.021544223785400392, 0.0216375675201416, 0.02151775932312012, 0.0219451847076416, 0.021585119247436522, 0.021475263595581055, 0.021744543075561524, 0.02140889549255371, 0.021465919494628907, 0.02141916847229004, 0.02146828842163086, 0.02176358413696289, 0.021487775802612304, 0.02141539192199707, 0.021592863082885744, 0.02155939292907715, 0.0215629768371582, 0.021763872146606446, 0.021606752395629883, 0.021607744216918946, 0.0216746883392334, 0.021718175888061523, 0.02150079917907715, 0.021529823303222655, 0.021543872833251952, 0.0215163516998291, 0.021417728424072267, 0.021360767364501952, 0.021480960845947264, 0.02174835205078125, 0.021801887512207033, 0.02326937675476074, 0.02180624008178711, 0.021788511276245117, 0.021608287811279298, 0.021486719131469725, 0.0214619197845459, 0.02257302474975586, 0.02166169548034668, 0.021725343704223632, 0.021858144760131835, 0.021579519271850586, 0.021688255310058593, 0.02163030433654785, 0.021555583953857423, 0.02142064094543457, 0.021446016311645506, 0.021441375732421875, 0.02157779121398926, 0.02131318473815918, 0.021421344757080078, 0.021473440170288086, 0.021369216918945312, 0.02115167999267578, 0.021372480392456053, 0.0214021110534668, 0.024878175735473632, 0.022911903381347656, 0.022460735321044922, 0.02148748779296875, 0.021491519927978514, 0.02141766357421875, 0.02157756805419922, 0.022239072799682617, 0.021631616592407227, 0.021651456832885742, 0.02146895980834961, 0.021473056793212892, 0.02152284812927246, 0.021473087310791016, 0.0215568962097168, 0.021619264602661132, 0.02139571189880371, 0.021346303939819337, 0.021520063400268553, 0.021483232498168945, 0.02184409523010254, 0.021637088775634767, 0.021454912185668945, 0.02143657684326172, 0.0214998722076416, 0.02136604881286621, 0.02233622360229492, 0.021698688507080077, 0.02163443183898926, 0.022107967376708983, 0.02165017509460449, 0.021835775375366212, 0.021809152603149414, 0.02177129554748535, 0.021502944946289064, 0.0214400634765625, 0.02154854393005371, 0.021502431869506837, 0.021457376480102538, 0.021403167724609377, 0.021461471557617188, 0.021397504806518555, 0.021450239181518553, 0.021422880172729492, 0.021454559326171876, 0.021368831634521485, 0.021394464492797853, 0.021459936141967773, 0.02132809638977051, 0.021341344833374024, 0.02138175964355469, 0.021444896697998046, 0.02145587158203125, 0.021709440231323242, 0.021944063186645508, 0.02167030334472656, 0.021497695922851563, 0.021485183715820314, 0.02149737548828125, 0.021431520462036134]",tokens/s,46.2659510480394,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3809.091584,4375.642112,0.0,3997.171712,3878.257152,s,1,10.1610673828125,10.1610673828125,0.0,10.1610673828125,10.1610673828125,10.1610673828125,10.1610673828125,[10.1610673828125],,kWh,9.453367005832356e-05,1.0420346157089993e-05,3.048863550200731e-05,0.00013544265171742086,,MB,2068.639744,4862.181376,0.0,4454.350848,4371.844096,s,10,6.675686889648437,0.6675686889648438,0.001182260049307542,0.6671465148925781,0.6692501159667968,0.6694332855224608,0.6695798211669921,"[0.6663990478515625, 0.665687744140625, 0.668204345703125, 0.6683736572265625, 0.669616455078125, 0.6692094116210937, 0.66723583984375, 0.666953125, 0.6670571899414063, 0.6669500732421875]",tokens/s,383.48113719497974,kWh,1.942514973437639e-05,2.142278729064239e-06,1.2911815885000184e-05,3.4479244348440813e-05,tokens/kWh,7424756.6858748915,MB,2082.807808,5063.507968,0.0,4655.67744,4530.328576,s,10,392.17560546875006,39.217560546875,0.04674525619346836,39.191431640625,39.287291015625,39.2940673828125,39.2994884765625,"[39.161171875, 39.1854765625, 39.26026171875, 39.28578515625, 39.30084375, 39.2348046875, 39.185828125, 39.19703515625, 39.18309375, 39.1813046875]",tokens/s,1.6064232226963457,kWh,0.0011423082741539557,0.00012600511666804526,0.0007596047187943987,0.0020279181096164,tokens/kWh,31066.343212407653,,s,630,392.1716875610349,0.6224947421603733,0.000999651843105283,0.6221973571777344,0.6240720092773437,0.6245301025390625,0.6251899475097656,"[0.6208662719726562, 0.6207017211914062, 0.6207979125976563, 0.620652587890625, 0.6211030883789063, 0.6210949096679688, 0.6213795776367188, 0.6215086059570313, 0.6209710693359375, 0.620970947265625, 0.6212689208984375, 0.6219121704101562, 0.621631103515625, 0.6217035522460937, 0.6210741577148438, 0.6216338500976563, 0.621465576171875, 0.6212767944335937, 0.6213320922851563, 0.6221156005859375, 0.621531005859375, 0.6213934326171875, 0.6221089477539062, 0.6209555053710938, 0.6218368530273437, 0.6214320068359375, 0.6214171142578125, 0.621451416015625, 0.6215410766601562, 0.6220205688476562, 0.6226742553710938, 0.6227169189453124, 0.621549560546875, 0.6219837646484375, 0.6218383178710938, 0.6212990112304687, 0.621251220703125, 0.6218731689453125, 0.6219625244140625, 0.6210096435546875, 0.6220963745117187, 0.6212274169921875, 0.6215418090820313, 0.6216337890625, 0.6213214111328125, 0.6221744384765625, 0.6212382202148438, 0.6219413452148438, 0.6216642456054687, 0.6220770263671875, 0.6223819580078125, 0.621633544921875, 0.6220308227539062, 0.6218731079101563, 0.621556884765625, 0.6221239624023438, 0.6228521118164062, 0.6217460327148437, 0.6216721801757813, 0.6218858642578124, 0.6213114013671875, 0.6218358764648437, 0.6216796264648438, 0.6216312255859375, 0.6215479125976563, 0.62104296875, 0.6209993896484375, 0.6224806518554687, 0.6214332275390625, 0.6217445068359375, 0.6213316040039063, 0.6214786376953125, 0.6217033081054687, 0.6214041748046875, 0.621117431640625, 0.62139599609375, 0.6212894897460938, 0.6211517944335937, 0.6212304077148437, 0.6213383178710937, 0.6229478149414063, 0.62127783203125, 0.6217813110351562, 0.6214799194335937, 0.621645751953125, 0.6212383422851563, 0.6216724243164062, 0.622635009765625, 0.621991943359375, 0.62181298828125, 0.6215087890625, 0.621041748046875, 0.6216663818359375, 0.622186279296875, 0.6211631469726563, 0.6220943603515625, 0.621770751953125, 0.6214201049804687, 0.6217911376953125, 0.6219002685546875, 0.6219304809570313, 0.6224404296875, 0.6215733642578125, 0.622050048828125, 0.622199951171875, 0.6227362670898438, 0.6235402221679688, 0.621139404296875, 0.6225966796875, 0.6220348510742187, 0.6215162963867188, 0.62206005859375, 0.6221367797851562, 0.6229017944335937, 0.6219788818359375, 0.6231944580078125, 0.622035400390625, 0.6224629516601563, 0.6234024047851563, 0.62279736328125, 0.62261865234375, 0.6231654663085937, 0.6234412841796875, 0.6231921997070312, 0.6231817626953124, 0.6234131469726563, 0.6228252563476563, 0.623083740234375, 0.62229296875, 0.6221814575195312, 0.6223729858398438, 0.6235595092773437, 0.6238056030273438, 0.6229471435546875, 0.6226575317382812, 0.6221455078125, 0.6221781005859375, 0.621883056640625, 0.6221412353515625, 0.6218841552734375, 0.6221474609375, 0.6222430419921875, 0.6224573974609375, 0.6244620361328125, 0.6231836547851562, 0.6232293090820312, 0.6236917724609375, 0.623435546875, 0.6235765991210938, 0.621744873046875, 0.6233309326171875, 0.6228955078125, 0.6224219360351563, 0.6232003173828125, 0.6229783935546875, 0.6228689575195312, 0.6229219970703125, 0.62275927734375, 0.62302685546875, 0.6236508178710938, 0.6232855834960938, 0.62368017578125, 0.6235176391601562, 0.6234476928710937, 0.62329248046875, 0.6232743530273438, 0.6232473754882812, 0.6228970336914063, 0.6231710815429687, 0.6233646850585938, 0.6227291870117188, 0.623120361328125, 0.6228684692382812, 0.6239575805664063, 0.6243536987304688, 0.6232473754882812, 0.624051513671875, 0.6230247192382813, 0.6234602661132812, 0.6252095947265625, 0.6237081298828125, 0.6246498413085938, 0.6240689697265625, 0.6241747436523437, 0.6232557983398438, 0.6239718627929688, 0.6235609741210938, 0.623882568359375, 0.6232124633789062, 0.6231897583007813, 0.6230674438476562, 0.6230609741210937, 0.624166748046875, 0.6237717895507813, 0.6243942260742188, 0.6245888061523438, 0.625301513671875, 0.6247157592773438, 0.6230240478515625, 0.625141845703125, 0.6228869018554688, 0.6232366943359375, 0.62269873046875, 0.6231851806640625, 0.6220228271484375, 0.622017333984375, 0.6219386596679688, 0.6229503784179687, 0.6238351440429688, 0.62455810546875, 0.62429736328125, 0.6225447387695312, 0.623547119140625, 0.6232158203125, 0.6232850341796875, 0.6230805053710937, 0.6226461791992187, 0.62251171875, 0.62471533203125, 0.6247340698242188, 0.6254151000976562, 0.623763427734375, 0.6232801513671875, 0.62427685546875, 0.6225496826171875, 0.6223196411132812, 0.6223701171875, 0.6233524780273437, 0.6226534423828125, 0.6228392944335938, 0.6217301635742187, 0.62282568359375, 0.6233374633789063, 0.6248344116210938, 0.624234619140625, 0.6246707153320312, 0.624437255859375, 0.6261248168945313, 0.624300048828125, 0.6247915649414062, 0.6247709350585937, 0.623346923828125, 0.62327490234375, 0.6231838989257813, 0.6232733764648437, 0.624319091796875, 0.623203369140625, 0.6235957641601563, 0.6232378540039063, 0.6230384521484374, 0.6235934448242187, 0.62410546875, 0.624552734375, 0.622970703125, 0.6232434692382812, 0.6235320434570313, 0.6216826171875, 0.6229218139648437, 0.6228759765625, 0.622852783203125, 0.6244249267578125, 0.6225879516601562, 0.6232387084960938, 0.6226347045898437, 0.622448974609375, 0.6230695190429687, 0.6228805541992187, 0.62324755859375, 0.6231512451171874, 0.6230609741210937, 0.623164794921875, 0.6216956176757813, 0.6223012084960937, 0.623686767578125, 0.6242169189453125, 0.624099365234375, 0.623435791015625, 0.6225490112304688, 0.6222274780273438, 0.6235869140625, 0.623337890625, 0.6240316772460938, 0.6234563598632813, 0.62336962890625, 0.6241322021484375, 0.6243677978515625, 0.6238907470703124, 0.6246154174804688, 0.62384130859375, 0.6250864868164062, 0.6254507446289063, 0.6248143920898438, 0.6251089477539062, 0.6250797119140625, 0.6246277465820312, 0.6248864135742187, 0.6241300659179687, 0.6247028198242187, 0.62443994140625, 0.62450244140625, 0.6245584106445312, 0.6252871704101562, 0.6252933349609375, 0.6248130493164062, 0.6243065185546876, 0.6248900756835938, 0.6244520263671876, 0.624332275390625, 0.624459716796875, 0.6245643920898437, 0.6243065185546876, 0.6236464233398438, 0.6242077026367188, 0.624173583984375, 0.622940185546875, 0.6232531127929688, 0.623549072265625, 0.6243225708007812, 0.6241682739257812, 0.623501708984375, 0.6244286499023437, 0.6234568481445313, 0.6228500366210937, 0.62369189453125, 0.622315185546875, 0.6235504760742188, 0.6238941650390625, 0.622547607421875, 0.6224956665039062, 0.6225897216796875, 0.6231893920898437, 0.6223553466796875, 0.6224359130859375, 0.6219324951171875, 0.6216434326171875, 0.6220637817382813, 0.622115478515625, 0.621849609375, 0.6217793579101563, 0.6230022583007813, 0.622055419921875, 0.6230033569335938, 0.6232311401367188, 0.6235029296875, 0.6232695922851562, 0.6238994750976562, 0.6235864868164063, 0.6242169189453125, 0.62344384765625, 0.62461962890625, 0.6235402221679688, 0.6238945922851562, 0.6230337524414062, 0.6217464599609375, 0.6219135131835938, 0.6227423706054688, 0.6214451293945312, 0.6217722778320313, 0.6224737548828125, 0.6223883666992187, 0.6219784545898438, 0.6218731689453125, 0.6218629150390625, 0.6218421020507813, 0.6229135131835938, 0.6222031860351562, 0.6221757202148438, 0.6219984130859375, 0.6235321044921875, 0.6232987670898438, 0.62225, 0.6229113159179688, 0.6220924682617187, 0.6214716186523438, 0.6222839965820313, 0.6220870971679687, 0.622716552734375, 0.6221619262695313, 0.62134326171875, 0.6216268920898438, 0.62130224609375, 0.6210475463867188, 0.621955322265625, 0.6211614990234375, 0.6220830688476563, 0.6220595092773438, 0.62343359375, 0.62227880859375, 0.6221425170898438, 0.6217224731445312, 0.6216438598632813, 0.6211522827148438, 0.62152294921875, 0.6214039916992188, 0.62175146484375, 0.6217625732421875, 0.6218528442382812, 0.6212329711914063, 0.6213324584960938, 0.6222576904296875, 0.6224789428710937, 0.6215234985351562, 0.6221717529296875, 0.6216543579101562, 0.6217588500976563, 0.62298876953125, 0.621654541015625, 0.6225194091796875, 0.621765380859375, 0.6218440551757812, 0.6219963989257813, 0.621807861328125, 0.6218424072265625, 0.621813232421875, 0.6216232299804687, 0.6219638671875, 0.6222356567382813, 0.6216294555664063, 0.622065673828125, 0.6220779418945312, 0.6213734130859375, 0.621981689453125, 0.6218458862304688, 0.6219042358398438, 0.6228216552734375, 0.62259814453125, 0.622703857421875, 0.6227461547851563, 0.6227069702148438, 0.6219407348632813, 0.6222471313476563, 0.6224263305664063, 0.6222280883789062, 0.6221859130859375, 0.6219306640625, 0.62283349609375, 0.621927001953125, 0.6228889770507813, 0.6222005615234375, 0.6224120483398438, 0.6220709228515625, 0.62156201171875, 0.6224703979492188, 0.6221766357421875, 0.622147216796875, 0.6220294799804688, 0.6219849243164063, 0.6213472900390625, 0.6218675537109375, 0.6220467529296875, 0.6216909790039062, 0.6217915649414063, 0.6212394409179688, 0.62157080078125, 0.6216124877929687, 0.6215706176757813, 0.62171923828125, 0.6212115478515625, 0.6219024047851562, 0.6219141235351563, 0.6221842041015625, 0.6226741333007813, 0.6221475219726562, 0.62283984375, 0.6219939575195312, 0.621854736328125, 0.6222540893554688, 0.621770263671875, 0.6217395629882813, 0.6221505737304688, 0.6216661987304688, 0.6218499145507812, 0.6217726440429687, 0.6218966674804688, 0.622606201171875, 0.6219019775390625, 0.6216640625, 0.6225096435546875, 0.622348876953125, 0.6223441772460937, 0.62247119140625, 0.622202880859375, 0.6227476196289062, 0.6222908935546875, 0.6219326171875, 0.6220206298828125, 0.6229647216796875, 0.6225469360351562, 0.62230322265625, 0.6233429565429688, 0.6229756469726563, 0.62355859375, 0.6229109497070312, 0.6216934814453124, 0.62272265625, 0.622436767578125, 0.6221782836914063, 0.621923828125, 0.6228751831054687, 0.6234577026367187, 0.6220641479492187, 0.6225791015625, 0.6223378295898437, 0.6220719604492188, 0.6216929321289062, 0.6215291137695312, 0.6213193359375, 0.62173681640625, 0.62162255859375, 0.621828857421875, 0.6211678466796875, 0.621646240234375, 0.6214249877929687, 0.6218397827148437, 0.621078857421875, 0.621701171875, 0.6215374755859375, 0.6221947631835938, 0.6217788696289063, 0.6222756958007812, 0.6222693481445313, 0.6219939575195312, 0.6229188232421875, 0.6223552856445312, 0.6213916625976562, 0.6219757690429687, 0.6217498168945312, 0.6219063720703125, 0.6214553833007812, 0.6221741943359375, 0.6214533081054687, 0.6217052001953125, 0.621414306640625, 0.621573486328125, 0.6216115112304688, 0.6217853393554688, 0.623085205078125, 0.6220038452148438, 0.6223834228515625, 0.622569091796875, 0.6228565673828125, 0.6226044311523438, 0.6217865600585938, 0.622486328125, 0.6222801513671875, 0.6225289306640625, 0.6220162963867187, 0.6221029052734375, 0.6229155883789063, 0.62178271484375, 0.6214864501953125, 0.6217922973632812, 0.6217655639648437, 0.6219755249023438, 0.6215924072265625, 0.6230631103515625, 0.6217892456054688, 0.6223544311523438, 0.62274755859375, 0.6217227783203125, 0.621640625, 0.6221250610351563, 0.6218157958984375, 0.621573486328125, 0.6218594360351563, 0.6215670166015625, 0.6223014526367188, 0.6217172241210938, 0.6220453491210938, 0.6212354736328125, 0.621681396484375, 0.621613037109375, 0.6219480590820312, 0.6224996948242187, 0.6217942504882813, 0.6217050170898437, 0.6220220336914063, 0.6217483520507813, 0.6217632446289062, 0.6217789306640625, 0.6213734130859375, 0.6209495239257813, 0.6216151123046875, 0.6211727294921875, 0.6215557250976562, 0.6225057373046875, 0.6211812133789063, 0.6214102783203125, 0.6219301147460937, 0.6214495849609375, 0.6215593872070313, 0.6216724243164062, 0.6226577758789062, 0.6225548706054688, 0.6222279663085938, 0.6219957885742188, 0.6224058837890625, 0.6217394409179687, 0.6216561889648438, 0.6219207153320313, 0.6218521118164062, 0.6216215209960938, 0.621865234375, 0.621643798828125, 0.6220712890625, 0.6220040283203125, 0.6222424926757812, 0.6220428466796875, 0.6224735107421875, 0.6216294555664063, 0.622002197265625, 0.6223499145507813, 0.6226825561523438, 0.6219522705078125, 0.622004150390625, 0.6220866088867187, 0.6224613647460937, 0.621686767578125, 0.6215733642578125, 0.6223180541992187, 0.6216582641601562, 0.6230263061523438, 0.6226472778320312, 0.6219386596679688, 0.6220728759765625, 0.622066650390625, 0.62205517578125, 0.6220638427734375, 0.6219235229492187, 0.62180224609375]",tokens/s,1.6064392713253954,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,7434.891264,8041.463808,0.0,7646.216192,7627.584,s,1,12.864208984375,12.864208984375,0.0,12.864208984375,12.864208984375,12.864208984375,12.864208984375,[12.864208984375],,kWh,0.00017115813892916567,1.8867194484805756e-05,5.499921066600029e-05,0.0002450245440799717,,MB,1770.37312,8687.386624,0.0,8277.458944,8199.8592,s,10,3.5576812744140627,0.3557681274414063,0.0009765429764703398,0.35559803771972653,0.3571989959716797,0.35724894256591794,0.35728889984130857,"[0.35387228393554687, 0.35567178344726563, 0.3555242919921875, 0.35504611206054687, 0.356594970703125, 0.35571722412109374, 0.35729888916015623, 0.35718789672851564, 0.3553077087402344, 0.35546011352539064]",tokens/s,719.5697991303683,kWh,1.040425594511478e-05,1.1474067470608325e-06,6.919526608413771e-06,1.8471189300589384e-05,tokens/kWh,13859421.601609133,MB,1777.283072,9001.959424,0.0,8592.031744,8476.849152,s,10,29.4489931640625,2.94489931640625,0.004694868985522543,2.9471679687499996,2.9489606689453125,2.950297595214844,2.951367136230469,"[2.9393134765625, 2.937792724609375, 2.941801513671875, 2.951634521484375, 2.947964111328125, 2.938910400390625, 2.948576904296875, 2.947670654296875, 2.946665283203125, 2.94866357421875]",tokens/s,21.392921533521495,kWh,8.607475950238492e-05,9.494233178704241e-06,5.7117385732186307e-05,0.00015268637841327548,tokens/kWh,412610.48074293963,,s,630,29.442196475982673,0.046733645199972494,0.00039584723390524517,0.04672246360778809,0.047179973983764646,0.04730684471130371,0.04758142642974854,"[0.04675174331665039, 0.04630732727050781, 0.04612227249145508, 0.04621382522583008, 0.04601222229003906, 0.04603513717651367, 0.045977375030517575, 0.046186145782470704, 0.04600214385986328, 0.04604787063598633, 0.04617942428588867, 0.046322593688964846, 0.04635238265991211, 0.04619488143920898, 0.04595267105102539, 0.047589054107666014, 0.04664163208007813, 0.04619468688964844, 0.046137344360351565, 0.04655923080444336, 0.046532608032226565, 0.0466921272277832, 0.04645084762573242, 0.046775775909423827, 0.04659574508666992, 0.04660707092285156, 0.046514175415039063, 0.0465307502746582, 0.046610462188720704, 0.04665456008911133, 0.046824542999267575, 0.04699894332885742, 0.04659212875366211, 0.046515968322753905, 0.04667855834960938, 0.046647262573242185, 0.04655107116699219, 0.04651827239990235, 0.04657356643676758, 0.046598014831542967, 0.04691088104248047, 0.046701278686523434, 0.046870529174804686, 0.04680089569091797, 0.04681887817382813, 0.04688326263427734, 0.04726988983154297, 0.047314945220947265, 0.04676812744140625, 0.04679065704345703, 0.04725078582763672, 0.04715711975097656, 0.0470263671875, 0.04682403182983398, 0.047108097076416014, 0.047179359436035156, 0.04681513595581055, 0.04697753524780274, 0.046992542266845704, 0.046936065673828124, 0.04703881454467773, 0.047027839660644534, 0.04711075210571289, 0.04678668975830078, 0.04634348678588867, 0.04602937698364258, 0.04615167999267578, 0.04604083251953125, 0.046117118835449215, 0.04604278564453125, 0.046112991333007815, 0.04624806213378906, 0.046059070587158205, 0.04613167953491211, 0.046142784118652344, 0.046412448883056644, 0.04644454574584961, 0.04618841552734375, 0.04636275100708008, 0.046405406951904295, 0.04638947296142578, 0.046378753662109376, 0.04655539321899414, 0.046561088562011715, 0.04673286437988281, 0.04660697555541992, 0.04645251083374023, 0.04626192092895508, 0.04644716644287109, 0.04657148742675781, 0.04634627151489258, 0.04653635025024414, 0.046569278717041016, 0.04647951889038086, 0.04656911849975586, 0.04654108810424805, 0.04648390579223633, 0.04695852661132813, 0.04680505752563477, 0.04665139389038086, 0.0466732177734375, 0.04684255981445312, 0.046782302856445315, 0.04661468887329102, 0.046656929016113284, 0.04688070297241211, 0.046907806396484376, 0.04685030364990234, 0.04668620681762695, 0.04675718307495117, 0.046903553009033205, 0.04694675064086914, 0.04683161544799805, 0.046911487579345705, 0.047023582458496097, 0.04688057708740234, 0.04682825469970703, 0.04681488037109375, 0.047687553405761716, 0.04710015869140625, 0.04689712142944336, 0.04690470504760742, 0.04720729446411133, 0.04728358459472656, 0.04714966583251953, 0.04723305511474609, 0.046950878143310545, 0.046276607513427735, 0.046053375244140625, 0.046298145294189456, 0.046391902923583986, 0.04619820785522461, 0.046107486724853514, 0.04644259262084961, 0.046209022521972655, 0.04628611373901367, 0.046545631408691404, 0.04641177749633789, 0.046578784942626954, 0.04634921646118164, 0.046198719024658205, 0.04683987045288086, 0.04657670211791992, 0.04654560089111328, 0.04636608123779297, 0.046387264251708984, 0.046492481231689455, 0.04659548950195312, 0.04657187271118164, 0.04680313491821289, 0.046626880645751954, 0.0465428466796875, 0.046639102935791016, 0.04648080062866211, 0.046588512420654295, 0.04672716903686523, 0.04665139389038086, 0.0465715217590332, 0.046709983825683594, 0.04660713577270508, 0.0464832649230957, 0.04665267181396485, 0.04670969772338867, 0.047304222106933594, 0.04710652923583984, 0.04703619384765625, 0.04677257537841797, 0.046575103759765625, 0.0468375358581543, 0.046790721893310544, 0.04671132659912109, 0.04687420654296875, 0.04707145690917969, 0.04687686538696289, 0.04673936080932617, 0.046857566833496095, 0.046793472290039065, 0.04679827117919922, 0.04704108810424805, 0.04687177658081055, 0.04691775894165039, 0.04696745681762695, 0.04695040130615234, 0.04698099136352539, 0.0470748176574707, 0.047075294494628904, 0.04735657501220703, 0.04726784133911133, 0.04704630279541016, 0.046771488189697265, 0.04653152084350586, 0.046195838928222654, 0.04627260971069336, 0.04611481475830078, 0.04648787307739258, 0.04628121566772461, 0.046383102416992186, 0.04628275299072265, 0.04667391967773438, 0.046577503204345706, 0.04658396911621094, 0.047043617248535154, 0.04635286331176758, 0.04654959869384766, 0.04636415863037109, 0.04645724868774414, 0.04655104064941406, 0.046690303802490236, 0.046698497772216796, 0.046712833404541014, 0.046827518463134765, 0.04659814453125, 0.04686643218994141, 0.046632575988769534, 0.04665996932983398, 0.04673503875732422, 0.04665731048583984, 0.046725440979003906, 0.046747871398925785, 0.04674764633178711, 0.046731487274169925, 0.046870304107666017, 0.04697644805908203, 0.04708819198608399, 0.04674345779418945, 0.04669200134277344, 0.04674105453491211, 0.04686140823364258, 0.046947456359863284, 0.046949024200439456, 0.046944255828857424, 0.0470362548828125, 0.04706067276000977, 0.047032798767089844, 0.046964542388916015, 0.04718764877319336, 0.04708607864379883, 0.047355712890625, 0.04789456176757813, 0.04701609420776367, 0.047088638305664066, 0.047378593444824216, 0.04722979354858398, 0.047388671875, 0.04740630340576172, 0.047112640380859376, 0.04718550491333008, 0.04723174285888672, 0.04712857437133789, 0.047085567474365236, 0.04717907333374023, 0.047532737731933596, 0.046886878967285155, 0.04640470504760742, 0.04616672134399414, 0.04625616073608398, 0.04635881423950195, 0.04633190536499023, 0.04627257537841797, 0.04637472152709961, 0.04632793426513672, 0.04638057708740234, 0.046549121856689454, 0.046526817321777346, 0.04638627243041992, 0.046549919128417966, 0.04652032089233398, 0.04656947326660156, 0.04644659042358398, 0.046772224426269535, 0.04675971221923828, 0.04668150329589844, 0.046911487579345705, 0.046805824279785156, 0.04672512054443359, 0.04671897506713867, 0.046628543853759766, 0.046551361083984374, 0.0467242546081543, 0.04657443237304688, 0.04653180694580078, 0.04678940963745117, 0.046632095336914064, 0.04652732849121094, 0.046618175506591794, 0.04686892700195312, 0.04678601455688477, 0.046763809204101565, 0.04661280059814453, 0.04675990295410156, 0.046938175201416014, 0.04693443298339844, 0.04671846389770508, 0.04678092956542969, 0.04696176147460938, 0.046870590209960934, 0.04685641479492188, 0.046895328521728515, 0.046858657836914064, 0.04683308792114258, 0.04675823974609375, 0.04678678512573242, 0.04701513671875, 0.04691628646850586, 0.04674979019165039, 0.046766399383544925, 0.04702105712890625, 0.04704915237426758, 0.047167713165283204, 0.04698934555053711, 0.05101363372802734, 0.046992385864257816, 0.04718899154663086, 0.047017982482910156, 0.04716857528686524, 0.0469502067565918, 0.04632777786254883, 0.046007553100585935, 0.046236129760742185, 0.04599014282226563, 0.04598175811767578, 0.04607084655761719, 0.04626512145996094, 0.04623580932617188, 0.046063617706298826, 0.04633190536499023, 0.04641177749633789, 0.04627807998657227, 0.04620550537109375, 0.04622332763671875, 0.0462380485534668, 0.04642575836181641, 0.04644457626342773, 0.04628438568115235, 0.04657603073120117, 0.046483070373535156, 0.04647155380249023, 0.04640972900390625, 0.046585662841796875, 0.04639968109130859, 0.046927871704101565, 0.04662681579589844, 0.04660224151611328, 0.046604286193847655, 0.046564510345458984, 0.046469982147216794, 0.046572574615478514, 0.04651084899902344, 0.04661455917358399, 0.046400798797607425, 0.046715328216552734, 0.0467276496887207, 0.04673235321044922, 0.04671379089355469, 0.047067134857177735, 0.04703033447265625, 0.04680435180664062, 0.04695302581787109, 0.04717363357543945, 0.046974433898925784, 0.04689769744873047, 0.046876670837402344, 0.04688076782226563, 0.046935264587402346, 0.046741886138916014, 0.04703417587280274, 0.047019870758056644, 0.04681308746337891, 0.04661743927001953, 0.04711782455444336, 0.04725763320922852, 0.04694883346557617, 0.046865535736083985, 0.046951297760009766, 0.04711334228515625, 0.04722880172729492, 0.04698828887939453, 0.04722809600830078, 0.047352577209472654, 0.04655500793457031, 0.04614361572265625, 0.04616396713256836, 0.04604927825927734, 0.04619878387451172, 0.046186496734619144, 0.046080001831054686, 0.04636483383178711, 0.046333633422851565, 0.04637449645996094, 0.04641030502319336, 0.046432254791259765, 0.04627983856201172, 0.046377536773681644, 0.04661379241943359, 0.04652668762207031, 0.04658598327636719, 0.04649635314941406, 0.04657555389404297, 0.04688294219970703, 0.046720001220703126, 0.04659491348266601, 0.04659225463867187, 0.04657756805419922, 0.0465299186706543, 0.04648614501953125, 0.0465530891418457, 0.04659164810180664, 0.04650947189331055, 0.04654380798339844, 0.046611808776855466, 0.046817214965820315, 0.04690198516845703, 0.046794750213623046, 0.046936065673828124, 0.047282176971435545, 0.046876224517822265, 0.046956993103027346, 0.048097278594970705, 0.04684185409545898, 0.046847488403320314, 0.04699801635742187, 0.04717513656616211, 0.04698076629638672, 0.046873470306396485, 0.04692323303222656, 0.046774078369140625, 0.046754528045654296, 0.04701593780517578, 0.04731903839111328, 0.047562751770019535, 0.04712172698974609, 0.04693619155883789, 0.04728070449829101, 0.047308990478515625, 0.04722022247314453, 0.04727974319458008, 0.047282878875732424, 0.04724313735961914, 0.04750956726074219, 0.0471736946105957, 0.04748672103881836, 0.04725417709350586, 0.04667107009887695, 0.04606032180786133, 0.046238849639892575, 0.046107521057128904, 0.04626432037353516, 0.04598988723754883, 0.046266368865966793, 0.046317569732666014, 0.04634624099731445, 0.046438369750976566, 0.04638518524169922, 0.04652851104736328, 0.04637417602539062, 0.04641251373291016, 0.04661862564086914, 0.046642879486083984, 0.04675411224365234, 0.04655718231201172, 0.04668975830078125, 0.04669494247436524, 0.04700710296630859, 0.04669635009765625, 0.046785247802734374, 0.0465530891418457, 0.04639539337158203, 0.04681913757324219, 0.04664748764038086, 0.04639904022216797, 0.04653302383422851, 0.04650191879272461, 0.04664022445678711, 0.04673827362060547, 0.046702014923095704, 0.046567169189453125, 0.04680179214477539, 0.04696268844604492, 0.046923454284667966, 0.04696249771118164, 0.0470340461730957, 0.04696665573120117, 0.04688931274414063, 0.04721654510498047, 0.04742540740966797, 0.04712326431274414, 0.04698112106323242, 0.046919456481933595, 0.047067230224609374, 0.04703388977050781, 0.04668463897705078, 0.046887039184570316, 0.046835136413574216, 0.047061569213867185, 0.047092929840087894, 0.04710406494140625, 0.04705356979370117, 0.04709785461425781, 0.047034366607666016, 0.04717567825317383, 0.04700774383544922, 0.04738627243041992, 0.048173408508300784, 0.04740095901489258, 0.046900352478027346, 0.04637948989868164, 0.046260414123535154, 0.04635465621948242, 0.04627206420898437, 0.0462729606628418, 0.04611276626586914, 0.04628803253173828, 0.046330718994140624, 0.04650185775756836, 0.04651190567016601, 0.046370174407958986, 0.0464692497253418, 0.046408447265625, 0.046432254791259765, 0.04661161422729492, 0.04686934280395508, 0.04674764633178711, 0.04640288162231445, 0.04658041763305664, 0.04658790588378906, 0.04652851104736328, 0.046301185607910154, 0.04637081527709961, 0.04646297454833984, 0.04640153503417969, 0.046637054443359374, 0.047332511901855466, 0.04661948776245117, 0.04657916641235352, 0.046527008056640624, 0.046720672607421875, 0.046696800231933594, 0.046635009765625, 0.046532608032226565, 0.04681932830810547, 0.04680704116821289, 0.0470648307800293, 0.04705257415771484, 0.04683148956298828, 0.04678102493286133, 0.04741849517822266, 0.047317344665527346, 0.04697507095336914, 0.04700950241088867, 0.04690790557861328, 0.04692745590209961, 0.046977375030517576, 0.04690563201904297, 0.046886913299560545, 0.04700569534301758, 0.04714236831665039, 0.047093505859375, 0.04699625778198242, 0.04714684677124024, 0.04704025650024414, 0.047198112487792966, 0.04712819290161133, 0.047227775573730466, 0.04735404968261719, 0.04737577438354492, 0.047178142547607424, 0.04736159896850586, 0.047143009185791014, 0.04648729705810547, 0.04593679809570313, 0.04614227294921875, 0.046196670532226564, 0.04627619171142578, 0.046227935791015626, 0.046321247100830076, 0.04644112014770508, 0.04656224060058594, 0.04671366500854492, 0.046415870666503906, 0.046380161285400394, 0.04662771224975586, 0.04628889465332031, 0.046519390106201174, 0.04634822463989258, 0.046595039367675783, 0.046483455657958986, 0.04659369659423828, 0.0465733757019043, 0.04668636703491211, 0.04647907257080078, 0.046527137756347654, 0.04644659042358398, 0.04631264114379883, 0.046498622894287106, 0.04683161544799805, 0.04676156616210937, 0.04669203186035156, 0.0466495361328125, 0.04700214385986328, 0.046747230529785154, 0.04671939086914063, 0.047019870758056644, 0.04720848083496094, 0.04716352081298828, 0.046943614959716794, 0.047325374603271485, 0.04681363296508789, 0.047034366607666016, 0.04703961563110352, 0.04683456039428711, 0.04698268890380859, 0.047159648895263674, 0.04700787353515625, 0.04679884719848633, 0.04689446258544922, 0.046905982971191404, 0.046811134338378906, 0.047075328826904295, 0.04694015884399414, 0.047298561096191405, 0.047933441162109375, 0.047202144622802734, 0.04711439895629883, 0.04751769638061523, 0.04726764678955078, 0.04721078491210937, 0.046992927551269534, 0.04710847854614258, 0.047242305755615235, 0.04745235061645508]",tokens/s,21.39786005823035,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4293.218304,4878.958592,0.0,4483.710976,4465.672704,s,1,10.81604296875,10.81604296875,0.0,10.81604296875,10.81604296875,10.81604296875,10.81604296875,[10.81604296875],,kWh,0.00010374368459583061,1.1436280005859159e-05,3.232752586200538e-05,0.00014750749046369517,,MB,2153.508864,5302.583296,0.0,4892.655616,4841.339904,s,10,1.967754409790039,0.1967754409790039,0.0007356678215833901,0.19680464935302733,0.19747964477539062,0.1976221923828125,0.19773623046875,"[0.1949957733154297, 0.19676002502441406, 0.1961219482421875, 0.19675791931152345, 0.19684927368164062, 0.19744796752929689, 0.19728854370117188, 0.19710079956054688, 0.19666741943359375, 0.19776473999023436]",tokens/s,1300.97535915224,kWh,5.7379459151963324e-06,6.325698364105242e-07,3.81651176780382e-06,1.0187027519410678e-05,tokens/kWh,25129999.846590154,MB,2159.16544,5470.355456,0.0,5060.427776,5012.931584,s,10,18.726147827148434,1.8726147827148438,0.00503696046827301,1.8736304321289063,1.8771864624023438,1.8791170349121094,1.880661492919922,"[1.8708316650390624, 1.881047607421875, 1.8662344970703124, 1.8717244873046874, 1.872715576171875, 1.8745452880859375, 1.8745848388671875, 1.8767574462890626, 1.8753662109375, 1.8623402099609374]",tokens/s,33.6427975371769,kWh,5.4658738813137084e-05,6.028875793492107e-06,3.62540202885962e-05,9.69416348952254e-05,tokens/kWh,649875.5675834274,,s,630,18.72291741943359,0.02971891653878348,0.0005142623723293799,0.029654208183288573,0.03003931541442871,0.030243571472167968,0.0314014969444275,"[0.030463424682617188, 0.02997715187072754, 0.029487104415893556, 0.029668352127075196, 0.029520896911621092, 0.02987411117553711, 0.029372447967529296, 0.029342784881591796, 0.029365215301513672, 0.029259775161743166, 0.029061119079589845, 0.02939244842529297, 0.02922540855407715, 0.0293787841796875, 0.029474592208862303, 0.029542400360107423, 0.02950262451171875, 0.029974592208862304, 0.02957596778869629, 0.029585407257080077, 0.029521087646484374, 0.029368831634521485, 0.029324928283691407, 0.02948780822753906, 0.029716480255126954, 0.02940108871459961, 0.029578912734985353, 0.029714784622192382, 0.029619359970092775, 0.02945110321044922, 0.029661184310913087, 0.030052352905273437, 0.029980064392089844, 0.029922943115234375, 0.029886911392211914, 0.029596416473388672, 0.02959119987487793, 0.029589632034301757, 0.02946601676940918, 0.029612640380859374, 0.029789663314819335, 0.02962076759338379, 0.029616128921508788, 0.0297205753326416, 0.029644800186157227, 0.029851648330688478, 0.029791711807250976, 0.029909536361694335, 0.029647008895874023, 0.029645919799804688, 0.029611904144287108, 0.029639392852783202, 0.029651103973388673, 0.0299683837890625, 0.029793920516967772, 0.02988889694213867, 0.029861888885498046, 0.02996428871154785, 0.030437023162841796, 0.030390623092651368, 0.0302259521484375, 0.03008355140686035, 0.030171295166015626, 0.03016499137878418, 0.0297574405670166, 0.02948067283630371, 0.02966352081298828, 0.02950783920288086, 0.029498655319213866, 0.03165232086181641, 0.030357503890991212, 0.029487104415893556, 0.02939904022216797, 0.029232736587524413, 0.029388608932495116, 0.029538719177246094, 0.029498912811279296, 0.029464767456054686, 0.029190303802490235, 0.02938902473449707, 0.02940732765197754, 0.029429471969604493, 0.029329311370849608, 0.030562688827514648, 0.029421567916870117, 0.03015235137939453, 0.029454687118530273, 0.02939289665222168, 0.029599647521972656, 0.029658271789550782, 0.029379520416259765, 0.029703903198242187, 0.029581600189208985, 0.02959494400024414, 0.03010630416870117, 0.03567001724243164, 0.02977996826171875, 0.030162975311279296, 0.02968556785583496, 0.02983923149108887, 0.0302840633392334, 0.02997452735900879, 0.029942815780639648, 0.030874528884887696, 0.02984556770324707, 0.029734527587890625, 0.02974883270263672, 0.029854496002197264, 0.029927200317382812, 0.029898815155029297, 0.029691743850708007, 0.029566688537597655, 0.02968022346496582, 0.02954854393005371, 0.02961395263671875, 0.029661312103271484, 0.029699167251586913, 0.029577695846557617, 0.02983475112915039, 0.029743936538696288, 0.029734432220458986, 0.02995599937438965, 0.030107999801635744, 0.029877983093261718, 0.030009151458740235, 0.029821760177612306, 0.030220544815063477, 0.029968000411987303, 0.029748928070068358, 0.02934351921081543, 0.029317312240600586, 0.029285087585449218, 0.02937446403503418, 0.029433727264404297, 0.029251712799072266, 0.029417472839355467, 0.02936422348022461, 0.029336896896362305, 0.029158079147338867, 0.029367712020874022, 0.02915705680847168, 0.02933145523071289, 0.02951817512512207, 0.02954297637939453, 0.02937446403503418, 0.02937766456604004, 0.029369216918945312, 0.02937651252746582, 0.029489152908325194, 0.029519712448120117, 0.029554847717285157, 0.029666303634643554, 0.029844640731811523, 0.029589344024658203, 0.029580703735351564, 0.02998918342590332, 0.029819168090820313, 0.029626367568969726, 0.02977177619934082, 0.029587200164794922, 0.029681663513183593, 0.029933631896972655, 0.029696191787719727, 0.02948691177368164, 0.029687999725341797, 0.029479936599731447, 0.02957200050354004, 0.029655136108398438, 0.029679616928100585, 0.02964406394958496, 0.02976201629638672, 0.029610240936279297, 0.02959516716003418, 0.029587936401367188, 0.029462528228759766, 0.02960758399963379, 0.02954070472717285, 0.029824480056762696, 0.029671167373657225, 0.029816768646240235, 0.029666080474853515, 0.02974959945678711, 0.02971343994140625, 0.029887071609497072, 0.030062496185302736, 0.030080448150634764, 0.0299748477935791, 0.03041868782043457, 0.02974176025390625, 0.030338783264160157, 0.029975135803222655, 0.029693952560424806, 0.029526079177856445, 0.029370304107666015, 0.029419456481933594, 0.02934121513366699, 0.02937091255187988, 0.029210432052612305, 0.029315263748168945, 0.029294559478759766, 0.029294015884399414, 0.02924995231628418, 0.02929635238647461, 0.02936675262451172, 0.029458431243896483, 0.02953545570373535, 0.029438144683837892, 0.029368928909301758, 0.02937651252746582, 0.029474815368652343, 0.02953215980529785, 0.029687328338623045, 0.029809120178222657, 0.029884416580200194, 0.029740415573120117, 0.029770143508911134, 0.029775999069213868, 0.02981488037109375, 0.0298024959564209, 0.029886240005493163, 0.02981091117858887, 0.02994748878479004, 0.030706079483032226, 0.029882368087768556, 0.029784128189086913, 0.02962761688232422, 0.02969468879699707, 0.02982089614868164, 0.029847583770751952, 0.029740575790405274, 0.029784032821655274, 0.02967807960510254, 0.02968550491333008, 0.02974745559692383, 0.029691743850708007, 0.029719999313354492, 0.02967625617980957, 0.029716480255126954, 0.02954035186767578, 0.029464000701904296, 0.029786687850952148, 0.029861888885498046, 0.029764896392822267, 0.030147296905517578, 0.029947776794433594, 0.0299234561920166, 0.030175199508666994, 0.029936832427978517, 0.029846368789672853, 0.02987014389038086, 0.029953344345092774, 0.030071168899536132, 0.03019980812072754, 0.03004524803161621, 0.029596607208251954, 0.02947452735900879, 0.02925596809387207, 0.029263168334960937, 0.029259967803955077, 0.02928201675415039, 0.03066540718078613, 0.030205856323242186, 0.02945350456237793, 0.029455360412597657, 0.02936627197265625, 0.029431039810180665, 0.02947465515136719, 0.02964374351501465, 0.02973075294494629, 0.029511680603027345, 0.029404800415039064, 0.029428096771240236, 0.029472768783569334, 0.029739007949829102, 0.029495296478271486, 0.02940108871459961, 0.02942073631286621, 0.029562911987304687, 0.029500192642211914, 0.029483007431030273, 0.029526016235351563, 0.029822368621826172, 0.031152736663818358, 0.03197337532043457, 0.030089088439941406, 0.029808256149291994, 0.02969584083557129, 0.029796735763549805, 0.0296058235168457, 0.029578847885131834, 0.029682432174682617, 0.02958745574951172, 0.029705663681030274, 0.0295503044128418, 0.029843328475952148, 0.029875167846679686, 0.02973801612854004, 0.029682655334472657, 0.029601791381835937, 0.02959116744995117, 0.029606239318847656, 0.029809823989868166, 0.029680511474609376, 0.02960383987426758, 0.029672447204589843, 0.029692928314208986, 0.029892608642578124, 0.029962240219116212, 0.029845504760742186, 0.029849599838256836, 0.029868032455444334, 0.029661184310913087, 0.029749248504638674, 0.029626367568969726, 0.029787872314453127, 0.030157215118408204, 0.029927167892456055, 0.029685375213623046, 0.029537408828735352, 0.029422527313232423, 0.02955923271179199, 0.02944041633605957, 0.02978553581237793, 0.02952016067504883, 0.029628704071044922, 0.029791711807250976, 0.02954044723510742, 0.029623743057250976, 0.029671968460083006, 0.02961984062194824, 0.02972115135192871, 0.029540479660034178, 0.029546655654907227, 0.02968899154663086, 0.02990729522705078, 0.029538047790527343, 0.029409088134765626, 0.029567935943603515, 0.029601568222045897, 0.029661407470703127, 0.029683935165405274, 0.029651840209960936, 0.029665983200073243, 0.030025760650634767, 0.029853887557983398, 0.029638656616210936, 0.030006944656372072, 0.030037631988525392, 0.03003865623474121, 0.029636703491210937, 0.029767295837402345, 0.02947929573059082, 0.029549728393554686, 0.029765727996826172, 0.030672895431518556, 0.02994374465942383, 0.029848384857177734, 0.02997248077392578, 0.02984671974182129, 0.02972502326965332, 0.029561151504516603, 0.029574432373046876, 0.030085599899291993, 0.0296942081451416, 0.02949488067626953, 0.029628576278686522, 0.02966364860534668, 0.029800447463989257, 0.029765920639038088, 0.02967932891845703, 0.029655040740966795, 0.030007295608520508, 0.029787296295166014, 0.02979088020324707, 0.02997881507873535, 0.030000511169433593, 0.03023948860168457, 0.029874048233032226, 0.03025779151916504, 0.029765888214111327, 0.02946409606933594, 0.029403615951538085, 0.029388799667358398, 0.029396991729736328, 0.02940108871459961, 0.02939084815979004, 0.030436704635620117, 0.029624576568603515, 0.02939126396179199, 0.02950953674316406, 0.02954457664489746, 0.02939695930480957, 0.02944112014770508, 0.029403520584106446, 0.02946124839782715, 0.029705408096313477, 0.029509311676025392, 0.029499391555786132, 0.030738784790039064, 0.03150310325622559, 0.029554496765136717, 0.02950553512573242, 0.029439424514770506, 0.030032032012939452, 0.030224992752075196, 0.029632320404052736, 0.029750463485717773, 0.029819711685180664, 0.02981068801879883, 0.02978611183166504, 0.029845279693603517, 0.029771455764770506, 0.029626848220825196, 0.029556800842285156, 0.030461439132690428, 0.029742975234985352, 0.029591936111450196, 0.029703487396240236, 0.02950035285949707, 0.02961020851135254, 0.029734687805175783, 0.029650943756103516, 0.02982863998413086, 0.02981936073303223, 0.029640703201293944, 0.029689855575561523, 0.029664384841918946, 0.02975993537902832, 0.030023487091064453, 0.029694591522216797, 0.029731840133666993, 0.029682687759399414, 0.02981385612487793, 0.02986422348022461, 0.03003865623474121, 0.03014656066894531, 0.029828384399414064, 0.029839296340942383, 0.03017398452758789, 0.029609535217285158, 0.02949920082092285, 0.030246912002563478, 0.029726720809936522, 0.029381727218627928, 0.02916854476928711, 0.02918809509277344, 0.029148576736450195, 0.029153888702392577, 0.029728511810302734, 0.029505056381225588, 0.02942639923095703, 0.029336959838867187, 0.0294017276763916, 0.029336767196655275, 0.02924012756347656, 0.02956492805480957, 0.029485055923461914, 0.02950137519836426, 0.029974592208862304, 0.0315043830871582, 0.029329408645629884, 0.02969183921813965, 0.02966534423828125, 0.029288063049316405, 0.02972915267944336, 0.02972003173828125, 0.029559328079223634, 0.029476863861083984, 0.02941244888305664, 0.02957814407348633, 0.029460479736328125, 0.029335552215576172, 0.030482431411743165, 0.029553760528564454, 0.029527231216430663, 0.029591264724731444, 0.029560319900512694, 0.02962483215332031, 0.029701919555664064, 0.029538112640380858, 0.029566719055175782, 0.029429952621459962, 0.02949718475341797, 0.029917823791503907, 0.029887775421142578, 0.02993388748168945, 0.02995756721496582, 0.02964784049987793, 0.029601791381835937, 0.029657087326049804, 0.02972211265563965, 0.029694400787353515, 0.029782079696655275, 0.02979430389404297, 0.02979430389404297, 0.02999295997619629, 0.02995622444152832, 0.030277664184570313, 0.030340959548950195, 0.03747840118408203, 0.02978179168701172, 0.029559007644653322, 0.029623359680175782, 0.029634559631347656, 0.03012393569946289, 0.0296092472076416, 0.02927804756164551, 0.02937651252746582, 0.029578432083129883, 0.02956867218017578, 0.029720703125, 0.02976153564453125, 0.02959699249267578, 0.029571775436401368, 0.029493247985839844, 0.029324800491333007, 0.029482656478881836, 0.02980521583557129, 0.029761728286743165, 0.02978767967224121, 0.02975699234008789, 0.029624799728393554, 0.029514144897460938, 0.02951580810546875, 0.029648096084594726, 0.02998147201538086, 0.029929471969604493, 0.029378175735473633, 0.031972063064575194, 0.02960758399963379, 0.0294420166015625, 0.02950761604309082, 0.02973695945739746, 0.02973695945739746, 0.029633920669555665, 0.029600383758544922, 0.029665279388427734, 0.030051488876342774, 0.02972870445251465, 0.02974198341369629, 0.029487104415893556, 0.029531167984008788, 0.02965760040283203, 0.030472415924072266, 0.029853055953979492, 0.029893503189086915, 0.02978611183166504, 0.029616128921508788, 0.02960588836669922, 0.02954444885253906, 0.029560831069946288, 0.029695264816284178, 0.02985763168334961, 0.030048831939697266, 0.029929792404174805, 0.02985887908935547, 0.02983203125, 0.029681535720825197, 0.030808544158935545, 0.029704992294311523, 0.0297706241607666, 0.02983247947692871, 0.029751327514648436, 0.029704992294311523, 0.029666847229003906, 0.02954083251953125, 0.030657567977905274, 0.030111263275146485, 0.029600223541259765, 0.029256927490234376, 0.02918070411682129, 0.029466272354125977, 0.029208927154541015, 0.029173759460449217, 0.02924742317199707, 0.029104192733764647, 0.029269472122192382, 0.029223455429077148, 0.02936832046508789, 0.029462528228759766, 0.030314367294311525, 0.02930240058898926, 0.02929100799560547, 0.029283903121948243, 0.02921721649169922, 0.02998636817932129, 0.030140800476074217, 0.029898815155029297, 0.02952720069885254, 0.02938697624206543, 0.02930956840515137, 0.029259775161743166, 0.02918809509277344, 0.029489152908325194, 0.029378559112548826, 0.029509632110595704, 0.029530208587646486, 0.029673376083374024, 0.029671039581298828, 0.02971891212463379, 0.029877504348754882, 0.030225151062011717, 0.02975667190551758, 0.02962713623046875, 0.029664928436279298, 0.029505887985229493, 0.02953011131286621, 0.02958131217956543, 0.02954444885253906, 0.029593599319458007, 0.02949497604370117, 0.029495616912841797, 0.029560831069946288, 0.02977916717529297, 0.02965337562561035, 0.02960742378234863, 0.029608863830566406, 0.029591552734375, 0.029585407257080077, 0.029677568435668947, 0.02958060836791992, 0.029636831283569337, 0.029591936111450196, 0.02961008071899414, 0.029714431762695313, 0.029587392807006837, 0.029589567184448242, 0.02960383987426758, 0.02959769630432129, 0.029845312118530275]",tokens/s,33.64860218558069,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,1472.057344,1326.383104,0.0,947.912704,945.250304,s,1,8.178099609375,8.178099609375,0.0,8.178099609375,8.178099609375,8.178099609375,8.178099609375,[8.178099609375],,kWh,4.011619602085451e-05,4.417830343113296e-06,1.32619550540225e-05,5.7795981417990304e-05,,MB,1331.990528,1519.321088,0.0,1111.49056,1098.82368,s,10,1.6119050292968748,0.16119050292968748,0.0005511915126697848,0.16121893310546875,0.16174463500976563,0.16185521240234377,0.16194367431640624,"[0.1598438720703125, 0.16109616088867187, 0.16131968688964843, 0.16081129455566406, 0.1617200622558594, 0.161114013671875, 0.16135888671875, 0.16111817932128905, 0.16196578979492188, 0.16155708312988282]",tokens/s,1588.1828975474389,kWh,4.707219859811589e-06,5.191210867039741e-07,3.1204326038710095e-06,8.346773550386572e-06,tokens/kWh,30670533.764288314,MB,1345.765376,1653.538816,0.0,1245.708288,1164.242432,s,10,89.03407812500001,8.903407812500001,0.010136610228676235,8.90321484375,8.9131953125,8.9178447265625,8.9215642578125,"[8.887240234375, 8.8903544921875, 8.8948603515625, 8.9013642578125, 8.90372265625, 8.90270703125, 8.9090263671875, 8.910146484375, 8.912162109375, 8.922494140625]",tokens/s,7.075942305097012,kWh,0.000260164826486438,2.8697575803232348e-05,0.0001730542361135283,0.00046191663840319856,tokens/kWh,136388.24576180012,,s,630,89.03100794982909,0.14131906023782398,0.0002831820943250541,0.14131715393066407,0.14165845794677734,0.1417887367248535,0.14212909545898436,"[0.14145948791503907, 0.14063404846191407, 0.14118077087402345, 0.14077389526367187, 0.14100070190429687, 0.14090165710449218, 0.1408253173828125, 0.1409248046875, 0.1407427215576172, 0.1410826873779297, 0.14081024169921874, 0.14104165649414063, 0.14084259033203125, 0.14099270629882812, 0.14092218017578126, 0.14089222717285158, 0.1408658905029297, 0.1405506591796875, 0.14191206359863281, 0.14092825317382812, 0.14114483642578124, 0.1407093505859375, 0.14122364807128907, 0.1407639617919922, 0.1410618896484375, 0.14123388671875, 0.14120109558105468, 0.14125914001464843, 0.14094154357910157, 0.14102940368652345, 0.14082275390625, 0.14112265014648437, 0.1410016326904297, 0.14109405517578125, 0.14125535583496093, 0.14095747375488282, 0.14095747375488282, 0.14070387268066406, 0.14129808044433595, 0.141316162109375, 0.14115635681152344, 0.14103961181640626, 0.14105599975585936, 0.14100070190429687, 0.1411903076171875, 0.14090675354003906, 0.14128182983398438, 0.1409761962890625, 0.1414606475830078, 0.14112582397460938, 0.14143350219726564, 0.14087484741210937, 0.1413939208984375, 0.14115933227539063, 0.14100405883789063, 0.14126153564453126, 0.14099430847167968, 0.14152114868164062, 0.14120072937011718, 0.14130181884765625, 0.1408948211669922, 0.14096989440917967, 0.14135836791992187, 0.14088572692871093, 0.1407283172607422, 0.140797607421875, 0.14076358032226563, 0.14064128112792967, 0.14102015686035158, 0.14123622131347657, 0.14100889587402343, 0.14116864013671876, 0.14103347778320313, 0.14112733459472657, 0.140813720703125, 0.14087420654296876, 0.14126124572753906, 0.1410738525390625, 0.1411774444580078, 0.14085894775390626, 0.14095199584960938, 0.14083482360839844, 0.14101298522949218, 0.1409863739013672, 0.1407665557861328, 0.1413351287841797, 0.14102125549316405, 0.14103961181640626, 0.1418887939453125, 0.14091746520996093, 0.14107565307617187, 0.14160263061523437, 0.1410345001220703, 0.14137957763671874, 0.14093927001953124, 0.14087577819824218, 0.14114163208007813, 0.14073663330078126, 0.14112159729003906, 0.14095936584472657, 0.141291259765625, 0.1413738250732422, 0.1412646026611328, 0.14135165405273437, 0.14123622131347657, 0.1409944610595703, 0.14084719848632812, 0.14152703857421875, 0.14121778869628906, 0.14128742980957032, 0.14146697998046875, 0.14108303833007813, 0.14127714538574218, 0.14101123046875, 0.14129766845703126, 0.14123826599121095, 0.1412954559326172, 0.1415836181640625, 0.14099539184570312, 0.14113095092773437, 0.14120643615722656, 0.1411658935546875, 0.14150930786132812, 0.14132838439941406, 0.14111279296875, 0.14087632751464843, 0.14100889587402343, 0.14088534545898437, 0.140742431640625, 0.14105279541015625, 0.1409410858154297, 0.14057455444335937, 0.140972412109375, 0.1408675842285156, 0.14127529907226563, 0.140922119140625, 0.14108230590820312, 0.14098728942871094, 0.14095881652832032, 0.14126991271972655, 0.14094070434570313, 0.1412122497558594, 0.14120140075683593, 0.14098335266113282, 0.14122285461425782, 0.14086537170410157, 0.14103363037109376, 0.14096588134765625, 0.14114405822753906, 0.1411051483154297, 0.14105804443359374, 0.14094950866699218, 0.14117478942871095, 0.14093516540527343, 0.14135910034179688, 0.14086697387695313, 0.14140617370605468, 0.1413658905029297, 0.14137753295898436, 0.14078073120117188, 0.14133740234375, 0.14125430297851563, 0.14134716796875, 0.1413137969970703, 0.14140786743164063, 0.1412918701171875, 0.14121603393554688, 0.14110086059570312, 0.14103570556640624, 0.14148403930664064, 0.14160896301269532, 0.14127923583984375, 0.1415755157470703, 0.14136131286621093, 0.14128134155273436, 0.14130630493164062, 0.1414983673095703, 0.14163885498046874, 0.14148236083984375, 0.14129930114746095, 0.14142684936523436, 0.14081878662109376, 0.14149375915527343, 0.14150743103027344, 0.14132838439941406, 0.14153114318847657, 0.1415167999267578, 0.1410723876953125, 0.1412458953857422, 0.1413120574951172, 0.14130975341796875, 0.14153952026367186, 0.14124761962890625, 0.14087033081054687, 0.14102537536621093, 0.14111549377441407, 0.1412437744140625, 0.1412491455078125, 0.14141798400878905, 0.14094140625, 0.14138575744628906, 0.14074844360351563, 0.14118576049804688, 0.141338623046875, 0.14120889282226562, 0.14171820068359375, 0.14092652893066407, 0.14119923400878906, 0.14101356506347656, 0.14121165466308594, 0.14130995178222655, 0.1415244140625, 0.14148637390136717, 0.14099017333984376, 0.14118771362304688, 0.14125254821777344, 0.1413441925048828, 0.1413570556640625, 0.14167507934570311, 0.1414082489013672, 0.14083686828613282, 0.14121888732910157, 0.14102330017089842, 0.14108761596679686, 0.14108876037597656, 0.14177676391601562, 0.14139610290527344, 0.14163558959960937, 0.14149221801757814, 0.1413080596923828, 0.14131350708007812, 0.14142604064941405, 0.14151373291015626, 0.1414710693359375, 0.14130447387695313, 0.14119322204589843, 0.1412434539794922, 0.14107084655761717, 0.1411844787597656, 0.14153555297851564, 0.1413782043457031, 0.14137344360351561, 0.14123008728027345, 0.1413570556640625, 0.14129560852050782, 0.14134585571289063, 0.14143994140625, 0.14125260925292968, 0.14129766845703126, 0.14135267639160157, 0.14133071899414062, 0.14153523254394532, 0.14170620727539063, 0.14111888122558594, 0.14121014404296875, 0.1411152648925781, 0.1412181091308594, 0.14105996704101562, 0.1413324737548828, 0.14158029174804687, 0.14123213195800782, 0.14176255798339843, 0.14107034301757812, 0.14107571411132813, 0.1408577880859375, 0.14136761474609374, 0.14135501098632813, 0.14120652770996095, 0.1410795593261719, 0.14096588134765625, 0.1412196807861328, 0.14103388977050782, 0.1415078125, 0.14150096130371093, 0.14145330810546874, 0.1414593963623047, 0.14109458923339843, 0.14106866455078124, 0.141127685546875, 0.14121075439453126, 0.14146444702148436, 0.1415925750732422, 0.14147523498535156, 0.14118563842773438, 0.14137554931640625, 0.14125459289550782, 0.14156390380859374, 0.14137957763671874, 0.14138163757324218, 0.14120057678222656, 0.14118380737304687, 0.14109286499023438, 0.14136026000976562, 0.14123858642578124, 0.14148051452636717, 0.14127923583984375, 0.14153318786621094, 0.1418035125732422, 0.14136729431152345, 0.14140594482421875, 0.14169523620605468, 0.14147715759277343, 0.14160684204101562, 0.14127781677246093, 0.14146546936035156, 0.14147772216796875, 0.14130221557617187, 0.1414368896484375, 0.141285400390625, 0.1415166778564453, 0.1412359619140625, 0.14129600524902344, 0.1411788787841797, 0.14131365966796874, 0.14122227478027344, 0.14144685363769532, 0.14057533264160157, 0.14106214904785155, 0.14102313232421876, 0.1410397186279297, 0.14097389221191406, 0.14116064453125, 0.14121778869628906, 0.14116249084472657, 0.14119241333007812, 0.14129014587402344, 0.1412691192626953, 0.140943359375, 0.14146131896972655, 0.14128076171875, 0.14126150512695312, 0.1416697540283203, 0.14129817199707032, 0.14105625915527345, 0.1409814453125, 0.14132704162597656, 0.14131814575195312, 0.1410846710205078, 0.141053955078125, 0.1413017578125, 0.14129273986816407, 0.14124281311035156, 0.1413492431640625, 0.1412147216796875, 0.1410463104248047, 0.14133091735839845, 0.1413119354248047, 0.14121171569824217, 0.1411112976074219, 0.1413668212890625, 0.14136679077148437, 0.1416386260986328, 0.14119635009765624, 0.14147471618652344, 0.14152006530761718, 0.1413456268310547, 0.14147357177734374, 0.1412395782470703, 0.14143174743652343, 0.14132342529296876, 0.14156787109375, 0.14134127807617186, 0.1413492431640625, 0.14145481872558593, 0.1411212158203125, 0.14166717529296874, 0.14157005310058593, 0.1414956817626953, 0.14128192138671875, 0.14131382751464844, 0.14174435424804688, 0.1415755157470703, 0.14143760681152343, 0.1418260498046875, 0.14139744567871093, 0.14164784240722655, 0.14133670043945312, 0.14132392883300782, 0.14165811157226563, 0.1410662384033203, 0.14105923461914063, 0.14149449157714844, 0.14112422180175782, 0.1410908203125, 0.1413035888671875, 0.1414105224609375, 0.1412912902832031, 0.14114633178710936, 0.14122979736328126, 0.14147132873535156, 0.1413987274169922, 0.14137548828125, 0.14150860595703124, 0.14153446960449217, 0.14137831115722657, 0.1412833251953125, 0.14143487548828124, 0.14144717407226562, 0.14104701232910155, 0.14170806884765624, 0.14126255798339843, 0.14171165466308594, 0.14156185913085936, 0.14114521789550782, 0.14112448120117188, 0.14133978271484374, 0.14135952758789064, 0.14126332092285157, 0.14150186157226563, 0.14135562133789062, 0.14144102478027343, 0.1411604461669922, 0.14132838439941406, 0.14138983154296875, 0.14135090637207032, 0.14146258544921875, 0.14141445922851562, 0.14108546447753906, 0.1413159942626953, 0.14144432067871093, 0.1418162841796875, 0.14188800048828126, 0.14148512268066407, 0.1415213165283203, 0.14119290161132814, 0.14145826721191407, 0.14137139892578124, 0.14140573120117186, 0.14166883850097656, 0.14143487548828124, 0.14152432250976563, 0.1412425994873047, 0.14132269287109375, 0.14122189331054688, 0.14141644287109376, 0.1420226593017578, 0.14211891174316407, 0.1415925750732422, 0.1414307861328125, 0.14179122924804688, 0.14129379272460937, 0.1421332550048828, 0.14138819885253906, 0.14116876220703126, 0.141025146484375, 0.14109849548339845, 0.1408599090576172, 0.14175628662109374, 0.1413796844482422, 0.14152093505859376, 0.14128034973144532, 0.14126908874511718, 0.14096263122558594, 0.14094744873046874, 0.14207589721679686, 0.14147366333007813, 0.14132850646972656, 0.14128073120117188, 0.14121533203125, 0.1412303009033203, 0.1411808624267578, 0.14171420288085937, 0.14133042907714843, 0.14161305236816407, 0.14135699462890625, 0.14132640075683595, 0.14123826599121095, 0.1412095947265625, 0.141486083984375, 0.14173954772949218, 0.14187362670898437, 0.1414819793701172, 0.141366943359375, 0.14103538513183594, 0.14115213012695313, 0.14150306701660156, 0.14143600463867187, 0.14144195556640626, 0.14122393798828126, 0.1413507537841797, 0.14107049560546875, 0.14114405822753906, 0.14135910034179688, 0.14179737854003907, 0.14163555908203124, 0.14138348388671876, 0.1414575653076172, 0.14106629943847657, 0.14138291931152344, 0.14153919982910157, 0.1421853485107422, 0.14193827819824217, 0.14152691650390625, 0.1418429718017578, 0.1414737548828125, 0.1414469451904297, 0.1414263000488281, 0.14154960632324218, 0.14178569030761717, 0.141623291015625, 0.14146322631835936, 0.1412360382080078, 0.14148031616210938, 0.14157632446289062, 0.1414430694580078, 0.14132147216796875, 0.14133938598632811, 0.14099046325683592, 0.14133453369140625, 0.14104371643066407, 0.14164787292480469, 0.1412768249511719, 0.14141270446777343, 0.14125033569335937, 0.141218017578125, 0.14125465393066405, 0.14102117919921875, 0.14165811157226563, 0.14155775451660157, 0.14152499389648437, 0.14134271240234375, 0.1411399688720703, 0.1412689971923828, 0.14137139892578124, 0.14142892456054687, 0.141627197265625, 0.14138914489746093, 0.14128195190429688, 0.14127308654785156, 0.14122393798828126, 0.1413570556640625, 0.14147517395019532, 0.14134701538085936, 0.141489990234375, 0.14188188171386718, 0.14152716064453125, 0.14145535278320312, 0.1416165771484375, 0.141664794921875, 0.141548828125, 0.14149913024902344, 0.14151589965820313, 0.14165020751953125, 0.14187171936035156, 0.14137344360351561, 0.14165402221679688, 0.14144102478027343, 0.14138163757324218, 0.14151174926757812, 0.14158944702148438, 0.14166426086425782, 0.14127513122558594, 0.14161882019042968, 0.1414470672607422, 0.1414599304199219, 0.14133859252929687, 0.14159858703613282, 0.14153334045410157, 0.1415147247314453, 0.1416859588623047, 0.14156402587890626, 0.14190870666503907, 0.14160281372070313, 0.1415535430908203, 0.1415230712890625, 0.14143283081054686, 0.14166157531738283, 0.14140249633789062, 0.14101913452148437, 0.1411907501220703, 0.14109432983398437, 0.14126588439941407, 0.1412947540283203, 0.14145417785644532, 0.1417216033935547, 0.14114154052734376, 0.14110357666015624, 0.14177894592285156, 0.14144102478027343, 0.14146969604492188, 0.14183815002441405, 0.14160914611816405, 0.14141439819335938, 0.14153932189941407, 0.14139596557617187, 0.1414713592529297, 0.14152128601074218, 0.1418354949951172, 0.14162818908691407, 0.14148812866210939, 0.14158642578125, 0.14165577697753906, 0.1413962860107422, 0.14158026123046874, 0.14171884155273437, 0.1416956787109375, 0.14155775451660157, 0.14166835021972657, 0.14216192626953125, 0.14160415649414063, 0.14148268127441407, 0.14198080444335937, 0.14197616577148436, 0.14152668762207032, 0.14170994567871092, 0.14188934326171876, 0.14164601135253907, 0.14136524963378908, 0.1416458282470703, 0.1414998779296875, 0.14226486206054687, 0.14176856994628906, 0.1414739227294922, 0.14199349975585937, 0.1415172119140625, 0.14173802185058593, 0.14159181213378907, 0.14214810180664061, 0.14181800842285155, 0.141580322265625, 0.14169097900390626, 0.14160850524902344, 0.14166819763183594, 0.14131056213378906, 0.14222950744628907, 0.1419325408935547, 0.14162124633789064, 0.14177484130859375, 0.1416510467529297, 0.14232669067382814]",tokens/s,7.076186314267256,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1045.434368,904.855552,0.0,509.607936,491.434496,s,1,7.69194482421875,7.69194482421875,0.0,7.69194482421875,7.69194482421875,7.69194482421875,7.69194482421875,[7.69194482421875],,kWh,2.3835842712499773e-05,2.621883335264642e-06,7.240561347994501e-06,3.369828739575891e-05,,MB,1403.293696,1039.07328,0.0,629.1456,592.24832,s,10,0.26188947296142584,0.02618894729614258,0.00021841016604451076,0.026089839935302735,0.026433218955993654,0.026552321910858153,0.026647604274749756,"[0.02629078483581543, 0.025977535247802733, 0.02640675163269043, 0.026321664810180664, 0.026105951309204102, 0.02605801582336426, 0.026671424865722656, 0.02605923271179199, 0.02592438316345215, 0.026073728561401367]",tokens/s,9775.11608638453,kWh,7.529128719823882e-07,8.303299081971835e-08,4.7044925952060254e-07,1.3063951223227092e-06,tokens/kWh,195959090.4969425,MB,1442.83648,1053.753344,0.0,643.825664,605.085696,s,10,13.617179565429685,1.3617179565429687,0.005481366197635939,1.3625023803710938,1.3678305053710937,1.368237274169922,1.3685626892089844,"[1.3677401123046875, 1.3626983642578125, 1.357629150390625, 1.366910400390625, 1.3640528564453125, 1.36864404296875, 1.362306396484375, 1.3496138916015625, 1.3598287353515626, 1.357755615234375]",tokens/s,46.2650871990701,kWh,3.91161338250991e-05,4.314099562961237e-06,1.4551146091079945e-05,5.7981379479140276e-05,tokens/kWh,1086555.728165544,,s,630,13.611552797317499,0.021605639360821435,0.0004668648119582739,0.02151136016845703,0.021915046691894532,0.022159848117828368,0.022940940837860118,"[0.02109094429016113, 0.021511455535888672, 0.02187932777404785, 0.022566911697387695, 0.0217674560546875, 0.021486303329467774, 0.021960832595825194, 0.021898944854736327, 0.021585407257080077, 0.021679103851318358, 0.02184364891052246, 0.02174799919128418, 0.021874656677246095, 0.022176736831665038, 0.021777183532714843, 0.021987680435180665, 0.021745439529418945, 0.021680000305175782, 0.02151136016845703, 0.021904191970825194, 0.02185420799255371, 0.021848031997680664, 0.0217620792388916, 0.02188047981262207, 0.02188969612121582, 0.021946016311645507, 0.02163715171813965, 0.021624448776245118, 0.021813631057739258, 0.021688671112060548, 0.021618495941162108, 0.021604192733764647, 0.021544031143188477, 0.021697439193725587, 0.02162073516845703, 0.021616128921508788, 0.021688575744628905, 0.0214182071685791, 0.02182899284362793, 0.0216231689453125, 0.02154323196411133, 0.021442655563354493, 0.021518207550048827, 0.021741151809692383, 0.021689983367919923, 0.021712703704833983, 0.021603296279907227, 0.021489664077758788, 0.021600255966186522, 0.021538047790527343, 0.021701375961303712, 0.02147942352294922, 0.021548671722412108, 0.02181711959838867, 0.022073951721191407, 0.021766143798828123, 0.021547008514404296, 0.021512447357177736, 0.021800703048706054, 0.021635072708129883, 0.021575679779052736, 0.021432319641113282, 0.02155142402648926, 0.020985824584960937, 0.02126608085632324, 0.021326112747192382, 0.021349439620971678, 0.021433343887329103, 0.02157702445983887, 0.021381376266479492, 0.021616512298583985, 0.02152422332763672, 0.021541696548461914, 0.0215285758972168, 0.021389312744140625, 0.021386560440063478, 0.021330623626708983, 0.02127667236328125, 0.022237184524536133, 0.021288543701171874, 0.02141222381591797, 0.021700607299804688, 0.021612255096435547, 0.022180320739746094, 0.021484800338745117, 0.02154092788696289, 0.021323808670043944, 0.021388927459716798, 0.021560192108154297, 0.02128895950317383, 0.021489152908325194, 0.021328384399414063, 0.021407487869262696, 0.021448768615722657, 0.02133625602722168, 0.021345983505249022, 0.021768512725830077, 0.02263417625427246, 0.022300800323486327, 0.02219241523742676, 0.0216878719329834, 0.021429824829101562, 0.021787424087524414, 0.022111423492431642, 0.022330463409423826, 0.022029119491577147, 0.02198579216003418, 0.021839839935302734, 0.023038143157958983, 0.0217193603515625, 0.021532608032226563, 0.02146928024291992, 0.021499807357788087, 0.021374975204467773, 0.021377023696899415, 0.02136000061035156, 0.021451391220092774, 0.021331968307495116, 0.021779552459716797, 0.02144486427307129, 0.021623296737670897, 0.021735328674316406, 0.02174527931213379, 0.02175823974609375, 0.021510496139526367, 0.021932191848754883, 0.021527584075927735, 0.02155513572692871, 0.021747167587280274, 0.02151888084411621, 0.021303295135498047, 0.021259904861450196, 0.02128927993774414, 0.02174777603149414, 0.021440511703491212, 0.02123334312438965, 0.02123119926452637, 0.021523168563842773, 0.021503456115722658, 0.021375520706176758, 0.02135980796813965, 0.0212607364654541, 0.02154944038391113, 0.02187001609802246, 0.02208620834350586, 0.02146099281311035, 0.021403936386108397, 0.02144428825378418, 0.02265091133117676, 0.021829183578491212, 0.021457088470458983, 0.021323904037475586, 0.021491615295410157, 0.021366432189941408, 0.021319936752319336, 0.021295360565185547, 0.021440576553344727, 0.021329376220703126, 0.021381664276123046, 0.021313888549804687, 0.02134009552001953, 0.02156924819946289, 0.021525856018066405, 0.02162719917297363, 0.021766496658325196, 0.02160428810119629, 0.02161004829406738, 0.02142380714416504, 0.021419967651367187, 0.021224031448364256, 0.021185951232910158, 0.021390335083007812, 0.021337984085083007, 0.021323263168334963, 0.02123766326904297, 0.021480031967163086, 0.02155023956298828, 0.021434240341186524, 0.02133705520629883, 0.021336416244506835, 0.021517984390258788, 0.02123366355895996, 0.021260128021240235, 0.02216352081298828, 0.025294944763183592, 0.021600255966186522, 0.021395456314086913, 0.021624895095825197, 0.02137081527709961, 0.022188543319702148, 0.021338016510009765, 0.02125823974609375, 0.021458208084106447, 0.021457279205322265, 0.02192624092102051, 0.02145280075073242, 0.02153424072265625, 0.021799455642700194, 0.02199679946899414, 0.021572288513183595, 0.021477535247802736, 0.021671520233154298, 0.02162291145324707, 0.021366527557373047, 0.021336448669433593, 0.021249759674072267, 0.021475616455078124, 0.02164156723022461, 0.022205408096313477, 0.02240905570983887, 0.022692832946777344, 0.02202406311035156, 0.022015071868896483, 0.021758880615234375, 0.02188489532470703, 0.02186591911315918, 0.02178518486022949, 0.02182143974304199, 0.02163408088684082, 0.02158896064758301, 0.02170675277709961, 0.021880544662475587, 0.021741216659545898, 0.021858848571777344, 0.021803104400634765, 0.021778432846069336, 0.022228992462158204, 0.02138729667663574, 0.02146031951904297, 0.021534591674804687, 0.02148374366760254, 0.021456703186035157, 0.021392032623291014, 0.021530176162719728, 0.02173833656311035, 0.022009504318237304, 0.021395456314086913, 0.021782527923583983, 0.02181907272338867, 0.022567232131958007, 0.021523775100708006, 0.021570047378540038, 0.021502080917358397, 0.021477439880371093, 0.021387039184570314, 0.021504287719726563, 0.021483808517456054, 0.021626527786254884, 0.02170675277709961, 0.021712896347045898, 0.02146099281311035, 0.02137411117553711, 0.020966592788696288, 0.021473056793212892, 0.021693504333496094, 0.021763008117675783, 0.021618688583374023, 0.021497856140136717, 0.02141596794128418, 0.021468608856201173, 0.021418527603149416, 0.021409791946411134, 0.02141798400878906, 0.02184601593017578, 0.021485567092895508, 0.0216342716217041, 0.02144745635986328, 0.021524032592773436, 0.021524768829345703, 0.021536191940307616, 0.021472000122070314, 0.021608415603637694, 0.021405696868896484, 0.022202367782592772, 0.021803007125854493, 0.02161664009094238, 0.021421087265014647, 0.021724128723144533, 0.02150761604309082, 0.02141596794128418, 0.02163961601257324, 0.022095903396606446, 0.022155359268188478, 0.021998495101928712, 0.021801631927490236, 0.02456403160095215, 0.021854015350341798, 0.02177401542663574, 0.021496320724487306, 0.021608575820922852, 0.02160201644897461, 0.021555360794067384, 0.02164121627807617, 0.021782815933227537, 0.0217903995513916, 0.02159187126159668, 0.02166192054748535, 0.021525856018066405, 0.021429088592529295, 0.0215567684173584, 0.021586208343505858, 0.021822656631469727, 0.02158675193786621, 0.021660736083984375, 0.02158687973022461, 0.021536415100097656, 0.021534400939941405, 0.021486143112182617, 0.021398784637451172, 0.021528543472290038, 0.02140403175354004, 0.021469696044921875, 0.021526527404785157, 0.021428319931030275, 0.021492671966552735, 0.02096588706970215, 0.021331104278564453, 0.021471136093139647, 0.021302207946777344, 0.021519807815551757, 0.021359167098999023, 0.021407743453979493, 0.02155036735534668, 0.021412832260131836, 0.021433343887329103, 0.022036800384521483, 0.02150592041015625, 0.021352863311767577, 0.021425439834594728, 0.021913984298706054, 0.0216048641204834, 0.021774335861206053, 0.02151628875732422, 0.02147260856628418, 0.02147599983215332, 0.021385215759277345, 0.021479040145874023, 0.021416736602783204, 0.02134556770324707, 0.021399839401245117, 0.021452064514160155, 0.02131190490722656, 0.021491743087768553, 0.02146441650390625, 0.021473695755004883, 0.021414112091064454, 0.023469791412353516, 0.02245427131652832, 0.021838464736938477, 0.021755136489868165, 0.021746431350708008, 0.0216407356262207, 0.0214486083984375, 0.02144723129272461, 0.021387264251708983, 0.021421087265014647, 0.021735647201538085, 0.021481695175170897, 0.02259008026123047, 0.021381216049194338, 0.02156540870666504, 0.02151753616333008, 0.021469535827636718, 0.02147689628601074, 0.021435136795043944, 0.021344255447387696, 0.021480768203735352, 0.021452768325805664, 0.021368831634521485, 0.021477567672729493, 0.02171139144897461, 0.021761184692382814, 0.021977951049804687, 0.02142144012451172, 0.021419967651367187, 0.021502656936645506, 0.023023616790771483, 0.029345792770385744, 0.021269792556762694, 0.02227689552307129, 0.02152851104736328, 0.0215283203125, 0.021397823333740233, 0.021491647720336914, 0.021734527587890625, 0.021383167266845703, 0.02152332878112793, 0.021564735412597656, 0.021476255416870118, 0.02152943992614746, 0.021474239349365234, 0.02162483215332031, 0.021398591995239257, 0.021625247955322266, 0.02150864028930664, 0.021712448120117186, 0.021436384201049805, 0.021485759735107423, 0.022276384353637695, 0.021671072006225586, 0.02160931205749512, 0.02164249610900879, 0.02187321662902832, 0.02203468894958496, 0.022062719345092772, 0.02227436828613281, 0.02186240005493164, 0.021874975204467774, 0.021816255569458008, 0.02164201545715332, 0.021536512374877928, 0.021506303787231444, 0.021553152084350585, 0.021551103591918946, 0.021411487579345703, 0.021467168807983397, 0.022067007064819337, 0.021486080169677735, 0.02142633628845215, 0.02143631935119629, 0.02188038444519043, 0.021551488876342773, 0.021737567901611327, 0.0217475528717041, 0.021766208648681642, 0.021569536209106444, 0.021609600067138673, 0.021697311401367186, 0.02143459129333496, 0.02141539192199707, 0.021475744247436524, 0.021401599884033205, 0.02137660789489746, 0.021477792739868166, 0.021358591079711914, 0.021452768325805664, 0.021749792098999025, 0.02161187171936035, 0.021571807861328125, 0.021380704879760744, 0.02143052864074707, 0.02119308853149414, 0.021497568130493163, 0.021547615051269533, 0.021692256927490234, 0.021364736557006835, 0.021339231491088868, 0.02140447998046875, 0.02125212860107422, 0.021540607452392578, 0.021356512069702148, 0.02129539108276367, 0.021259647369384765, 0.021309951782226562, 0.021403039932250977, 0.021192575454711916, 0.021405920028686524, 0.02168288040161133, 0.02154876708984375, 0.021350208282470702, 0.021311967849731446, 0.02156787109375, 0.021558528900146486, 0.021324159622192383, 0.02123401641845703, 0.021315263748168944, 0.02164102363586426, 0.02151238441467285, 0.021354623794555664, 0.02125129508972168, 0.021375616073608397, 0.021366783142089844, 0.021370431900024415, 0.021451200485229492, 0.021381120681762695, 0.021511199951171876, 0.021396448135375976, 0.021372928619384765, 0.021577119827270508, 0.021306047439575194, 0.02140764808654785, 0.02145484733581543, 0.021377023696899415, 0.021303295135498047, 0.021476831436157227, 0.0213591365814209, 0.021313407897949218, 0.021336320877075196, 0.021405567169189454, 0.02143846321105957, 0.02182963180541992, 0.021407743453979493, 0.02141119956970215, 0.021633888244628908, 0.021524255752563476, 0.021556480407714844, 0.021357280731201172, 0.02149331283569336, 0.021453279495239258, 0.021405696868896484, 0.021395456314086913, 0.021348352432250976, 0.021321311950683593, 0.021217376708984374, 0.021008384704589843, 0.02129292869567871, 0.021362815856933594, 0.02204876708984375, 0.02130534362792969, 0.02130086326599121, 0.021205568313598634, 0.021640960693359374, 0.02139891242980957, 0.021490367889404297, 0.021397504806518555, 0.021362911224365233, 0.021403423309326174, 0.0215285758972168, 0.02143846321105957, 0.021307392120361326, 0.021305280685424803, 0.021235488891601564, 0.02136911964416504, 0.021292032241821288, 0.021189407348632814, 0.02123347282409668, 0.021293472290039063, 0.021217279434204102, 0.021241695404052734, 0.021290912628173828, 0.021378719329833984, 0.021525312423706054, 0.022738527297973633, 0.021458976745605467, 0.021521631240844726, 0.021668384552001953, 0.021907392501831054, 0.021690847396850586, 0.021643264770507813, 0.022140928268432617, 0.021753856658935547, 0.02146428871154785, 0.02166659164428711, 0.021385215759277345, 0.021354496002197267, 0.021493759155273438, 0.02127872085571289, 0.021506271362304687, 0.021346080780029298, 0.021397184371948243, 0.02174345588684082, 0.023611871719360352, 0.021719039916992186, 0.022004032135009767, 0.022113983154296874, 0.021517568588256836, 0.02158361625671387, 0.02192460823059082, 0.02221900749206543, 0.021786687850952148, 0.021787967681884766, 0.021807584762573242, 0.021655712127685547, 0.021634559631347656, 0.021481248855590822, 0.02175868797302246, 0.02145305633544922, 0.021368640899658203, 0.021412448883056642, 0.02136662483215332, 0.02136675262451172, 0.021499359130859375, 0.02150662422180176, 0.02146099281311035, 0.021450815200805665, 0.021956544876098633, 0.021968896865844727, 0.021843967437744142, 0.0215482234954834, 0.02165433692932129, 0.02182143974304199, 0.021717056274414063, 0.021639104843139648, 0.02167558479309082, 0.021750207901000976, 0.022726655960083008, 0.02177222442626953, 0.021966911315917968, 0.02162067222595215, 0.02134841537475586, 0.021495967864990233, 0.021454975128173827, 0.021384607315063475, 0.021754175186157226, 0.021356544494628905, 0.02142617607116699, 0.021409791946411134, 0.02151136016845703, 0.021662784576416017, 0.021845760345458983, 0.021344512939453126, 0.02179971122741699, 0.02166268730163574, 0.02169980812072754, 0.021326400756835937, 0.021420255661010742, 0.02134940719604492, 0.02133705520629883, 0.021298816680908203, 0.021457279205322265, 0.021370880126953123, 0.02148761558532715, 0.021447744369506836, 0.021539775848388672, 0.02147327995300293, 0.021358591079711914, 0.02124777603149414, 0.021307615280151366, 0.021327871322631836, 0.021289087295532225, 0.021237312316894533, 0.02146124839782715, 0.02134022331237793, 0.021401311874389647, 0.02194870376586914, 0.021448703765869142, 0.021469247817993163, 0.02160367965698242, 0.021527135848999023, 0.021493759155273438]",tokens/s,46.284212343808214,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4975.235072,7338.917888,0.0,6943.670272,6539.1744,s,1,11.480953125,11.480953125,0.0,11.480953125,11.480953125,11.480953125,11.480953125,[11.480953125],,kWh,0.00012999175551251484,1.4331755563570499e-05,4.0486421278004836e-05,0.00018480993235409017,,MB,5060.62848,7634.61632,0.0,7224.68864,6917.39904,s,10,2.0691580657958983,0.20691580657958983,0.0004209720328200674,0.20692723083496095,0.20733978881835938,0.20746485443115234,0.2075649069213867,"[0.20605894470214844, 0.20640179443359374, 0.20696316528320313, 0.2075899200439453, 0.20731199645996093, 0.20689129638671874, 0.2068658905029297, 0.2072939453125, 0.20697042846679686, 0.20681068420410156]",tokens/s,1237.2181914557118,kWh,6.0760903196431905e-06,6.700888447467249e-07,4.044135888367268e-06,1.0790315052757185e-05,tokens/kWh,23724979.182566673,MB,5063.942144,7636.713472,0.0,7226.785792,6917.4016,s,10,21.998330322265623,2.1998330322265622,0.014466196460380025,2.1997823486328123,2.2205612060546875,2.2218045288085935,2.2227991870117187,"[2.18112548828125, 2.211341064453125, 2.181974609375, 2.200316650390625, 2.182593994140625, 2.1949794921875, 2.199248046875, 2.203418212890625, 2.220284912109375, 2.2230478515625]",tokens/s,28.63853714217325,kWh,6.324594263535734e-05,6.9759540446782756e-06,4.201862318403299e-05,0.00011224051986406862,tokens/kWh,561294.6204837393,,s,630,21.99556670379637,0.034913597942533944,0.0006599943159116003,0.034829471588134764,0.03534640693664551,0.03560117568969727,0.037297059745788605,"[0.03521535873413086, 0.03477872085571289, 0.034703296661376955, 0.03445158386230469, 0.034527584075927736, 0.034576095581054685, 0.034578720092773435, 0.03460086441040039, 0.034791519165039066, 0.034371166229248046, 0.03463151931762695, 0.03455648040771484, 0.0345354232788086, 0.034764766693115234, 0.03461123275756836, 0.03454771041870117, 0.03483967971801758, 0.03497987365722656, 0.034666591644287106, 0.03485567855834961, 0.034756256103515626, 0.034814304351806644, 0.03549593734741211, 0.03465593719482422, 0.03440671920776367, 0.0343818244934082, 0.034409889221191405, 0.034385631561279294, 0.034474048614501956, 0.034466014862060544, 0.03435299301147461, 0.03466726303100586, 0.03453033447265625, 0.03442787170410156, 0.03449651336669922, 0.03444863891601563, 0.03444607925415039, 0.03432377624511719, 0.034152225494384764, 0.03429059219360352, 0.03423436737060547, 0.03440412902832031, 0.0343732795715332, 0.03443123245239258, 0.03444358444213867, 0.03440390396118164, 0.034601024627685543, 0.03455132675170899, 0.03453628921508789, 0.034699230194091796, 0.03454313659667969, 0.0345687026977539, 0.03464601516723633, 0.03489791870117188, 0.03759241485595703, 0.034898849487304685, 0.034562911987304684, 0.03452143859863281, 0.034504768371582034, 0.034347518920898434, 0.03448825454711914, 0.034359294891357424, 0.03432044982910156, 0.035456417083740234, 0.03482896041870117, 0.03462921524047852, 0.034581214904785156, 0.0345247688293457, 0.03528335952758789, 0.035276321411132815, 0.03515235137939453, 0.034928638458251955, 0.03512115097045899, 0.03500236892700195, 0.03514777755737305, 0.035471359252929685, 0.03536076736450195, 0.03499212646484375, 0.034920448303222655, 0.03488927841186523, 0.034955711364746095, 0.03481727981567383, 0.035074817657470704, 0.03494297790527344, 0.035004417419433595, 0.03753350448608399, 0.035110782623291016, 0.034832191467285153, 0.0350274543762207, 0.03488515090942383, 0.03483081436157227, 0.03486310577392578, 0.035043327331542966, 0.0350346565246582, 0.0348713264465332, 0.034871742248535155, 0.03515379333496094, 0.035268001556396485, 0.0349969596862793, 0.034981727600097656, 0.03513100814819336, 0.03512307357788086, 0.03504604721069336, 0.035168254852294925, 0.036519935607910156, 0.03518259048461914, 0.035092479705810545, 0.03504460906982422, 0.03512393569946289, 0.035084320068359376, 0.035141632080078124, 0.03500543975830078, 0.03513651275634765, 0.03497107315063477, 0.034954975128173825, 0.03515068817138672, 0.03570278549194336, 0.0351819839477539, 0.03493334579467773, 0.034933856964111325, 0.03511145782470703, 0.03499808120727539, 0.03495379257202148, 0.03491839981079101, 0.034936832427978515, 0.03486515045166016, 0.03579616165161133, 0.03493561553955078, 0.03487948989868164, 0.0348012809753418, 0.03468896102905274, 0.034781631469726564, 0.03470905685424805, 0.0347360954284668, 0.035027423858642576, 0.034756607055664065, 0.03456979370117187, 0.03468495941162109, 0.0343842887878418, 0.034364990234375, 0.03438572692871094, 0.034189151763916015, 0.03418396759033203, 0.03417059326171875, 0.03414163208007812, 0.03418812942504883, 0.034369598388671874, 0.03435843276977539, 0.034231071472167966, 0.03454489517211914, 0.03430476760864258, 0.03423846435546875, 0.03464191818237305, 0.03484649658203125, 0.03477731323242188, 0.03525212860107422, 0.03492572784423828, 0.03495558547973633, 0.03499264144897461, 0.03487091064453125, 0.03488614273071289, 0.034737438201904294, 0.034662593841552736, 0.034544158935546875, 0.03468902587890625, 0.0346951675415039, 0.034664447784423826, 0.03450182342529297, 0.03440313720703125, 0.034289600372314454, 0.034643199920654295, 0.034614078521728514, 0.03444326400756836, 0.03446169662475586, 0.0344268798828125, 0.03450454330444336, 0.03466233444213867, 0.034445537567138675, 0.03462883377075195, 0.03464707183837891, 0.034349822998046876, 0.03457356643676758, 0.03457129669189453, 0.034949569702148436, 0.03492496109008789, 0.034822017669677734, 0.03482998275756836, 0.03465660858154297, 0.03480303955078125, 0.03550419235229492, 0.03490553665161133, 0.0349639663696289, 0.03454972839355469, 0.03608992004394531, 0.03459081649780273, 0.03458038330078125, 0.03466153717041016, 0.03497046279907227, 0.03467468643188477, 0.03502489471435547, 0.03617792129516602, 0.034904064178466795, 0.03671817779541016, 0.034744384765625, 0.034566497802734374, 0.03504067230224609, 0.03584470367431641, 0.0352624626159668, 0.034907520294189455, 0.034780799865722654, 0.03473100662231445, 0.03508803176879883, 0.034533729553222654, 0.034604385375976564, 0.03453744125366211, 0.034622142791748044, 0.034492416381835936, 0.03444121551513672, 0.03470745468139649, 0.03444736099243164, 0.034442878723144534, 0.03438406372070312, 0.034350975036621094, 0.03442313766479492, 0.03454563140869141, 0.03432447814941406, 0.03498188781738281, 0.03460710525512695, 0.03444697570800781, 0.034786750793457034, 0.042973407745361326, 0.03458736038208008, 0.034492416381835936, 0.0343895378112793, 0.03483286285400391, 0.03556700897216797, 0.034654815673828124, 0.034633438110351564, 0.03458070373535156, 0.0347213134765625, 0.034800159454345704, 0.03468492889404297, 0.03473721694946289, 0.03479180908203125, 0.03454435348510742, 0.034534912109375, 0.0345211181640625, 0.03454790496826172, 0.03468505477905273, 0.03456972885131836, 0.03453593444824219, 0.03470876693725586, 0.03544473648071289, 0.03471142578125, 0.034687103271484374, 0.03440639877319336, 0.03443302536010742, 0.03487539291381836, 0.03506380844116211, 0.03456409454345703, 0.03483766555786133, 0.03451171112060547, 0.034393630981445315, 0.0345432014465332, 0.03451279830932617, 0.03457942581176758, 0.03454556655883789, 0.03456742477416992, 0.034581344604492185, 0.03465824127197266, 0.03459619140625, 0.03457904052734375, 0.03448025512695312, 0.03452467346191406, 0.03460966491699219, 0.034659713745117185, 0.034734718322753905, 0.034849918365478516, 0.03468991851806641, 0.03492240142822266, 0.03468092727661133, 0.034797569274902344, 0.03452630233764648, 0.03454249572753906, 0.034516990661621096, 0.034353153228759765, 0.034482177734375, 0.03464524841308594, 0.034627647399902345, 0.03476889419555664, 0.03471548843383789, 0.03447407913208008, 0.034448127746582034, 0.03452099227905273, 0.034627681732177736, 0.03467468643188477, 0.03459612655639648, 0.0345807991027832, 0.03457788848876953, 0.03462649536132813, 0.03467654418945312, 0.03466463851928711, 0.03471155166625976, 0.03466239929199219, 0.03460095977783203, 0.034514942169189454, 0.03473612976074219, 0.03481151962280273, 0.03454399871826172, 0.03488668823242187, 0.034982879638671874, 0.03446742248535156, 0.034447742462158204, 0.03462742233276367, 0.034619583129882815, 0.03534592056274414, 0.034777599334716795, 0.034492416381835936, 0.034471359252929684, 0.03468291091918945, 0.03468534469604492, 0.03465017700195312, 0.03460835266113281, 0.03465407943725586, 0.03477542495727539, 0.03451555252075195, 0.03464361572265625, 0.03447129440307617, 0.034514942169189454, 0.034581470489501956, 0.03466035079956055, 0.034510593414306644, 0.03468835067749024, 0.03451580810546875, 0.03452035140991211, 0.034558303833007814, 0.034558048248291014, 0.03428908920288086, 0.03477596664428711, 0.03466035079956055, 0.0344268798828125, 0.035315711975097655, 0.034523136138916014, 0.034476032257080076, 0.03460300827026367, 0.034530433654785156, 0.03437862396240234, 0.034377727508544925, 0.0348768310546875, 0.03615804672241211, 0.03508844757080078, 0.03473196792602539, 0.03461072158813477, 0.035152191162109374, 0.03448758316040039, 0.03436537551879883, 0.03442988967895508, 0.03431161499023438, 0.03433324813842773, 0.034485408782958984, 0.03441955184936524, 0.034354911804199216, 0.035159934997558595, 0.0342020149230957, 0.0343164176940918, 0.03439807891845703, 0.03435868835449219, 0.034855518341064456, 0.04340140914916992, 0.03504518508911133, 0.03523993682861328, 0.03497091293334961, 0.03571376037597656, 0.03504127883911133, 0.03502191925048828, 0.03481670379638672, 0.03511225509643555, 0.03501558303833008, 0.03563724899291992, 0.0348521614074707, 0.03474684906005859, 0.03461491012573242, 0.03471420669555664, 0.03482771301269531, 0.034885440826416016, 0.034751102447509764, 0.034516990661621096, 0.03445772933959961, 0.034402305603027344, 0.03466761779785156, 0.03486521530151367, 0.034681121826171876, 0.03464249420166016, 0.03463987350463867, 0.03508329772949219, 0.03465315246582031, 0.03468259048461914, 0.034936832427978515, 0.03454185485839844, 0.034582080841064455, 0.03433840179443359, 0.03450556945800781, 0.034408447265625, 0.034418689727783204, 0.03465331268310547, 0.034833278656005856, 0.03484262466430664, 0.03498393630981445, 0.03497267150878906, 0.03495219039916992, 0.035043327331542966, 0.03511270523071289, 0.03506982421875, 0.03540224075317383, 0.03508211135864258, 0.03506393432617187, 0.03507187271118164, 0.034938880920410156, 0.034904064178466795, 0.03587481689453125, 0.03533795166015625, 0.03521292877197266, 0.03518531036376953, 0.03523993682861328, 0.03520512008666992, 0.03498780822753906, 0.03486537551879883, 0.03490140914916992, 0.03491900634765625, 0.035158271789550784, 0.036060928344726566, 0.034985984802246094, 0.03489791870117188, 0.034864158630371095, 0.0349766731262207, 0.035098464965820315, 0.03474163055419922, 0.03474723052978516, 0.03498140716552734, 0.03487100982666016, 0.03484748840332031, 0.03605136108398437, 0.036176990509033204, 0.03821660614013672, 0.035208480834960934, 0.035055553436279294, 0.03508099365234375, 0.03508006286621094, 0.035299457550048825, 0.034958560943603514, 0.03519772720336914, 0.034988033294677735, 0.03514080047607422, 0.0348221435546875, 0.034947265625, 0.03466656112670898, 0.034934337615966794, 0.03475500869750976, 0.034900478363037106, 0.03463993453979492, 0.034547168731689455, 0.03449910354614258, 0.03466854476928711, 0.03477913665771484, 0.03516387176513672, 0.03607759857177734, 0.03535078430175781, 0.03493273544311523, 0.0346561279296875, 0.034861183166503905, 0.035628223419189455, 0.03563788986206055, 0.03515615844726563, 0.0347955207824707, 0.03473158264160156, 0.03474460983276367, 0.034739967346191405, 0.03447235107421875, 0.03468902587890625, 0.03438095855712891, 0.03455897521972656, 0.03439187240600586, 0.03482422256469726, 0.03461705780029297, 0.0346319694519043, 0.034678558349609374, 0.034656478881835935, 0.03483852767944336, 0.034709087371826174, 0.0346929931640625, 0.034544158935546875, 0.03430310440063476, 0.03460800170898438, 0.03525823974609375, 0.038235649108886716, 0.03474905776977539, 0.034457599639892575, 0.03462348937988281, 0.034770942687988284, 0.034523136138916014, 0.034799232482910156, 0.034449790954589846, 0.034245887756347654, 0.03438614273071289, 0.03605196762084961, 0.03536489486694336, 0.035118049621582034, 0.03517779159545899, 0.0351459846496582, 0.035400127410888674, 0.03498393630981445, 0.03503923034667969, 0.03498745727539063, 0.035326526641845706, 0.03511500930786133, 0.03508643341064453, 0.03542416000366211, 0.035221214294433596, 0.03507843017578125, 0.03522150421142578, 0.034977790832519534, 0.03553500747680664, 0.03514761734008789, 0.03560857772827149, 0.035098400115966794, 0.03524630355834961, 0.03494297790527344, 0.034854911804199216, 0.035067680358886716, 0.03512137603759766, 0.03496345520019531, 0.034961406707763674, 0.03523321533203125, 0.035111488342285155, 0.035194881439208986, 0.0349648323059082, 0.03514835357666016, 0.03498166275024414, 0.03512351989746094, 0.035149822235107424, 0.03530710220336914, 0.035155681610107424, 0.03498851013183594, 0.03592822265625, 0.03558931350708008, 0.035248897552490235, 0.03516761779785156, 0.03527552032470703, 0.035417823791503905, 0.035641502380371094, 0.03513763046264649, 0.035697792053222654, 0.03559212875366211, 0.03523433685302734, 0.035531200408935544, 0.035373054504394534, 0.035227649688720705, 0.03541846466064453, 0.03502851104736328, 0.035201152801513674, 0.035209217071533204, 0.03525632095336914, 0.035337345123291015, 0.03540057754516602, 0.035216480255126956, 0.03517737579345703, 0.035074047088623043, 0.03572947311401367, 0.035259166717529294, 0.035192001342773435, 0.03518288040161133, 0.03522361755371094, 0.03553308868408203, 0.035031070709228514, 0.03539148712158203, 0.03551216125488281, 0.035284385681152344, 0.035199745178222656, 0.03527715301513672, 0.03506857681274414, 0.035097599029541016, 0.035110912322998046, 0.03540079879760742, 0.03515075302124023, 0.0351723518371582, 0.03514486312866211, 0.03523478317260742, 0.03523366546630859, 0.03516976165771484, 0.03505411148071289, 0.035281982421875, 0.0351690559387207, 0.03494659042358399, 0.03512998580932617, 0.035074047088623043, 0.035227649688720705, 0.035225601196289064, 0.03506790542602539, 0.035084320068359376, 0.03491632080078125, 0.035416065216064455, 0.03510067367553711, 0.03506175994873047, 0.03547312164306641, 0.03528729629516601, 0.03527478408813477, 0.034909313201904296, 0.03487814331054687, 0.03505376052856445, 0.035210784912109376, 0.03772777557373047, 0.03585263824462891, 0.03502569580078125, 0.03530118560791016, 0.03526860809326172, 0.03512633514404297, 0.03526332855224609, 0.03515811157226562, 0.035296607971191406, 0.03535529708862305, 0.03523379135131836, 0.035229057312011716, 0.03527743911743164, 0.035532417297363283, 0.03547926330566406, 0.03544316864013672, 0.035246273040771485, 0.03509964752197266, 0.03539209747314453, 0.03591004943847656]",tokens/s,28.642135412281213,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,11136.073728,12227.3792,0.0,11848.9088,11814.752256,s,1,16.2592177734375,16.2592177734375,0.0,16.2592177734375,16.2592177734375,16.2592177734375,16.2592177734375,[16.2592177734375],,kWh,0.00026480793421250536,2.9202987075294415e-05,8.6119513340005e-05,0.0003801304346278048,,MB,2084.450304,14033.027072,0.0,13625.196544,13298.00192,s,10,23.3345458984375,2.33345458984375,0.0006364246180502187,2.3333216552734375,2.33433662109375,2.3344462646484376,2.3345339794921878,"[2.33269580078125, 2.333192138671875, 2.332452392578125, 2.334312255859375, 2.334555908203125, 2.333282958984375, 2.333640625, 2.333096923828125, 2.33395654296875, 2.3333603515625]",tokens/s,109.70858447994995,kWh,6.801452597916902e-05,7.501730836656543e-06,4.510703608559819e-05,0.00012062329290142372,tokens/kWh,2122309.8279136634,MB,2088.77568,14184.022016,0.0,13776.191488,13689.859584,s,10,1365.1401875000001,136.51401875,0.043220834864750195,136.508390625,136.56333750000002,136.5687234375,136.57303218750002,"[136.474234375, 136.480890625, 136.51365625, 136.574109375, 136.554078125, 136.443140625, 136.558046875, 136.562140625, 136.476765625, 136.503125]",tokens/s,0.4614910657298337,kWh,0.003982938044971668,0.0004393487290448445,0.0026491697860008046,0.0070714565600173175,tokens/kWh,8909.05564720682,,s,630,1365.1345581054693,2.1668802509610616,0.001184149768945829,2.1668848876953124,2.1684020751953126,2.1688128173828125,2.1695393676757813,"[2.16586181640625, 2.165533447265625, 2.16496337890625, 2.164727783203125, 2.166044677734375, 2.166136474609375, 2.165833251953125, 2.164509033203125, 2.164980224609375, 2.16477294921875, 2.1657529296875, 2.165496826171875, 2.164805419921875, 2.1644208984375, 2.1651064453125, 2.166121826171875, 2.16661279296875, 2.165902587890625, 2.1653994140625, 2.167724609375, 2.1663828125, 2.166310791015625, 2.165684326171875, 2.16618798828125, 2.166972412109375, 2.165771240234375, 2.16618017578125, 2.16656689453125, 2.16574853515625, 2.16681884765625, 2.166228515625, 2.166172119140625, 2.166724609375, 2.167048095703125, 2.165712158203125, 2.165650146484375, 2.16532275390625, 2.166369140625, 2.167191650390625, 2.167224365234375, 2.167033935546875, 2.1665341796875, 2.16774658203125, 2.167560302734375, 2.16664892578125, 2.16663671875, 2.16684326171875, 2.167447509765625, 2.167486328125, 2.16671044921875, 2.167170166015625, 2.16604541015625, 2.1677705078125, 2.166477783203125, 2.166822265625, 2.1664443359375, 2.16675537109375, 2.166044189453125, 2.166268310546875, 2.16554052734375, 2.1667373046875, 2.16703173828125, 2.166902099609375, 2.164823974609375, 2.16512109375, 2.166529296875, 2.166343994140625, 2.16569873046875, 2.166558837890625, 2.167146484375, 2.165773681640625, 2.166070068359375, 2.16474169921875, 2.165238037109375, 2.166134521484375, 2.165922119140625, 2.16620849609375, 2.16500732421875, 2.166781005859375, 2.165747802734375, 2.166453369140625, 2.165948974609375, 2.16657958984375, 2.166655029296875, 2.166045654296875, 2.165488525390625, 2.1654794921875, 2.166298583984375, 2.16550146484375, 2.1659345703125, 2.165116455078125, 2.16589892578125, 2.166954833984375, 2.16605224609375, 2.167164794921875, 2.166157958984375, 2.165796875, 2.16744970703125, 2.1675908203125, 2.166740966796875, 2.166281494140625, 2.16719140625, 2.1674482421875, 2.166792236328125, 2.167214111328125, 2.166931396484375, 2.16813525390625, 2.166753173828125, 2.1673251953125, 2.166135009765625, 2.166437744140625, 2.1670419921875, 2.165987060546875, 2.16810302734375, 2.1652685546875, 2.16776904296875, 2.166192138671875, 2.1670849609375, 2.16669775390625, 2.16688671875, 2.16671630859375, 2.1665361328125, 2.166640625, 2.166073486328125, 2.165718994140625, 2.165845947265625, 2.1654443359375, 2.16521337890625, 2.1656064453125, 2.164690185546875, 2.165152099609375, 2.165153564453125, 2.166433349609375, 2.16533056640625, 2.16590087890625, 2.165445068359375, 2.16591162109375, 2.166353515625, 2.166974853515625, 2.166444091796875, 2.16614501953125, 2.1657333984375, 2.166519775390625, 2.165841552734375, 2.165972412109375, 2.165611572265625, 2.165755615234375, 2.16555322265625, 2.16642724609375, 2.165973388671875, 2.166176025390625, 2.167818359375, 2.16762939453125, 2.167644287109375, 2.16604296875, 2.167754638671875, 2.167920166015625, 2.167478759765625, 2.16732421875, 2.167259765625, 2.168190185546875, 2.167671630859375, 2.167791015625, 2.167031982421875, 2.168864990234375, 2.1674599609375, 2.167080810546875, 2.16809423828125, 2.16811328125, 2.1680869140625, 2.167527587890625, 2.167656005859375, 2.167390869140625, 2.166988037109375, 2.168318603515625, 2.167972900390625, 2.1684541015625, 2.167140380859375, 2.168670166015625, 2.1695263671875, 2.16701123046875, 2.168231201171875, 2.167736572265625, 2.16655078125, 2.166257568359375, 2.166305908203125, 2.166731689453125, 2.167017578125, 2.16652099609375, 2.164148193359375, 2.165614501953125, 2.16821533203125, 2.167324951171875, 2.166708251953125, 2.1669375, 2.16767919921875, 2.1668359375, 2.1665556640625, 2.16671630859375, 2.1664638671875, 2.167177978515625, 2.167428955078125, 2.1676435546875, 2.16705712890625, 2.166687744140625, 2.16604052734375, 2.167203857421875, 2.166679443359375, 2.167146484375, 2.16696142578125, 2.167349365234375, 2.1678125, 2.167871826171875, 2.167183349609375, 2.16703173828125, 2.16832421875, 2.1674189453125, 2.167361572265625, 2.168323974609375, 2.167330810546875, 2.167510009765625, 2.167006103515625, 2.167711669921875, 2.1676904296875, 2.1678779296875, 2.1690947265625, 2.16873583984375, 2.168320068359375, 2.16975146484375, 2.1685224609375, 2.169452880859375, 2.169634521484375, 2.169194580078125, 2.168541259765625, 2.169198974609375, 2.168323974609375, 2.16812890625, 2.169175048828125, 2.168743408203125, 2.16881201171875, 2.166730712890625, 2.1686845703125, 2.16939892578125, 2.168643798828125, 2.169746826171875, 2.168140625, 2.168422119140625, 2.167958740234375, 2.16957373046875, 2.168743896484375, 2.16764599609375, 2.169199462890625, 2.1681357421875, 2.165767822265625, 2.166407470703125, 2.167010986328125, 2.1682080078125, 2.167797607421875, 2.1663662109375, 2.16692333984375, 2.166476806640625, 2.166065185546875, 2.16653759765625, 2.167151123046875, 2.167858154296875, 2.166207275390625, 2.16652197265625, 2.167060302734375, 2.16585009765625, 2.16644970703125, 2.16733544921875, 2.166739013671875, 2.16699853515625, 2.166995361328125, 2.1677744140625, 2.166822998046875, 2.166467529296875, 2.16658935546875, 2.166917236328125, 2.167504638671875, 2.166527587890625, 2.1661435546875, 2.167434326171875, 2.16802099609375, 2.1672333984375, 2.166693359375, 2.166917724609375, 2.166367431640625, 2.167483154296875, 2.167582763671875, 2.167276611328125, 2.167583251953125, 2.168227294921875, 2.16863818359375, 2.168342529296875, 2.167855224609375, 2.1689814453125, 2.169544677734375, 2.16923876953125, 2.1683740234375, 2.167326416015625, 2.168219482421875, 2.168541748046875, 2.16815771484375, 2.168617431640625, 2.168645751953125, 2.169489013671875, 2.167476806640625, 2.1682646484375, 2.168379150390625, 2.1695771484375, 2.1693896484375, 2.16714453125, 2.16802099609375, 2.168919677734375, 2.1644375, 2.16413525390625, 2.16406494140625, 2.164509765625, 2.165660400390625, 2.167010986328125, 2.16608935546875, 2.165963623046875, 2.16654248046875, 2.164913818359375, 2.164343017578125, 2.16390869140625, 2.163916748046875, 2.164716796875, 2.165203125, 2.164300048828125, 2.16482861328125, 2.16473583984375, 2.165071044921875, 2.16362890625, 2.1636845703125, 2.16490380859375, 2.165056396484375, 2.16562841796875, 2.163931640625, 2.164023193359375, 2.165086181640625, 2.165473388671875, 2.165923828125, 2.165321533203125, 2.166739013671875, 2.16607958984375, 2.1651669921875, 2.167163818359375, 2.16523974609375, 2.1653134765625, 2.16590478515625, 2.165904052734375, 2.166857177734375, 2.167341552734375, 2.16569873046875, 2.167005126953125, 2.165802001953125, 2.165296142578125, 2.16627001953125, 2.166312744140625, 2.166623779296875, 2.166095947265625, 2.16608740234375, 2.166962890625, 2.1675576171875, 2.166712890625, 2.166293701171875, 2.16719580078125, 2.167150634765625, 2.167144775390625, 2.16835498046875, 2.166561279296875, 2.16798828125, 2.1664521484375, 2.166530029296875, 2.166826904296875, 2.1669375, 2.166547607421875, 2.16634033203125, 2.16666650390625, 2.16660986328125, 2.167008056640625, 2.166205810546875, 2.166114990234375, 2.166304931640625, 2.166407958984375, 2.167910888671875, 2.16789453125, 2.16703564453125, 2.1695634765625, 2.167732177734375, 2.166179931640625, 2.16768017578125, 2.167562744140625, 2.167038330078125, 2.16815380859375, 2.166386962890625, 2.1661962890625, 2.1672734375, 2.166528076171875, 2.16612451171875, 2.16584814453125, 2.16689208984375, 2.167228759765625, 2.167357421875, 2.16840185546875, 2.168848388671875, 2.168018798828125, 2.1668857421875, 2.1680400390625, 2.167444580078125, 2.166825927734375, 2.166277587890625, 2.1680703125, 2.16814208984375, 2.16769873046875, 2.16819287109375, 2.168285888671875, 2.168908935546875, 2.16764697265625, 2.168127197265625, 2.168122802734375, 2.168683349609375, 2.16888330078125, 2.168537109375, 2.168404052734375, 2.168764404296875, 2.1684013671875, 2.166385009765625, 2.16930908203125, 2.168162353515625, 2.1688134765625, 2.16937255859375, 2.167416748046875, 2.16837744140625, 2.169112548828125, 2.1670537109375, 2.16781884765625, 2.16823193359375, 2.167018798828125, 2.166949951171875, 2.1668740234375, 2.16616357421875, 2.166748291015625, 2.167088134765625, 2.167986083984375, 2.16764599609375, 2.1668125, 2.167314697265625, 2.166613525390625, 2.16709912109375, 2.16738037109375, 2.167388427734375, 2.1675126953125, 2.16755224609375, 2.167644287109375, 2.166744384765625, 2.167925048828125, 2.168575927734375, 2.1672841796875, 2.16865771484375, 2.168525146484375, 2.1678818359375, 2.16807421875, 2.167703369140625, 2.16839794921875, 2.169016357421875, 2.169155517578125, 2.16738720703125, 2.1685380859375, 2.167985107421875, 2.1684755859375, 2.168439453125, 2.16862255859375, 2.16863818359375, 2.167289794921875, 2.167142333984375, 2.16776708984375, 2.16764013671875, 2.1680947265625, 2.168289306640625, 2.167946533203125, 2.1689287109375, 2.168463623046875, 2.16720703125, 2.16830029296875, 2.16787548828125, 2.1665458984375, 2.167499267578125, 2.166310791015625, 2.168385498046875, 2.166969970703125, 2.1669541015625, 2.1665302734375, 2.167193115234375, 2.166907470703125, 2.168440673828125, 2.166923095703125, 2.166546875, 2.16703564453125, 2.168654052734375, 2.167615478515625, 2.167334716796875, 2.165754150390625, 2.16547900390625, 2.165604248046875, 2.165964599609375, 2.164871337890625, 2.1648740234375, 2.165676025390625, 2.166201416015625, 2.16602734375, 2.165337646484375, 2.166315185546875, 2.164508544921875, 2.164201904296875, 2.1656923828125, 2.165769775390625, 2.165017333984375, 2.1645595703125, 2.16470947265625, 2.165456787109375, 2.165345703125, 2.165402099609375, 2.166044677734375, 2.16509814453125, 2.166001953125, 2.165135498046875, 2.16656884765625, 2.164768798828125, 2.165671875, 2.166693359375, 2.166614501953125, 2.168379150390625, 2.167519287109375, 2.166951904296875, 2.16780712890625, 2.166045654296875, 2.16529296875, 2.16745166015625, 2.166091064453125, 2.16620068359375, 2.16697900390625, 2.16651171875, 2.167469970703125, 2.167701416015625, 2.1664912109375, 2.165646728515625, 2.166743408203125, 2.16632763671875, 2.16810693359375, 2.168990966796875, 2.1682939453125, 2.168727783203125, 2.1678369140625, 2.16667333984375, 2.167680908203125, 2.167146728515625, 2.1657333984375, 2.1679345703125, 2.165698974609375, 2.166783203125, 2.1666943359375, 2.165668212890625, 2.16674609375, 2.16652001953125, 2.164810302734375, 2.1640908203125, 2.16560009765625, 2.16654833984375, 2.16613720703125, 2.166560546875, 2.165886962890625, 2.165761474609375, 2.16423388671875, 2.164981689453125, 2.16667431640625, 2.16605078125, 2.166181884765625, 2.16501806640625, 2.166455078125, 2.165868408203125, 2.166765625, 2.167066650390625, 2.1680078125, 2.1658408203125, 2.166343505859375, 2.1672490234375, 2.167269287109375, 2.1657314453125, 2.16593212890625, 2.166884033203125, 2.166148681640625, 2.167370361328125, 2.166601806640625, 2.1672099609375, 2.1672568359375, 2.167049560546875, 2.16719384765625, 2.16667822265625, 2.167221923828125, 2.16730859375, 2.167490478515625, 2.166222412109375, 2.167810302734375, 2.166908935546875, 2.167332275390625, 2.166823486328125, 2.167975830078125, 2.16768408203125, 2.168091064453125, 2.167548583984375, 2.16677783203125, 2.166906494140625, 2.16699951171875, 2.16765966796875, 2.167762939453125, 2.166803466796875, 2.1678857421875, 2.166867919921875, 2.16678515625, 2.167721923828125, 2.166592529296875, 2.1664208984375, 2.167431884765625, 2.166370361328125, 2.16732861328125, 2.166756591796875, 2.16758544921875]",tokens/s,0.46149296877687485,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,6765.768704,7762.542592,0.0,7367.294976,7351.94368,s,1,12.484943359375,12.484943359375,0.0,12.484943359375,12.484943359375,12.484943359375,12.484943359375,[12.484943359375],,kWh,0.00015955133010832774,1.7592247732297916e-05,5.0381151416003384e-05,0.00022752472925662904,,MB,1654.890496,8372.813824,0.0,7962.886144,7872.44544,s,10,3.217915252685547,0.3217915252685547,0.0013950329344355533,0.3218920440673828,0.32337008056640626,0.32344077758789064,0.3234973352050781,"[0.3185030212402344, 0.32086541748046876, 0.32094903564453126, 0.3215930480957031, 0.3233543701171875, 0.3225209045410156, 0.32187457275390624, 0.3219095153808594, 0.3228338928222656, 0.323511474609375]",tokens/s,795.5461219382715,kWh,9.364775526823147e-06,1.032679123397765e-06,6.21373760987501e-06,1.6611192260095923e-05,tokens/kWh,15411295.949838202,MB,1666.101248,8624.472064,0.0,8214.544384,8118.577152,s,10,27.102155029296874,2.7102155029296875,0.0027258359209844218,2.709692626953125,2.712966064453125,2.7143250732421875,2.7154122802734375,"[2.71568408203125, 2.710020263671875, 2.7065537109375, 2.708927978515625, 2.708125732421875, 2.706820556640625, 2.712405517578125, 2.7126640625, 2.709364990234375, 2.711588134765625]",tokens/s,23.245383967399746,kWh,7.911330669484301e-05,8.72638364765581e-06,5.2567253859325075e-05,0.0001404069442018239,tokens/kWh,448695.7561688863,,s,630,27.098995811462423,0.043014279065813336,0.00037987361758398897,0.04298665618896484,0.04340562782287598,0.04354385929107666,0.044067572555542,"[0.04339251327514648, 0.04290611267089844, 0.042633216857910154, 0.04266726303100586, 0.04283404922485352, 0.04267686462402344, 0.04281257629394531, 0.043326400756835935, 0.04269865417480469, 0.042773696899414064, 0.04270108795166016, 0.04273596954345703, 0.04285414505004883, 0.04289318466186524, 0.042850879669189455, 0.04271641540527344, 0.04280915069580078, 0.04295999908447266, 0.043157215118408206, 0.042928031921386715, 0.04373324966430664, 0.042939937591552735, 0.042885536193847655, 0.04328995132446289, 0.04309030532836914, 0.04312297439575195, 0.042874462127685545, 0.04292959976196289, 0.04283491134643555, 0.04286054229736328, 0.04292607879638672, 0.04326399993896484, 0.04312995147705078, 0.0434246711730957, 0.04319232177734375, 0.04315750503540039, 0.042979328155517575, 0.043210014343261716, 0.043340511322021484, 0.04307353591918945, 0.043063297271728515, 0.043237377166748046, 0.04330825424194336, 0.04332998275756836, 0.043265472412109374, 0.04323612976074219, 0.04312409591674805, 0.0433191032409668, 0.04336304092407227, 0.04312841415405273, 0.0432624626159668, 0.04347097778320313, 0.043364673614501956, 0.043372222900390625, 0.04331958389282226, 0.04315017700195312, 0.043266654968261715, 0.04326019287109375, 0.04331315231323242, 0.043361793518066405, 0.04371916961669922, 0.0433172492980957, 0.043243743896484374, 0.043122783660888675, 0.04278262329101563, 0.04254515075683594, 0.04233420944213867, 0.042259807586669924, 0.04243059158325195, 0.04224873733520508, 0.04244895935058594, 0.042476478576660155, 0.04262400054931641, 0.04294451141357422, 0.04263705444335938, 0.04263935852050781, 0.04265497589111328, 0.04269801712036133, 0.04263497543334961, 0.04261798477172852, 0.04272995376586914, 0.04263468933105469, 0.04276649475097656, 0.042861278533935544, 0.04277193450927735, 0.043126815795898436, 0.043006561279296876, 0.04286435317993164, 0.042698879241943356, 0.04280876922607422, 0.04266876983642578, 0.042718494415283206, 0.04295139312744141, 0.043122432708740235, 0.04289152145385742, 0.042754207611083984, 0.04283564758300781, 0.0429323844909668, 0.042915233612060545, 0.04295363235473633, 0.04291657638549805, 0.04294345474243164, 0.043009151458740236, 0.04309491348266602, 0.04309811019897461, 0.04298115158081055, 0.043237598419189456, 0.04324147033691406, 0.04363673782348633, 0.04364716720581055, 0.0433928337097168, 0.044109825134277345, 0.04691558456420898, 0.04290259170532226, 0.043037151336669924, 0.04327881622314453, 0.04325312042236328, 0.04311011123657227, 0.04304790496826172, 0.04336019134521484, 0.043503456115722657, 0.043474815368652345, 0.04331862258911133, 0.04343190383911133, 0.0434442253112793, 0.04323984146118164, 0.04339212799072266, 0.042651905059814456, 0.04240614318847656, 0.042181087493896485, 0.04228496170043945, 0.0423765754699707, 0.04293222427368164, 0.0434054069519043, 0.04273001480102539, 0.04251238250732422, 0.04238655853271484, 0.04245939254760742, 0.042549888610839845, 0.042694591522216795, 0.04264556884765625, 0.042690464019775394, 0.04290569686889648, 0.04269875335693359, 0.042673728942871095, 0.04281388854980469, 0.04283353424072266, 0.04291945648193359, 0.04421283340454102, 0.04299174499511719, 0.04295897674560547, 0.04284620666503906, 0.04293632125854492, 0.04281865692138672, 0.04263753509521485, 0.04266463851928711, 0.04277043151855469, 0.04276838302612305, 0.04294374465942383, 0.0428223991394043, 0.04297119903564453, 0.04305500793457031, 0.04289750289916992, 0.04289056015014649, 0.04294105529785156, 0.042917728424072266, 0.04286223983764648, 0.04314729690551758, 0.04312063980102539, 0.043178462982177736, 0.0433983039855957, 0.04360665512084961, 0.04335638427734375, 0.04313087844848633, 0.04310835266113281, 0.043022560119628905, 0.04296384048461914, 0.04300601577758789, 0.04301091384887695, 0.043050430297851563, 0.04334988784790039, 0.04344083023071289, 0.04338483047485352, 0.04323904037475586, 0.043399551391601565, 0.043153408050537106, 0.04312396621704102, 0.0434672966003418, 0.04347312164306641, 0.04348108673095703, 0.04288409423828125, 0.042620990753173826, 0.042643455505371096, 0.042474559783935543, 0.042493824005126954, 0.04222390365600586, 0.042982559204101566, 0.04247814559936523, 0.042264575958251956, 0.04261580657958984, 0.042482688903808595, 0.04269465637207031, 0.043224414825439456, 0.04280963134765625, 0.04275971221923828, 0.04259254455566406, 0.042891841888427734, 0.04274176025390625, 0.04267734527587891, 0.04297001647949219, 0.04314835357666016, 0.04338275146484375, 0.043109344482421874, 0.04299760055541992, 0.04289737701416016, 0.04270918273925781, 0.042690208435058594, 0.04307388687133789, 0.04259635162353516, 0.042633216857910154, 0.04281897735595703, 0.04297296142578125, 0.04292076873779297, 0.042799102783203126, 0.04293609619140625, 0.0428812141418457, 0.04285776138305664, 0.042869503021240235, 0.04304012680053711, 0.043036670684814454, 0.04393971252441406, 0.04331292724609375, 0.04334662246704102, 0.0436778564453125, 0.04368396759033203, 0.04348281478881836, 0.04328656005859375, 0.043423168182373045, 0.043213119506835936, 0.04329033660888672, 0.04339206314086914, 0.043089664459228516, 0.04297283172607422, 0.04301017761230469, 0.043087135314941405, 0.04310521697998047, 0.0430544319152832, 0.04329539108276367, 0.0432509765625, 0.043344097137451174, 0.04339548873901367, 0.043599967956542966, 0.043315361022949216, 0.04273196792602539, 0.04244416046142578, 0.0423985595703125, 0.04230579376220703, 0.04235033416748047, 0.04253900909423828, 0.04252492904663086, 0.04249484634399414, 0.04268064117431641, 0.04270153427124023, 0.04263673782348633, 0.0426530876159668, 0.04245743942260742, 0.04241052627563477, 0.04261471939086914, 0.04282294464111328, 0.04270336151123047, 0.042927936553955076, 0.043076416015625, 0.04304851150512695, 0.04296300888061524, 0.04290166473388672, 0.04305920028686523, 0.04289712142944336, 0.04295635223388672, 0.04283583831787109, 0.04289827346801758, 0.04281753540039063, 0.042799102783203126, 0.042774177551269534, 0.04262947082519531, 0.04281753540039063, 0.042995712280273435, 0.04292812728881836, 0.042981342315673826, 0.042939678192138675, 0.04293452835083008, 0.043326976776123044, 0.043121662139892575, 0.04309811019897461, 0.044436702728271486, 0.04318611145019531, 0.04359219360351563, 0.04317219161987305, 0.04318003082275391, 0.0431769905090332, 0.04339811325073242, 0.04340035247802734, 0.04325667190551758, 0.04330624008178711, 0.04327091217041015, 0.04319145584106445, 0.04305599975585937, 0.04314716720581055, 0.043165760040283205, 0.04337238311767578, 0.04333580780029297, 0.04356304168701172, 0.04319622421264648, 0.043141311645507815, 0.04329395294189453, 0.04348169708251953, 0.04351996612548828, 0.042734527587890626, 0.0424672966003418, 0.04235001754760742, 0.04251055908203125, 0.04264550399780274, 0.04276176071166992, 0.04258095932006836, 0.04257756805419922, 0.04234377670288086, 0.04252713775634766, 0.042531265258789065, 0.042461406707763674, 0.04265167999267578, 0.042692352294921875, 0.0427613754272461, 0.042576416015625, 0.04268012619018555, 0.042706497192382814, 0.04284425735473633, 0.042871646881103516, 0.042856449127197264, 0.04312844848632812, 0.04304115295410156, 0.04301728057861328, 0.04295961761474609, 0.042829856872558594, 0.04280073547363281, 0.04336838531494141, 0.042945152282714845, 0.042942272186279294, 0.042750175476074216, 0.042774494171142576, 0.04271104049682617, 0.04279276657104492, 0.04293036651611328, 0.042985183715820316, 0.04294646453857422, 0.042871166229248046, 0.043028480529785154, 0.04294451141357422, 0.04311859130859375, 0.043259552001953125, 0.043964126586914065, 0.043610305786132814, 0.04332793426513672, 0.04339199829101562, 0.04333465576171875, 0.0432470703125, 0.043098464965820316, 0.04309811019897461, 0.043378273010253904, 0.043190113067626955, 0.04317068862915039, 0.04312255859375, 0.04317593765258789, 0.04312390518188477, 0.04307254409790039, 0.043183902740478515, 0.04321673583984375, 0.043149471282958984, 0.04325900650024414, 0.04354547119140625, 0.04343603134155274, 0.043044864654541014, 0.04262911987304688, 0.042618881225585936, 0.04242432022094727, 0.04251155090332031, 0.04255007934570312, 0.04272700881958008, 0.042664352416992186, 0.042675392150878906, 0.042658622741699216, 0.04277679824829102, 0.042898944854736325, 0.04281689453125, 0.042703777313232424, 0.0433438720703125, 0.04309161758422852, 0.04275439834594726, 0.04297926330566406, 0.04299782562255859, 0.042858558654785155, 0.043007232666015624, 0.04306208038330078, 0.0430365104675293, 0.043097248077392576, 0.042957118988037106, 0.042900032043457034, 0.042821632385253904, 0.04264755249023437, 0.042681888580322264, 0.04283391952514649, 0.04318435287475586, 0.04304054260253906, 0.042872512817382816, 0.04275609588623047, 0.04273017501831055, 0.042807392120361325, 0.04308777618408203, 0.04311843109130859, 0.04308812713623047, 0.04323680114746094, 0.04336627197265625, 0.04362924957275391, 0.04319427108764649, 0.0433787841796875, 0.04427775955200195, 0.04339244842529297, 0.04331577682495117, 0.043205760955810545, 0.04380070495605469, 0.043447040557861326, 0.043227134704589845, 0.04311859130859375, 0.04305100631713867, 0.04318790435791016, 0.04325203323364258, 0.043003902435302735, 0.04312441635131836, 0.04326041412353516, 0.04318598556518555, 0.04331267166137695, 0.043326976776123044, 0.04392035293579102, 0.04344841766357422, 0.04281520080566406, 0.04252467346191406, 0.04247836685180664, 0.04235212707519531, 0.04245532989501953, 0.042557823181152345, 0.042552513122558595, 0.04264432144165039, 0.042547168731689455, 0.04255744171142578, 0.042593441009521484, 0.042514686584472654, 0.04277104187011719, 0.04268147277832031, 0.04259929656982422, 0.04274748611450195, 0.042839969635009766, 0.042888702392578124, 0.04286975860595703, 0.04295206451416016, 0.042945152282714845, 0.043060543060302735, 0.042961631774902344, 0.042874462127685545, 0.0429714241027832, 0.04287088012695312, 0.043012096405029294, 0.04292227172851563, 0.042979198455810545, 0.04278572845458985, 0.04279004669189453, 0.04276172637939453, 0.042753280639648436, 0.04296214294433594, 0.04308505630493164, 0.04327062225341797, 0.04319347381591797, 0.04313932800292969, 0.04369887924194336, 0.04321279907226563, 0.043235294342041014, 0.04354188919067383, 0.04347561645507812, 0.043407615661621095, 0.043398944854736325, 0.04346262359619141, 0.0434442253112793, 0.04338687896728516, 0.04336608123779297, 0.04365548706054687, 0.04322844696044922, 0.043254016876220706, 0.043208351135253904, 0.04333663940429688, 0.04348483276367188, 0.04350950241088867, 0.043557342529296876, 0.04349747085571289, 0.043401214599609376, 0.04358473587036133, 0.043574047088623044, 0.04361833572387695, 0.043200416564941405, 0.04267948913574219, 0.04248617553710937, 0.04257388687133789, 0.04260892868041992, 0.042546688079833986, 0.042656383514404296, 0.042503807067871095, 0.04257628631591797, 0.04242147064208984, 0.042463134765625, 0.04256835174560547, 0.04272355270385742, 0.04278217697143555, 0.04293072128295899, 0.042805248260498044, 0.0428807373046875, 0.043251232147216795, 0.042922592163085936, 0.04285660934448242, 0.04308992004394531, 0.043175838470458985, 0.043081825256347656, 0.0432735366821289, 0.04299436950683594, 0.042833759307861326, 0.04280131149291992, 0.04268841552734375, 0.042749248504638675, 0.04283689498901367, 0.04282969665527344, 0.04277967834472656, 0.04297808074951172, 0.04299766540527344, 0.042842174530029295, 0.04284438323974609, 0.04301801681518555, 0.04305667114257813, 0.04286124801635742, 0.04293632125854492, 0.04308515167236328, 0.043240097045898436, 0.04328646469116211, 0.04334393692016601, 0.04345187377929687, 0.04347123336791992, 0.043284160614013675, 0.043159839630126956, 0.04311648178100586, 0.044163326263427734, 0.04320857620239258, 0.04326518249511719, 0.04327657699584961, 0.043313343048095705, 0.04326383972167969, 0.043231903076171876, 0.043218238830566406, 0.04324739074707031, 0.043192607879638675, 0.043342464447021486, 0.0432988166809082, 0.043225086212158204, 0.04327324676513672, 0.04348108673095703, 0.042967041015625, 0.042674175262451174, 0.04249151992797852, 0.04243084716796875, 0.042240001678466796, 0.04242371368408203, 0.042477535247802733, 0.042566272735595705, 0.0425615348815918, 0.042909183502197266, 0.04448470306396484, 0.04250848007202149, 0.04247087860107422, 0.042474239349365235, 0.04253488159179687, 0.04274998474121094, 0.04283596801757812, 0.042894432067871094, 0.04296099090576172, 0.04316447830200195, 0.043119873046875, 0.043125503540039065, 0.04311859130859375, 0.0432125129699707, 0.04272911834716797, 0.042740352630615236, 0.042782718658447266, 0.04290505599975586, 0.04291619110107422, 0.04298553466796875, 0.04299993515014648, 0.04304256057739258, 0.042987777709960935, 0.042907615661621094, 0.04304899215698242, 0.042874881744384766, 0.04354048156738281, 0.043030143737792965, 0.043358592987060546, 0.043412830352783205, 0.04321267318725586, 0.04331302261352539, 0.043273120880126956, 0.043401214599609376, 0.04361612701416016, 0.04336579132080078, 0.04337148666381836, 0.04324121475219726, 0.04315702438354492, 0.042947040557861325, 0.04310806274414063, 0.043299423217773435, 0.04313631820678711, 0.04316128158569336, 0.04308819198608398, 0.04321446228027344, 0.043071231842041015, 0.0432281608581543, 0.04335520172119141, 0.043235679626464844, 0.043499393463134764, 0.04387311935424805]",tokens/s,23.24809392876178,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,873.742336,655.294464,0.0,260.046848,258.555392,s,1,7.44559619140625,7.44559619140625,0.0,7.44559619140625,7.44559619140625,7.44559619140625,7.44559619140625,[7.44559619140625],,kWh,1.4648123000000623e-05,1.6085814022668542e-06,4.526670288003409e-06,2.0783374690270886e-05,,MB,1328.021504,751.763456,0.0,341.835776,317.950464,s,14,0.19269519901275634,0.013763942786625455,0.0004346000602619136,0.013681695938110352,0.013778102111816407,0.01431407971382141,0.01510181740760803,"[0.0137838716506958, 0.013700896263122559, 0.013743647575378418, 0.013534432411193847, 0.013509984016418458, 0.013537280082702637, 0.015298751831054688, 0.013539520263671875, 0.013588768005371094, 0.013641023635864257, 0.01368899154663086, 0.013764639854431153, 0.013680255889892579, 0.013683135986328126]",tokens/s,18599.321718247586,kWh,4.0062819423870005e-07,4.4182161689928466e-08,2.0989309582167692e-07,6.547034517503055e-07,tokens/kWh,391016725.6879451,MB,1367.61344,779.026432,0.0,369.098752,317.953024,s,14,9.901269592285155,0.7072335423060825,0.004373440602804263,0.7081146545410156,0.712881365966797,0.7140843505859376,0.7146861083984375,"[0.7070420532226562, 0.7039707641601562, 0.7092022094726562, 0.709187255859375, 0.7008070678710937, 0.704184814453125, 0.70412060546875, 0.7023123779296875, 0.7011494750976562, 0.7095607299804687, 0.7148365478515625, 0.7101968994140625, 0.7110194702148438, 0.7136793212890625]",tokens/s,89.07948539116988,kWh,2.068407336409532e-05,2.281084263019303e-06,7.4988829124638515e-06,3.0464040539578474e-05,tokens/kWh,2068011.9539018879,,s,882,9.894378210067753,0.011218115884430556,0.00020622448943279577,0.01117680025100708,0.011354713726043702,0.011455970811843873,0.012109231624603268,"[0.011076095581054688, 0.011262368202209473, 0.011347519874572753, 0.011610560417175293, 0.011513855934143067, 0.01123641586303711, 0.011499584197998047, 0.011205504417419434, 0.011307007789611816, 0.011177984237670899, 0.011100255966186523, 0.011169280052185059, 0.011192319869995117, 0.011210271835327149, 0.011164192199707032, 0.011237215995788575, 0.01117849636077881, 0.011163647651672364, 0.011311167716979981, 0.011204544067382813, 0.011051008224487305, 0.011173343658447266, 0.011166239738464355, 0.011132927894592285, 0.011118240356445312, 0.011170144081115723, 0.011259903907775879, 0.011276288032531738, 0.011118656158447265, 0.011115455627441406, 0.011142304420471191, 0.011261792182922363, 0.011211968421936036, 0.011199007987976075, 0.011227423667907716, 0.011177984237670899, 0.011155360221862793, 0.01117807960510254, 0.011374784469604491, 0.011120608329772949, 0.01115664005279541, 0.011430624008178712, 0.011270272254943847, 0.011229023933410645, 0.011132415771484374, 0.0111211519241333, 0.011161151885986329, 0.011190303802490234, 0.011147744178771972, 0.01112451171875, 0.011155872344970704, 0.01120025634765625, 0.011302111625671386, 0.011239263534545898, 0.01121615982055664, 0.011128479957580567, 0.011225088119506836, 0.011241472244262696, 0.01126195240020752, 0.011247008323669434, 0.011185791969299317, 0.011212032318115234, 0.011197919845581055, 0.011031968116760254, 0.011237471580505372, 0.011267775535583497, 0.01126255989074707, 0.011224960327148438, 0.011163999557495117, 0.01113702392578125, 0.011163359642028808, 0.011116671562194824, 0.01107158374786377, 0.011173888206481934, 0.011159968376159669, 0.011200160026550292, 0.011179871559143066, 0.011102368354797363, 0.011190272331237794, 0.011173024177551269, 0.01112559986114502, 0.011188223838806152, 0.011085887908935547, 0.011153056144714355, 0.011153696060180664, 0.011146944046020507, 0.011168416023254395, 0.01114896011352539, 0.011279552459716798, 0.011195520401000976, 0.011116064071655274, 0.011071647644042969, 0.011290592193603516, 0.011249088287353515, 0.011139776229858398, 0.011100064277648926, 0.0110797119140625, 0.011116512298583984, 0.011142175674438476, 0.011146112442016602, 0.011159903526306152, 0.011112192153930663, 0.011161600112915039, 0.011181407928466797, 0.011204768180847167, 0.011188032150268555, 0.011181056022644043, 0.011270048141479493, 0.01114668846130371, 0.011120320320129395, 0.01110524845123291, 0.011148480415344239, 0.011242336273193359, 0.011175871849060059, 0.011154399871826173, 0.011168512344360351, 0.011154848098754883, 0.011149920463562012, 0.011204031944274903, 0.011136832237243653, 0.011098015785217285, 0.011172703742980957, 0.011195551872253419, 0.011279264450073241, 0.011250975608825684, 0.01114793586730957, 0.010966143608093261, 0.011238271713256837, 0.011218943595886231, 0.011265567779541016, 0.011244000434875489, 0.011204159736633301, 0.011133567810058594, 0.011419455528259277, 0.011125920295715332, 0.011131936073303223, 0.011095423698425293, 0.011121088027954102, 0.011118880271911621, 0.0111626558303833, 0.01117289638519287, 0.011117471694946288, 0.011052831649780274, 0.011135968208312988, 0.011195615768432617, 0.011149248123168946, 0.011452383995056152, 0.011191328048706055, 0.011161727905273438, 0.011196127891540527, 0.011161888122558594, 0.011173312187194823, 0.011148639678955078, 0.011248576164245605, 0.011171551704406738, 0.011141152381896972, 0.01109331226348877, 0.011336640357971191, 0.011114496231079102, 0.01337660789489746, 0.01354543972015381, 0.011299936294555665, 0.011167584419250488, 0.011184127807617187, 0.011161184310913086, 0.011164064407348634, 0.01109347152709961, 0.011108896255493165, 0.011145152091979981, 0.011206208229064941, 0.011151455879211425, 0.01110262393951416, 0.011060640335083008, 0.011184639930725097, 0.011251520156860352, 0.01117737579345703, 0.011222240447998046, 0.011107263565063476, 0.011141856193542481, 0.01123356819152832, 0.0112391357421875, 0.011270144462585448, 0.011194368362426758, 0.011272095680236816, 0.011245120048522949, 0.011156000137329102, 0.011124735832214355, 0.011080896377563477, 0.01120524787902832, 0.01093996810913086, 0.011124959945678711, 0.011298208236694337, 0.011147775650024415, 0.011173983573913575, 0.011179840087890625, 0.011210687637329101, 0.01118671989440918, 0.011111807823181153, 0.011077952384948731, 0.011165727615356445, 0.01123532772064209, 0.011938207626342774, 0.012149951934814452, 0.011880096435546874, 0.011303680419921875, 0.011206975936889648, 0.011251423835754394, 0.011130847930908204, 0.011239423751831054, 0.011309056282043458, 0.011202783584594726, 0.011157279968261718, 0.011116288185119628, 0.011241408348083496, 0.011538496017456054, 0.011747808456420898, 0.011462431907653808, 0.011300864219665528, 0.011228832244873047, 0.011338080406188965, 0.011382399559020996, 0.011356063842773437, 0.011386879920959473, 0.011172320365905762, 0.011101216316223144, 0.011099103927612305, 0.011157343864440918, 0.011126688003540039, 0.011135231971740723, 0.011134783744812011, 0.011132575988769532, 0.011137568473815918, 0.011175647735595703, 0.01107808017730713, 0.011279935836791993, 0.011210399627685547, 0.01121548843383789, 0.011169792175292969, 0.011081727981567382, 0.011184127807617187, 0.011134976387023926, 0.011201696395874023, 0.01105174446105957, 0.011046079635620118, 0.011806816101074218, 0.011182944297790527, 0.011213055610656738, 0.011204128265380859, 0.011132351875305176, 0.011158304214477539, 0.011150848388671876, 0.011131391525268555, 0.010863072395324707, 0.011168864250183106, 0.011160479545593262, 0.011077024459838868, 0.011189184188842773, 0.011129792213439942, 0.011118464469909668, 0.011073535919189453, 0.01107158374786377, 0.011113216400146484, 0.011132927894592285, 0.011313216209411621, 0.011034560203552247, 0.011116031646728516, 0.011315263748168946, 0.011167807579040527, 0.011116352081298828, 0.011067744255065917, 0.011110336303710937, 0.011093503952026367, 0.011084575653076172, 0.011000991821289063, 0.011123583793640137, 0.011098079681396485, 0.011044992446899413, 0.011036512374877929, 0.011085984230041503, 0.011140992164611816, 0.011111807823181153, 0.011158304214477539, 0.01111638355255127, 0.011155263900756836, 0.011221311569213866, 0.01117081642150879, 0.01122764778137207, 0.011155296325683593, 0.011166239738464355, 0.011141119956970215, 0.01111244773864746, 0.011101920127868653, 0.011090208053588867, 0.01109763240814209, 0.011132991790771485, 0.011082400321960449, 0.011036416053771973, 0.011139072418212891, 0.011122688293457032, 0.011053152084350586, 0.011032416343688964, 0.011058624267578126, 0.011375231742858887, 0.011196415901184082, 0.011112607955932618, 0.011081567764282227, 0.011120991706848144, 0.011097760200500488, 0.011055071830749512, 0.01104435157775879, 0.011052607536315918, 0.011096192359924316, 0.01126863956451416, 0.011036479949951172, 0.011039199829101563, 0.011505023956298828, 0.011086144447326661, 0.011063615798950195, 0.011175775527954101, 0.0111494722366333, 0.01114851188659668, 0.011078432083129882, 0.01113702392578125, 0.01133516788482666, 0.011422143936157227, 0.01111251163482666, 0.011115615844726562, 0.011143487930297851, 0.011248224258422852, 0.011177984237670899, 0.011104255676269532, 0.011069439888000488, 0.011134976387023926, 0.011120832443237305, 0.011114303588867187, 0.011102335929870605, 0.011165568351745606, 0.011216896057128906, 0.011184127807617187, 0.011151040077209472, 0.011112832069396972, 0.011198240280151367, 0.011144831657409668, 0.011121343612670899, 0.011129920005798339, 0.011050848007202149, 0.0111212158203125, 0.011121088027954102, 0.011099424362182617, 0.011043071746826172, 0.011063712120056152, 0.011259903907775879, 0.011105888366699219, 0.011126175880432129, 0.011056127548217774, 0.011358207702636718, 0.011191871643066406, 0.01113475227355957, 0.011155167579650878, 0.01110758399963379, 0.011153311729431152, 0.011134847640991211, 0.011098015785217285, 0.011132479667663574, 0.011072256088256837, 0.011171072006225587, 0.011216608047485352, 0.011193152427673339, 0.011216799736022949, 0.0111627197265625, 0.011145600318908691, 0.011142911911010743, 0.011279135704040528, 0.011077216148376465, 0.011123104095458984, 0.011176063537597656, 0.011224800109863282, 0.011966624259948731, 0.011808511734008788, 0.01118832015991211, 0.011069600105285644, 0.011231231689453124, 0.011163552284240723, 0.011174176216125488, 0.011097184181213379, 0.011164128303527832, 0.011141375541687011, 0.011189472198486329, 0.011144191741943359, 0.01112656021118164, 0.011161600112915039, 0.01144761562347412, 0.011147968292236328, 0.011082847595214844, 0.01121177577972412, 0.011138879776000976, 0.011077280044555665, 0.011066880226135254, 0.01104582405090332, 0.011315199851989746, 0.011132672309875488, 0.011165280342102051, 0.011123359680175781, 0.011280320167541503, 0.011069503784179688, 0.011101247787475586, 0.01113491153717041, 0.011019264221191406, 0.010992799758911133, 0.011135968208312988, 0.011116415977478027, 0.011171456336975097, 0.011161984443664551, 0.011122688293457032, 0.011292896270751952, 0.011304991722106934, 0.011419679641723633, 0.011161439895629883, 0.011034496307373047, 0.011208703994750976, 0.011116543769836425, 0.011397151947021485, 0.011079744338989258, 0.011035584449768066, 0.01118511962890625, 0.011155455589294434, 0.011366592407226563, 0.011513664245605468, 0.011163552284240723, 0.011213215827941894, 0.011220831871032715, 0.011170944213867188, 0.01108563232421875, 0.01103279972076416, 0.011076288223266601, 0.01105510425567627, 0.011075584411621094, 0.01100595188140869, 0.01112063980102539, 0.01113702392578125, 0.01108902359008789, 0.010907103538513183, 0.011314784049987793, 0.011164608001708985, 0.011249664306640626, 0.011298368453979492, 0.011282719612121583, 0.011314911842346191, 0.011196096420288086, 0.011092512130737305, 0.011155679702758789, 0.011147263526916504, 0.011177184104919434, 0.011105055809020997, 0.011063615798950195, 0.011162400245666504, 0.011164544105529785, 0.011136992454528809, 0.011029727935791015, 0.011107168197631835, 0.011186400413513183, 0.011175935745239257, 0.011142368316650391, 0.0111942720413208, 0.011194751739501954, 0.011288640022277831, 0.01113916778564453, 0.01108950424194336, 0.011071423530578613, 0.01110598373413086, 0.01116204833984375, 0.011046527862548828, 0.011065855979919433, 0.01108579158782959, 0.01112054443359375, 0.011139552116394042, 0.01107968044281006, 0.01108790397644043, 0.011349696159362793, 0.01118015956878662, 0.011167903900146485, 0.011018048286437989, 0.011071680068969726, 0.011235424041748047, 0.011138976097106934, 0.011073535919189453, 0.01103667163848877, 0.011122688293457032, 0.011087871551513672, 0.01115664005279541, 0.011027487754821777, 0.011109760284423828, 0.011119359970092774, 0.011116512298583984, 0.011089632034301758, 0.011040767669677735, 0.011094016075134277, 0.011177311897277832, 0.011127552032470704, 0.011136927604675294, 0.011104191780090332, 0.011220704078674317, 0.011241824150085448, 0.011138208389282226, 0.010908384323120118, 0.011159616470336914, 0.011165696144104004, 0.01115340805053711, 0.011192319869995117, 0.011218976020812989, 0.01112700843811035, 0.011105216026306153, 0.011131711959838867, 0.011130816459655761, 0.01114527988433838, 0.011108351707458495, 0.011064352035522461, 0.011146080017089844, 0.011208831787109375, 0.01113868808746338, 0.011125408172607421, 0.011083488464355468, 0.011105343818664551, 0.011084704399108887, 0.01109216022491455, 0.011091327667236328, 0.011082207679748535, 0.011133119583129883, 0.011097920417785645, 0.01099731159210205, 0.011098560333251952, 0.011212800025939941, 0.011096063613891602, 0.011041088104248047, 0.011042495727539063, 0.01113491153717041, 0.011206720352172852, 0.011126784324645997, 0.011024383544921875, 0.011096384048461914, 0.011095744132995605, 0.011095135688781739, 0.011105216026306153, 0.011025376319885254, 0.011086848258972168, 0.011115551948547363, 0.011121536254882812, 0.011068991661071777, 0.011235872268676757, 0.011185503959655762, 0.011109024047851563, 0.01108137607574463, 0.011168224334716797, 0.011136896133422851, 0.011165696144104004, 0.011222271919250489, 0.011217663764953614, 0.011200032234191894, 0.01117846393585205, 0.011150783538818359, 0.011092543601989746, 0.011091263771057128, 0.011127488136291504, 0.011079232215881347, 0.011140735626220703, 0.011143808364868163, 0.011102272033691405, 0.012161312103271484, 0.012273664474487305, 0.011263744354248047, 0.011227680206298827, 0.011314463615417481, 0.011237536430358887, 0.011233152389526367, 0.011157695770263671, 0.011190496444702148, 0.011065343856811523, 0.011231231689453124, 0.01112883186340332, 0.011180031776428222, 0.01112883186340332, 0.0110632963180542, 0.011097503662109374, 0.011168064117431641, 0.011129119873046874, 0.01114521598815918, 0.011099200248718261, 0.011150272369384765, 0.011188575744628906, 0.011142687797546387, 0.011032575607299805, 0.011118720054626465, 0.011118528366088867, 0.011081888198852538, 0.011152671813964845, 0.011080320358276368, 0.01113702392578125, 0.011149439811706543, 0.01114896011352539, 0.011104479789733886, 0.011177984237670899, 0.011132224082946778, 0.011179743766784668, 0.011103551864624023, 0.011110239982604981, 0.011153216361999512, 0.011177215576171875, 0.011216768264770508, 0.01143513584136963, 0.011545472145080567, 0.011807519912719727, 0.011300959587097169, 0.011218943595886231, 0.011212608337402345, 0.01118227195739746, 0.011276288032531738, 0.011244640350341797, 0.011350048065185548, 0.0113887996673584, 0.011833791732788085, 0.011519871711730956, 0.011254464149475098, 0.011156831741333008, 0.011253631591796875, 0.011227935791015624, 0.011280384063720703, 0.011255807876586914, 0.0113154878616333, 0.011280096054077149, 0.011364352226257325, 0.010883904457092286, 0.011250592231750489, 0.01125222396850586, 0.011202272415161132, 0.01121459197998047, 0.011183296203613281, 0.011247008323669434, 0.011286591529846192, 0.011441599845886231, 0.011355008125305176, 0.01125699234008789, 0.011212736129760743, 0.011317215919494628, 0.011311103820800781, 0.011316160202026367, 0.011280223846435547, 0.011380895614624024, 0.011268095970153809, 0.011390624046325683, 0.011416095733642578, 0.011365407943725587, 0.01129747200012207, 0.011594079971313476, 0.01141500759124756, 0.011315327644348144, 0.011350175857543946, 0.011337087631225587, 0.011407903671264649, 0.011331680297851563, 0.011286527633666991, 0.011272128105163575, 0.011268320083618165, 0.011337759971618653, 0.01130844783782959, 0.011215104103088378, 0.01117568016052246, 0.01127667236328125, 0.011274271965026856, 0.01133568000793457, 0.011290623664855956, 0.011243519783020019, 0.011265279769897461, 0.011279104232788086, 0.011283552169799805, 0.011302016258239745, 0.011251487731933595, 0.011150367736816406, 0.011314399719238281, 0.011396863937377929, 0.011318431854248048, 0.01128758430480957, 0.011228351593017579, 0.011156000137329102, 0.01125385570526123, 0.01199078369140625, 0.013234175682067872, 0.011904895782470703, 0.011393407821655273, 0.011343615531921387, 0.011288415908813477, 0.011235744476318359, 0.011180031776428222, 0.01113923168182373, 0.011018239974975585, 0.011105824470520019, 0.011176416397094727, 0.011188223838806152, 0.01123465633392334, 0.011199199676513671, 0.011159647941589355, 0.011240832328796387, 0.011211071968078613, 0.011261856079101563, 0.01117414379119873, 0.01112883186340332, 0.01145036792755127, 0.011197823524475098, 0.01116812801361084, 0.011135231971740723, 0.011106623649597167, 0.01111945629119873, 0.011178048133850097, 0.011193087577819824, 0.011187616348266602, 0.01114192008972168, 0.011220831871032715, 0.011202239990234375, 0.011241791725158691, 0.01114521598815918, 0.011069439888000488, 0.011203680038452148, 0.011197279930114747, 0.011151424407958984, 0.011168928146362304, 0.01112067222595215, 0.011201343536376952, 0.011333632469177245, 0.011187616348266602, 0.011180447578430177, 0.011203904151916504, 0.01118502426147461, 0.011179360389709472, 0.011168448448181153, 0.011125856399536133, 0.011146112442016602, 0.011206015586853028, 0.011204511642456054, 0.011213631629943847, 0.01115135955810547, 0.01116096019744873, 0.011191007614135742, 0.012163071632385255, 0.012752703666687012, 0.01135206413269043, 0.012099679946899413, 0.011315103530883788, 0.011405311584472656, 0.01136844825744629, 0.011192319869995117, 0.01131929588317871, 0.011407360076904297, 0.01141385555267334, 0.011351712226867676, 0.011298368453979492, 0.011217344284057617, 0.011321344375610352, 0.01100217628479004, 0.01123401641845703, 0.011242303848266601, 0.011219136238098145, 0.011225407600402831, 0.011216544151306152, 0.011128255844116211, 0.011269760131835938, 0.011223679542541503, 0.011233856201171875, 0.011245120048522949, 0.011219136238098145, 0.011243519783020019, 0.011286527633666991, 0.011376383781433106, 0.011336064338684082, 0.011370368003845215, 0.011194368362426758, 0.011198047637939454, 0.011262368202209473, 0.011236448287963868, 0.011231295585632324, 0.011147199630737304, 0.011567551612854004, 0.011302495956420898, 0.011270272254943847, 0.011235487937927247, 0.011159199714660645, 0.01115231990814209, 0.011304767608642578, 0.011439807891845703, 0.011469311714172363, 0.011415552139282227, 0.011333696365356445, 0.011376704216003418, 0.011323264122009277, 0.011560959815979004, 0.011286751747131347, 0.011271552085876465, 0.011264512062072754, 0.011220895767211914, 0.011310943603515625, 0.011438207626342773, 0.011380767822265625, 0.011285728454589843, 0.011285311698913574, 0.011253727912902831, 0.011280384063720703, 0.011287903785705567, 0.011309727668762207, 0.011271488189697266, 0.011267871856689453, 0.011264415740966796, 0.011291135787963867, 0.011268095970153809, 0.011257856369018555, 0.01122697639465332, 0.011337216377258302, 0.011264927864074707, 0.011236384391784668, 0.011285216331481933, 0.01122326374053955, 0.011181856155395508, 0.010975008010864257, 0.011221504211425782, 0.011208864212036132, 0.011300671577453613, 0.011297151565551758, 0.011308863639831543, 0.011216575622558594, 0.012291680335998536, 0.011283136367797852, 0.011202272415161132, 0.011284992218017579, 0.01133561611175537, 0.01123423957824707, 0.011239456176757813, 0.01119324779510498, 0.011208800315856934, 0.011213824272155762, 0.011196415901184082, 0.011195199966430664, 0.011102304458618165, 0.011202560424804688, 0.011193408012390136, 0.011226048469543457, 0.01127030372619629, 0.011108192443847656, 0.011165696144104004, 0.011198431968688964, 0.011208767890930177, 0.011136799812316895, 0.011097824096679688, 0.01131340789794922, 0.011186495780944824, 0.011238975524902344, 0.011170368194580078, 0.011097567558288574, 0.011175583839416504, 0.011217568397521973, 0.011306143760681153, 0.011449055671691894, 0.011587712287902832, 0.011535455703735351, 0.01160700798034668, 0.01141708755493164, 0.01141097640991211, 0.011284704208374024, 0.011248671531677246, 0.011232959747314452, 0.011296992301940917, 0.011492159843444824, 0.011616959571838378, 0.011693599700927735, 0.011696864128112792, 0.011456159591674805, 0.0113155517578125, 0.011251999855041503, 0.011301888465881347, 0.01131107234954834, 0.011406399726867677, 0.011568832397460937, 0.011503647804260254, 0.011517056465148926, 0.011509951591491699, 0.011436256408691406]",tokens/s,89.14152878273295,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,8219.447296,11243.814912,0.0,10848.567296,10616.027648,s,1,14.3384755859375,14.3384755859375,0.0,14.3384755859375,14.3384755859375,14.3384755859375,14.3384755859375,[14.3384755859375],,kWh,0.00021537803253750856,2.375057297665813e-05,6.718449819199945e-05,0.00030631310370616617,,MB,3748.20864,11675.828224,0.0,11265.900544,11070.470656,s,10,3.8320139770507815,0.38320139770507816,0.0009032618281221941,0.38316490173339846,0.3842410583496094,0.3842586364746094,0.38427269897460936,"[0.38118585205078126, 0.3822434387207031, 0.38324179077148435, 0.3830880126953125, 0.3830860595703125, 0.3837288513183594, 0.383967041015625, 0.38295956420898436, 0.38427621459960937, 0.3842371520996094]",tokens/s,668.0560184099962,kWh,1.123143302435866e-05,1.2378677839720334e-06,7.456020922077341e-06,1.9925321730408035e-05,tokens/kWh,12847973.220393144,MB,3752.505344,11677.925376,0.0,11267.997696,11070.473216,s,10,29.213083251953126,2.921308325195313,0.005078015239350936,2.9213482666015627,2.928300830078125,2.9298215576171875,2.9310381396484377,"[2.913442138671875, 2.914806884765625, 2.91856884765625, 2.92129833984375, 2.921822509765625, 2.921398193359375, 2.920527587890625, 2.92191357421875, 2.927962890625, 2.93134228515625]",tokens/s,21.565679821142446,kWh,8.544600416355846e-05,9.425667577272549e-06,5.6726058201323676e-05,0.00015159772994215466,tokens/kWh,415573.5051180449,,s,630,29.210234874725337,0.046365452182103715,0.0005080789365927493,0.04631377410888672,0.04681200180053711,0.047042915725708005,0.0487489128112793,"[0.048790336608886715, 0.04646899032592773, 0.04569283294677735, 0.045532512664794925, 0.045716415405273436, 0.04563561630249023, 0.04543689727783203, 0.04720435333251953, 0.0456022720336914, 0.045744670867919925, 0.04590182495117188, 0.04625612640380859, 0.04597350311279297, 0.04576412963867187, 0.045816287994384766, 0.04609027099609375, 0.04579459381103516, 0.045824703216552735, 0.0462479362487793, 0.04623769760131836, 0.04613449478149414, 0.046492446899414064, 0.04641772842407227, 0.04601084899902344, 0.04596294403076172, 0.04625324630737305, 0.04609251022338867, 0.045832416534423825, 0.04616640090942383, 0.0460904655456543, 0.04602163314819336, 0.04585916900634766, 0.04627299118041992, 0.046105983734130856, 0.04595321655273438, 0.046145408630371094, 0.04643289566040039, 0.04617004776000976, 0.046257568359375, 0.046723648071289064, 0.04649168014526367, 0.046352161407470706, 0.046532833099365234, 0.04640335845947265, 0.04617443084716797, 0.04630220794677734, 0.04660889434814453, 0.046338558197021484, 0.04629459381103516, 0.04653100967407227, 0.04646092987060547, 0.04606083297729492, 0.046250720977783204, 0.0463474235534668, 0.04615584182739258, 0.04610332870483398, 0.04664700698852539, 0.04654265594482422, 0.04643068695068359, 0.04651987075805664, 0.04682387161254883, 0.04659823989868164, 0.04704655838012695, 0.04849436950683594, 0.045856990814208985, 0.045760353088378905, 0.04563779067993164, 0.04557136154174805, 0.0453966064453125, 0.04576051330566406, 0.04577494430541992, 0.04589337539672852, 0.04617824172973633, 0.04609260940551758, 0.0460063362121582, 0.04573791885375977, 0.0458526725769043, 0.04605878448486328, 0.04585340881347656, 0.04607385635375977, 0.046284801483154295, 0.04641177749633789, 0.04589158248901367, 0.046339870452880856, 0.046549217224121094, 0.046089599609375, 0.046029312133789066, 0.046604415893554685, 0.04609843063354492, 0.04571136093139649, 0.046080001831054686, 0.04604927825927734, 0.04588937759399414, 0.04609244918823242, 0.04640547180175781, 0.04619484710693359, 0.04591820907592774, 0.04609638214111328, 0.0461844482421875, 0.046129150390625, 0.046112415313720706, 0.046440799713134764, 0.04639059066772461, 0.04634636688232422, 0.04662694549560547, 0.0466682243347168, 0.046292545318603516, 0.04635030364990234, 0.046590431213378906, 0.04654694366455078, 0.04628889465332031, 0.04647651290893555, 0.04639372634887695, 0.04637500762939453, 0.04646547317504883, 0.04658153533935547, 0.04627648162841797, 0.04639148712158203, 0.046540191650390625, 0.04642060852050781, 0.04643430328369141, 0.04674883270263672, 0.046596481323242185, 0.04646089553833008, 0.04818380737304687, 0.04646297454833984, 0.04876428985595703, 0.046567649841308595, 0.04588409423828125, 0.04565606307983398, 0.04578700637817383, 0.045811038970947265, 0.0456866569519043, 0.045822784423828124, 0.04606576156616211, 0.0460184326171875, 0.04595312118530273, 0.045953056335449216, 0.04581343841552735, 0.045603134155273437, 0.04593385696411133, 0.0460645751953125, 0.04620470428466797, 0.046022014617919924, 0.04642390441894531, 0.04616825485229492, 0.046156063079833984, 0.04656671905517578, 0.04694262313842774, 0.04645334243774414, 0.04596902465820313, 0.046036865234375, 0.04615756988525391, 0.0457665901184082, 0.0458535041809082, 0.04624595260620117, 0.04643600082397461, 0.04603017425537109, 0.04606662368774414, 0.0461578254699707, 0.04599427032470703, 0.0460715217590332, 0.0461844482421875, 0.046283008575439454, 0.046300926208496095, 0.046112159729003906, 0.04639599990844727, 0.046373119354248045, 0.04655487823486328, 0.0468823356628418, 0.046819808959960935, 0.046683265686035154, 0.04654751968383789, 0.046458976745605465, 0.04815027236938477, 0.046118465423583985, 0.046375839233398435, 0.0461475830078125, 0.04639664077758789, 0.04657625579833984, 0.04638022232055664, 0.04643324661254883, 0.0466165771484375, 0.046665950775146486, 0.04657888031005859, 0.04669091033935547, 0.046671871185302735, 0.04688057708740234, 0.0468988151550293, 0.047982593536376954, 0.04583212661743164, 0.045819713592529294, 0.04576623916625976, 0.045891807556152346, 0.045908416748046875, 0.045778942108154294, 0.045641727447509765, 0.045707263946533204, 0.045889537811279295, 0.04615695953369141, 0.04605414581298828, 0.04594073486328125, 0.04598147201538086, 0.04613561630249023, 0.04597964859008789, 0.046327457427978516, 0.04626617431640625, 0.046129409790039065, 0.04613891220092774, 0.04638956832885742, 0.04623353576660156, 0.046079872131347656, 0.04601715087890625, 0.046186496734619144, 0.04604313659667969, 0.04586697769165039, 0.04620233535766602, 0.046114398956298826, 0.04604140853881836, 0.04619676971435547, 0.04623593521118164, 0.046164321899414065, 0.04602460861206055, 0.0489780158996582, 0.04586700820922852, 0.04600831985473633, 0.04661862564086914, 0.04712582397460938, 0.04619251251220703, 0.04662748718261719, 0.04663056182861328, 0.0463171501159668, 0.04629391860961914, 0.04646527862548828, 0.04650086212158203, 0.04625641632080078, 0.04618428802490234, 0.0464920654296875, 0.04635670471191406, 0.046386558532714846, 0.046545536041259765, 0.04799798583984375, 0.04644745635986328, 0.046678142547607424, 0.04610611343383789, 0.048622081756591794, 0.046265567779541016, 0.04658179092407227, 0.046567169189453125, 0.04706816101074219, 0.0469483528137207, 0.04675945663452148, 0.04882886505126953, 0.04620243072509766, 0.045801921844482424, 0.04576870346069336, 0.04572159957885742, 0.045706783294677734, 0.04565164947509766, 0.04824758529663086, 0.045402111053466795, 0.0462110710144043, 0.04657356643676758, 0.04604108810424805, 0.04570492935180664, 0.04580585479736328, 0.04612300872802735, 0.04591001510620117, 0.04602243041992188, 0.04643862533569336, 0.0463804817199707, 0.046113086700439454, 0.04674492645263672, 0.04651046371459961, 0.045932830810546874, 0.045879550933837894, 0.046179550170898434, 0.04605199813842773, 0.045873279571533206, 0.04630656051635742, 0.04609231948852539, 0.04791984176635742, 0.046088191986083986, 0.04621692657470703, 0.046051265716552735, 0.046008544921875, 0.04627628707885742, 0.04636102294921875, 0.04607183837890625, 0.046161441802978515, 0.04635692977905274, 0.04637654495239258, 0.04651459121704102, 0.046811134338378906, 0.04673715209960937, 0.04655100631713867, 0.04662643051147461, 0.04648313522338867, 0.04627062225341797, 0.04651295852661133, 0.04782694244384766, 0.045956287384033206, 0.046285377502441404, 0.04653286361694336, 0.04636467361450195, 0.046389183044433596, 0.04651424026489258, 0.0465629768371582, 0.046460990905761716, 0.04677824020385742, 0.04654735946655274, 0.04641487884521484, 0.0467465934753418, 0.04689113616943359, 0.04667174530029297, 0.049076255798339845, 0.046418975830078125, 0.047290943145751954, 0.0452694091796875, 0.04568262481689453, 0.04560294342041016, 0.04567830276489258, 0.04598601531982422, 0.045980960845947265, 0.04584499359130859, 0.04589206314086914, 0.04603398513793945, 0.045857471466064455, 0.04581171035766601, 0.04628227233886719, 0.04616649627685547, 0.045980926513671874, 0.04651084899902344, 0.04636444854736328, 0.046199039459228514, 0.04647727966308594, 0.04694940948486328, 0.04656768035888672, 0.04591036987304688, 0.04625801467895508, 0.046170654296875, 0.046047233581542966, 0.045943904876708984, 0.04630764770507813, 0.04627926254272461, 0.04607590484619141, 0.04590137481689453, 0.046219711303710935, 0.04603289413452148, 0.04607555389404297, 0.046546367645263674, 0.04630137634277344, 0.046203617095947266, 0.04643840026855469, 0.04635647964477539, 0.046383102416992186, 0.0466346549987793, 0.04706089782714844, 0.046680511474609374, 0.046583168029785155, 0.046516094207763675, 0.04643507385253906, 0.04624163055419922, 0.04672262573242188, 0.04647366333007812, 0.04632592010498047, 0.04637247848510742, 0.046615230560302735, 0.04656300735473633, 0.04637286376953125, 0.04642780685424805, 0.04661897659301758, 0.0466063346862793, 0.0470362548828125, 0.04669164657592773, 0.04658380889892578, 0.04698633575439453, 0.04720614242553711, 0.04878131103515625, 0.04636262512207031, 0.04572332763671875, 0.045598751068115236, 0.04585004806518555, 0.04594748687744141, 0.045784351348876956, 0.046113471984863284, 0.045926593780517576, 0.045942367553710936, 0.0459901123046875, 0.04608227157592774, 0.04585055923461914, 0.04611830520629883, 0.04619251251220703, 0.04632473754882813, 0.04633795166015625, 0.04605523300170898, 0.04623782348632813, 0.04636876678466797, 0.046120960235595705, 0.04638508987426758, 0.046556480407714845, 0.04625075149536133, 0.045958656311035156, 0.04608256149291992, 0.04616396713256836, 0.04612505722045898, 0.04609843063354492, 0.046325759887695314, 0.04616396713256836, 0.046050846099853514, 0.04623203277587891, 0.04628684616088867, 0.04603289413452148, 0.046534400939941406, 0.04664140701293945, 0.04655104064941406, 0.04653875350952148, 0.04665753555297852, 0.04640134429931641, 0.04645497512817383, 0.046749855041503904, 0.046782047271728515, 0.04628828811645508, 0.04619452667236328, 0.04653276824951172, 0.04633481597900391, 0.046258113861083985, 0.04644358444213867, 0.046496768951416016, 0.04641299057006836, 0.04677510452270508, 0.04676403045654297, 0.04657356643676758, 0.046429664611816406, 0.04663059234619141, 0.04654489517211914, 0.046711647033691406, 0.04682137680053711, 0.04682080078125, 0.04681084823608399, 0.04669731140136719, 0.0480662727355957, 0.0462372817993164, 0.04597564697265625, 0.0458260498046875, 0.04557065582275391, 0.04574784088134766, 0.046035232543945315, 0.045902976989746096, 0.046201919555664064, 0.0462591667175293, 0.04632057571411133, 0.04592025756835937, 0.04595238494873047, 0.04604079818725586, 0.04600924682617188, 0.045946880340576174, 0.04645273590087891, 0.04635548782348633, 0.04605436706542969, 0.0463724479675293, 0.046548511505126955, 0.04615667343139648, 0.0463296012878418, 0.046319774627685543, 0.04617331314086914, 0.04604988861083984, 0.04626265716552734, 0.04628400039672852, 0.04620556640625, 0.046100639343261716, 0.04659404754638672, 0.04641523361206055, 0.046125473022460936, 0.0463218879699707, 0.04637081527709961, 0.04614144134521484, 0.04640768051147461, 0.04671897506713867, 0.046430206298828124, 0.04642598342895508, 0.04682099151611328, 0.04670105743408203, 0.04625408172607422, 0.046516063690185544, 0.046543006896972654, 0.04632156753540039, 0.046443809509277345, 0.04660921478271484, 0.04670230484008789, 0.04668592071533203, 0.04665401458740234, 0.04637696075439453, 0.04642406463623047, 0.04664934539794922, 0.04658585739135742, 0.04609344100952149, 0.04669289779663086, 0.04698556900024414, 0.04679065704345703, 0.04670259094238281, 0.0467672004699707, 0.046811038970947266, 0.046855167388916014, 0.04887347030639649, 0.046295455932617184, 0.04589753723144531, 0.045660926818847654, 0.045930240631103514, 0.04567270278930664, 0.04603903961181641, 0.046086143493652344, 0.04598566436767578, 0.04605964660644531, 0.046252033233642575, 0.046309375762939455, 0.04600831985473633, 0.04635359954833984, 0.04610307312011719, 0.04591030502319336, 0.046166015625, 0.04637007904052735, 0.046233375549316405, 0.04629190444946289, 0.04699955368041992, 0.04694182586669922, 0.04652671813964844, 0.04645465469360351, 0.04648905563354492, 0.046287647247314455, 0.04605952072143555, 0.04634982299804687, 0.046166526794433595, 0.04617375946044922, 0.04634259033203125, 0.046307582855224606, 0.04625081634521484, 0.04653091049194336, 0.046400096893310545, 0.04623769760131836, 0.04621516799926758, 0.046671775817871096, 0.04653884887695312, 0.046386302947998045, 0.04676492691040039, 0.04684185409545898, 0.04671241760253906, 0.04657398223876953, 0.04682732772827149, 0.046796062469482425, 0.04646601486206055, 0.04657670211791992, 0.04637760162353516, 0.046323966979980466, 0.046755840301513675, 0.046695838928222655, 0.04634048080444336, 0.04807113647460937, 0.04646169662475586, 0.04631039810180664, 0.04656899261474609, 0.046688735961914064, 0.046516223907470705, 0.046823135375976564, 0.04717391967773438, 0.0470384635925293, 0.04715919876098633, 0.048711265563964844, 0.04620569610595703, 0.04592832183837891, 0.046012542724609376, 0.04587519836425781, 0.04585443115234375, 0.04607372665405273, 0.04580188751220703, 0.04584844970703125, 0.04600640106201172, 0.046723072052001956, 0.04641308975219727, 0.04597423934936523, 0.045956863403320315, 0.0464667854309082, 0.04749756622314453, 0.04595859146118164, 0.04626918411254883, 0.04628246307373047, 0.04636716842651367, 0.04692342376708984, 0.0466761589050293, 0.04644432067871094, 0.04650620651245117, 0.04657084655761719, 0.0461473617553711, 0.04612160110473633, 0.046217247009277346, 0.04620918273925781, 0.04617737579345703, 0.046556224822998045, 0.04630108642578125, 0.04623791885375977, 0.04615484619140625, 0.046932640075683596, 0.046529888153076175, 0.04633603286743164, 0.04660451126098633, 0.046502334594726566, 0.04640768051147461, 0.046683391571044924, 0.04759164810180664, 0.04658777618408203, 0.04670083236694336, 0.04724057769775391, 0.04684505462646484, 0.046696319580078124, 0.04652236938476562, 0.046581760406494144, 0.04631961441040039, 0.04665753555297852, 0.04655702209472656, 0.046473377227783205, 0.04669161605834961, 0.0466778564453125, 0.04694515228271484, 0.04668620681762695, 0.04698521423339844, 0.04693561553955078, 0.04694633483886719, 0.04706550216674805, 0.046941665649414065, 0.04687129592895508]",tokens/s,21.567782754979433,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1841.913856,2760.835072,0.0,2365.587456,2314.318336,s,1,8.89811328125,8.89811328125,0.0,8.89811328125,8.89811328125,8.89811328125,8.89811328125,[8.89811328125],,kWh,5.511781417915623e-05,6.072691714418805e-06,1.7201402650005027e-05,7.839190854358007e-05,,MB,1845.071872,3092.185088,0.0,2682.257408,2607.60832,s,10,0.5073520698547364,0.05073520698547364,0.0002747971853071152,0.05066675186157227,0.05080905418395996,0.05117609539031982,0.051469728355407716,"[0.05154313659667969, 0.05068672180175781, 0.05066864013671875, 0.05062307357788086, 0.05066486358642578, 0.050727489471435544, 0.050714176177978514, 0.05058483123779297, 0.050576416015625, 0.050562721252441406]",tokens/s,5045.805767054369,kWh,1.5419928673027206e-06,1.700195465713278e-07,1.0264642714631476e-06,2.738476685337196e-06,tokens/kWh,93482628.99980763,MB,1849.36448,3092.185088,0.0,2682.257408,2607.61088,s,10,15.497951171874998,1.5497951171875,0.005800013507732758,1.5492863159179686,1.5571719116210936,1.558186114501953,1.5589974768066406,"[1.5518857421875, 1.5592003173828124, 1.544307861328125, 1.547433837890625, 1.55082470703125, 1.556946533203125, 1.555377685546875, 1.5431873779296874, 1.5477479248046875, 1.5410391845703124]",tokens/s,40.6505345779703,kWh,4.5299420457698424e-05,4.995927556806055e-06,2.1374414760337175e-05,7.166976277484166e-05,tokens/kWh,879031.7919416218,,s,630,15.495820976257319,0.024596541232154483,0.0003772357676909649,0.024506224632263186,0.024912055206298828,0.025060841846466064,0.02604591617584229,"[0.0248623046875, 0.024609184265136717, 0.024407039642333983, 0.024689664840698244, 0.02434867286682129, 0.024375040054321288, 0.024914176940917968, 0.024778495788574217, 0.024428287506103517, 0.02441472053527832, 0.0245166072845459, 0.024444927215576173, 0.02442848014831543, 0.02484230422973633, 0.024663488388061525, 0.024622751235961915, 0.02451968002319336, 0.024503807067871093, 0.02456822395324707, 0.02443878364562988, 0.024337696075439452, 0.02458844757080078, 0.024701503753662108, 0.02496512031555176, 0.02471731185913086, 0.02478643226623535, 0.024644031524658203, 0.02481977653503418, 0.02462905693054199, 0.024594623565673827, 0.024576095581054686, 0.02448784065246582, 0.024380512237548828, 0.02450115203857422, 0.024452512741088867, 0.024406335830688478, 0.024409664154052733, 0.02437398338317871, 0.024434688568115235, 0.028899328231811523, 0.024751903533935547, 0.024668384552001953, 0.02451251220703125, 0.02448579216003418, 0.024395488739013673, 0.02459257507324219, 0.024477888107299804, 0.024669824600219728, 0.024559999465942384, 0.024571903228759767, 0.02443059158325195, 0.024436735153198243, 0.024231935501098634, 0.024323551177978516, 0.02438748741149902, 0.024414783477783204, 0.02443187141418457, 0.02470361518859863, 0.02480496025085449, 0.024885215759277345, 0.024476287841796875, 0.024577312469482422, 0.02479587173461914, 0.02486502456665039, 0.024622848510742187, 0.024599903106689452, 0.024760288238525392, 0.024523456573486327, 0.024485727310180665, 0.02444211196899414, 0.024507295608520507, 0.024726943969726564, 0.024621664047241212, 0.024714496612548827, 0.024437503814697267, 0.024371200561523438, 0.024731552124023438, 0.02471513557434082, 0.025053632736206054, 0.024944000244140625, 0.024697248458862304, 0.024559616088867187, 0.025007360458374022, 0.02490025520324707, 0.024709215164184572, 0.02504409599304199, 0.024980352401733397, 0.024867967605590822, 0.024814464569091796, 0.02476851272583008, 0.02458847999572754, 0.024297279357910158, 0.024542335510253907, 0.024488607406616212, 0.024428768157958983, 0.024365055084228517, 0.024430400848388673, 0.024643775939941406, 0.02446067237854004, 0.024492639541625977, 0.024342559814453126, 0.024559616088867187, 0.024738943099975586, 0.024449920654296874, 0.024852479934692383, 0.02474332809448242, 0.024518335342407226, 0.02460256004333496, 0.02459132766723633, 0.024758399963378905, 0.025031904220581054, 0.02447427177429199, 0.025964351654052736, 0.02489356803894043, 0.024557632446289064, 0.024811199188232422, 0.024678720474243163, 0.024759647369384765, 0.02476304054260254, 0.025686016082763673, 0.026223936080932618, 0.02506208038330078, 0.02485856056213379, 0.024579456329345703, 0.024752960205078126, 0.02548294448852539, 0.02539091110229492, 0.0249051513671875, 0.024630016326904296, 0.02451046371459961, 0.024610271453857423, 0.02437174415588379, 0.02460032081604004, 0.024336639404296874, 0.02441935920715332, 0.024615392684936524, 0.024670719146728515, 0.025216224670410157, 0.024416608810424803, 0.024514368057250976, 0.024584096908569338, 0.02456972885131836, 0.024421215057373047, 0.02434867286682129, 0.024487871170043946, 0.02453715133666992, 0.024756128311157227, 0.024465120315551758, 0.02439583969116211, 0.02436265563964844, 0.02441632080078125, 0.024662624359130858, 0.02457804870605469, 0.02467020797729492, 0.02438956832885742, 0.02441788864135742, 0.024449440002441408, 0.02442451286315918, 0.024383487701416014, 0.0243056640625, 0.024311807632446288, 0.0244135684967041, 0.02434726333618164, 0.02444041633605957, 0.0256944637298584, 0.024508544921875, 0.02446339225769043, 0.024384895324707032, 0.024528928756713867, 0.02459913635253906, 0.02449203109741211, 0.024600576400756836, 0.02433126449584961, 0.024240383148193358, 0.024400543212890625, 0.024379487991333007, 0.024255680084228515, 0.024367168426513673, 0.024302335739135743, 0.024309984207153322, 0.024352607727050782, 0.024479135513305664, 0.024209056854248047, 0.02431056022644043, 0.02427503967285156, 0.02490163230895996, 0.024624927520751953, 0.02436841583251953, 0.024374048233032228, 0.024444704055786134, 0.024377567291259766, 0.024309120178222655, 0.024496768951416014, 0.024758272171020508, 0.024284351348876954, 0.02440457534790039, 0.02429110336303711, 0.024285184860229493, 0.02429587173461914, 0.02434662437438965, 0.02454732894897461, 0.02422547149658203, 0.024396095275878906, 0.024968896865844727, 0.024508575439453124, 0.0244553279876709, 0.024449024200439453, 0.02494054412841797, 0.024606719970703125, 0.024541183471679686, 0.024698879241943358, 0.02434048080444336, 0.02433024024963379, 0.02426041603088379, 0.024264896392822265, 0.02429257583618164, 0.02448633575439453, 0.02448419189453125, 0.024544479370117188, 0.02453993606567383, 0.024754240036010743, 0.024485824584960937, 0.0245166072845459, 0.02443878364562988, 0.024398847579956053, 0.02438041687011719, 0.02450227165222168, 0.02446272087097168, 0.02493283271789551, 0.024481952667236326, 0.024391679763793944, 0.02451046371459961, 0.024715263366699217, 0.025038400650024415, 0.0249136962890625, 0.02470159912109375, 0.024594432830810548, 0.024765472412109375, 0.024685535430908203, 0.02471049690246582, 0.02480793571472168, 0.024559776306152345, 0.024457216262817383, 0.02481132888793945, 0.02443283271789551, 0.02476032066345215, 0.024661056518554686, 0.024521152496337892, 0.024537599563598633, 0.025026559829711914, 0.024939872741699218, 0.025141664505004883, 0.024842432022094726, 0.024715744018554687, 0.02475993537902832, 0.024768960952758788, 0.02448793601989746, 0.02448591995239258, 0.024602592468261717, 0.024406015396118166, 0.024368671417236327, 0.02485500717163086, 0.024365055084228517, 0.024606719970703125, 0.024486080169677734, 0.024803136825561522, 0.024762367248535155, 0.024790752410888673, 0.024596063613891602, 0.024519359588623047, 0.024625152587890626, 0.024763904571533202, 0.02451315116882324, 0.024635263442993164, 0.024800832748413087, 0.02470751953125, 0.02442425537109375, 0.024422111511230468, 0.02440387153625488, 0.02439583969116211, 0.024243743896484374, 0.024509408950805663, 0.02733807945251465, 0.02493712043762207, 0.02458624076843262, 0.024606719970703125, 0.02461631965637207, 0.024609407424926757, 0.02441366386413574, 0.024523199081420897, 0.02451241683959961, 0.024466880798339842, 0.02443283271789551, 0.024398399353027345, 0.024432544708251954, 0.025038944244384766, 0.02448188781738281, 0.024572959899902345, 0.02450521659851074, 0.024426496505737305, 0.024453119277954103, 0.024411552429199217, 0.024512351989746092, 0.024466304779052733, 0.024670112609863282, 0.024544607162475585, 0.024484479904174804, 0.024678272247314455, 0.024569952011108398, 0.024485599517822264, 0.024457536697387695, 0.024385536193847656, 0.024600576400756836, 0.024567808151245117, 0.024754175186157225, 0.025006080627441408, 0.02467020797729492, 0.02446950340270996, 0.02477987289428711, 0.024415136337280274, 0.024633056640625, 0.024873247146606447, 0.024979455947875977, 0.024723295211791993, 0.024649663925170897, 0.024544767379760742, 0.024767200469970704, 0.024393375396728516, 0.024680767059326172, 0.024445087432861327, 0.024434560775756835, 0.0243240966796875, 0.02429132843017578, 0.024344287872314452, 0.02421379280090332, 0.027205631256103514, 0.024791040420532227, 0.025149440765380858, 0.02465996742248535, 0.024506080627441407, 0.024430303573608397, 0.02443280029296875, 0.02440233612060547, 0.02433827209472656, 0.02458025550842285, 0.02454528045654297, 0.024666112899780275, 0.024786943435668944, 0.02470854377746582, 0.0245948486328125, 0.024354368209838866, 0.024438495635986327, 0.024498111724853517, 0.024394527435302734, 0.02573958396911621, 0.02469856071472168, 0.02442367935180664, 0.024363935470581053, 0.024383487701416014, 0.024444063186645507, 0.02453590393066406, 0.025157632827758788, 0.02607923126220703, 0.02541923141479492, 0.02497529602050781, 0.02501420783996582, 0.024840608596801757, 0.02474825668334961, 0.025013792037963868, 0.024745664596557616, 0.02462179183959961, 0.02492326354980469, 0.024863712310791014, 0.024647680282592774, 0.02444697570800781, 0.024401023864746095, 0.024658592224121093, 0.02447808074951172, 0.025485567092895508, 0.02634419250488281, 0.024798208236694336, 0.024801279067993166, 0.024967168807983397, 0.024687616348266602, 0.02451968002319336, 0.024261695861816406, 0.024372159957885744, 0.024515743255615233, 0.024521568298339843, 0.024924415588378906, 0.024599903106689452, 0.02458255958557129, 0.02447769546508789, 0.02491187286376953, 0.0248371524810791, 0.024840991973876955, 0.024832191467285155, 0.02458995246887207, 0.02445350456237793, 0.025453632354736327, 0.02501487922668457, 0.024606271743774413, 0.024453920364379884, 0.02430156707763672, 0.02441212844848633, 0.024268831253051758, 0.024645631790161132, 0.025068927764892578, 0.02460531234741211, 0.02456559944152832, 0.024729440689086914, 0.024662336349487304, 0.02450432014465332, 0.024702560424804686, 0.02437318420410156, 0.02441788864135742, 0.024626272201538086, 0.024438560485839842, 0.024385536193847656, 0.024385599136352538, 0.025059328079223633, 0.02451375961303711, 0.024322240829467774, 0.024334880828857423, 0.024328191757202147, 0.024276992797851563, 0.024360960006713867, 0.02439900779724121, 0.02494761657714844, 0.02440934371948242, 0.025362432479858397, 0.024392383575439453, 0.024395776748657227, 0.024755840301513673, 0.02723580741882324, 0.024611743927001953, 0.024549375534057616, 0.024452991485595703, 0.024477184295654295, 0.02446940803527832, 0.024565759658813476, 0.024991743087768553, 0.02473369598388672, 0.024498176574707032, 0.0243503360748291, 0.024268800735473633, 0.02457360076904297, 0.024492992401123046, 0.024231712341308595, 0.024258560180664062, 0.02429747200012207, 0.024414239883422853, 0.024358879089355467, 0.024333856582641603, 0.024291872024536133, 0.024387327194213868, 0.024274751663208007, 0.024260480880737303, 0.02444339179992676, 0.024459264755249024, 0.024381439208984376, 0.02449571228027344, 0.024328607559204102, 0.024420352935791017, 0.0243787841796875, 0.02436128044128418, 0.024396064758300782, 0.02451433563232422, 0.02450044822692871, 0.024391551971435547, 0.02441347122192383, 0.024474464416503906, 0.02459382438659668, 0.02448240089416504, 0.024629247665405272, 0.024848255157470703, 0.02489356803894043, 0.024592384338378907, 0.025460351943969728, 0.02457638359069824, 0.024759391784667968, 0.024941471099853514, 0.024469120025634766, 0.024506752014160155, 0.02434867286682129, 0.024518655776977538, 0.024772640228271484, 0.024583488464355468, 0.024332000732421876, 0.024445600509643554, 0.024405344009399414, 0.024647743225097656, 0.02434547233581543, 0.02431737518310547, 0.024272607803344726, 0.024560735702514647, 0.024280479431152344, 0.02431420707702637, 0.024438207626342773, 0.024343103408813477, 0.02454252815246582, 0.024891551971435548, 0.024621248245239258, 0.02428163146972656, 0.02530240058898926, 0.024339008331298827, 0.024559135437011718, 0.02461516761779785, 0.024332000732421876, 0.02425449562072754, 0.02426019287109375, 0.025659360885620118, 0.025920480728149415, 0.024506368637084962, 0.024421823501586913, 0.024555391311645507, 0.024789695739746095, 0.025417728424072264, 0.02508121681213379, 0.0249800968170166, 0.02485798454284668, 0.024807552337646484, 0.024634111404418946, 0.024524543762207033, 0.024805376052856445, 0.02481100845336914, 0.02442470359802246, 0.02420966339111328, 0.024854528427124024, 0.02456985664367676, 0.024485824584960937, 0.024328256607055666, 0.02447974395751953, 0.024337663650512695, 0.024381696701049806, 0.024271520614624023, 0.024461151123046875, 0.024449024200439453, 0.024399967193603517, 0.024219263076782228, 0.024315488815307616, 0.02439593505859375, 0.024285728454589844, 0.024180543899536132, 0.024229888916015626, 0.02440563201904297, 0.024394304275512695, 0.02430499267578125, 0.02435545539855957, 0.02440950393676758, 0.02440012741088867, 0.024314239501953126, 0.024391616821289062, 0.024418367385864257, 0.024385536193847656, 0.024219648361206055, 0.024333696365356445, 0.024636032104492188, 0.025140575408935547, 0.024619935989379883, 0.024289024353027343, 0.02484422492980957, 0.024647743225097656, 0.02445654487609863, 0.02432579231262207, 0.024638111114501954, 0.024891807556152345, 0.024613088607788085, 0.024320159912109375, 0.02431590461730957, 0.024488096237182618, 0.024440671920776365, 0.024332351684570312, 0.02438956832885742, 0.024253759384155273, 0.024382144927978515, 0.024399871826171874, 0.02441324806213379, 0.02441049575805664, 0.024294111251831056, 0.024530048370361327, 0.024386272430419922, 0.024352767944335937, 0.02430156707763672, 0.02470025634765625, 0.024470176696777344, 0.024412160873413087, 0.024491071701049805, 0.024593343734741212, 0.024592384338378907, 0.024364639282226562, 0.02433244705200195, 0.024406272888183592, 0.025145376205444336, 0.02435868835449219, 0.024332063674926758, 0.02443894386291504, 0.025069215774536132, 0.024689247131347656, 0.02447932815551758, 0.024877056121826172, 0.02452521514892578, 0.02433433532714844, 0.024395519256591797, 0.02445747184753418, 0.024809503555297853, 0.024511520385742187, 0.024476768493652344, 0.024480672836303712, 0.024449119567871092, 0.02434079933166504, 0.024408607482910155, 0.024425792694091796, 0.024373952865600585, 0.024252416610717774, 0.024285280227661132, 0.024333248138427733, 0.024412384033203127, 0.02423788833618164, 0.024262912750244142, 0.02432614326477051, 0.024582080841064453, 0.024725696563720704, 0.02456585693359375, 0.024387456893920897, 0.02453590393066406, 0.024274656295776367, 0.024423776626586916, 0.02440675163269043, 0.02445254325866699]",tokens/s,40.6561227678924,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,2227.376128,2551.119872,0.0,2155.872256,2032.413184,s,1,8.578361328125,8.578361328125,0.0,8.578361328125,8.578361328125,8.578361328125,8.578361328125,[8.578361328125],,kWh,4.871220372082234e-05,5.366284855721087e-06,1.557001245600098e-05,6.96485010325444e-05,,MB,2285.416448,2827.943936,0.0,2418.016256,2280.154112,s,10,0.9276774215698241,0.09276774215698241,0.00017955024401048356,0.09279806518554687,0.09292477111816407,0.09296712341308594,0.09300100524902344,"[0.09300947570800781, 0.09272541046142578, 0.0928094711303711, 0.09280976104736328, 0.09272265625, 0.09277798461914062, 0.09291535949707032, 0.09228800201416015, 0.09278665924072266, 0.0928326416015625]",tokens/s,2759.5799363834303,kWh,2.754002014937018e-06,3.0371625865989896e-07,1.822247264924521e-06,4.879965538521438e-06,tokens/kWh,52459386.850007236,MB,2300.915712,2911.830016,0.0,2501.902336,2389.055488,s,10,18.30338610839844,1.8303386108398434,0.009095563549333042,1.8309453735351562,1.8442125366210937,1.8443202575683595,1.844406434326172,"[1.831056396484375, 1.831028076171875, 1.82028466796875, 1.8239434814453126, 1.8308626708984375, 1.838055908203125, 1.844427978515625, 1.822085693359375, 1.81745263671875, 1.8441885986328126]",tokens/s,34.41986068965278,kWh,5.320215330131275e-05,5.867637290272799e-06,2.6927331290275196e-05,8.599712188186075e-05,tokens/kWh,732582.6565050255,,s,630,18.300550205230714,0.029048492389255103,0.0004858272422063414,0.028922767639160157,0.02944813804626465,0.02959853448867798,0.030944135189056407,"[0.02943180847167969, 0.029294719696044923, 0.02919411277770996, 0.029276031494140625, 0.029212703704833986, 0.029059167861938476, 0.028839935302734376, 0.02882691192626953, 0.028779232025146484, 0.02880905532836914, 0.029033632278442384, 0.029175840377807617, 0.029332447052001952, 0.029549888610839844, 0.029122304916381837, 0.028951040267944338, 0.028757568359375, 0.028894079208374022, 0.028909568786621095, 0.03006025505065918, 0.02959916877746582, 0.029191007614135744, 0.0290119686126709, 0.028915712356567383, 0.029038591384887694, 0.029081567764282227, 0.029542207717895508, 0.02938630485534668, 0.029187776565551757, 0.028896223068237303, 0.028833728790283203, 0.028825664520263673, 0.02881852722167969, 0.029664159774780274, 0.02893414306640625, 0.028911615371704103, 0.02873958396911621, 0.028927135467529296, 0.028894048690795898, 0.02952729606628418, 0.028877567291259766, 0.02876006317138672, 0.028732608795166016, 0.02890220832824707, 0.028848127365112306, 0.028872703552246092, 0.028833152770996094, 0.028920448303222657, 0.029054975509643553, 0.028829439163208008, 0.028819711685180664, 0.0288973445892334, 0.028861919403076173, 0.02900009536743164, 0.029076896667480468, 0.029157440185546876, 0.029561439514160157, 0.029016063690185546, 0.028785951614379884, 0.028951263427734374, 0.029267520904541017, 0.029432256698608397, 0.028886432647705077, 0.029036224365234373, 0.030164960861206055, 0.028903360366821288, 0.028950368881225586, 0.02885696029663086, 0.028719295501708986, 0.028641151428222655, 0.028889055252075194, 0.02889129638671875, 0.02881331253051758, 0.028809215545654295, 0.028907520294189453, 0.028837440490722656, 0.0287523193359375, 0.029069311141967775, 0.028837343215942383, 0.02945484733581543, 0.031023136138916017, 0.029276159286499022, 0.029009920120239258, 0.02879283142089844, 0.029199359893798828, 0.02997478485107422, 0.029546911239624024, 0.029472511291503908, 0.029121120452880858, 0.028874752044677734, 0.028737152099609375, 0.028921567916870117, 0.029080223083496094, 0.028868608474731446, 0.02910207939147949, 0.028899328231811523, 0.029523935317993164, 0.02883731269836426, 0.0288035831451416, 0.02881283187866211, 0.028895456314086913, 0.029047136306762696, 0.02931065559387207, 0.031068479537963867, 0.028968448638916015, 0.028807680130004884, 0.028825279235839843, 0.02878665542602539, 0.02894416046142578, 0.02879302406311035, 0.02885875129699707, 0.028817407608032225, 0.028862464904785157, 0.028915712356567383, 0.02955232048034668, 0.02905891227722168, 0.02889299201965332, 0.02879759979248047, 0.02895871925354004, 0.029109439849853515, 0.02884281539916992, 0.028940288543701172, 0.0289751033782959, 0.028804927825927733, 0.028771615982055663, 0.02875254440307617, 0.02896281623840332, 0.028829984664916992, 0.028855968475341796, 0.02885830307006836, 0.028848255157470703, 0.028841663360595703, 0.028846368789672852, 0.028886112213134765, 0.028799936294555663, 0.028869888305664063, 0.02905369567871094, 0.028991487503051756, 0.028866559982299804, 0.028839935302734376, 0.028729055404663088, 0.028987680435180664, 0.028716480255126953, 0.02877907180786133, 0.028594175338745118, 0.03075071907043457, 0.02903603172302246, 0.029235712051391603, 0.029016063690185546, 0.02875961685180664, 0.028838336944580076, 0.028931520462036134, 0.028800991058349608, 0.028840543746948243, 0.028703935623168947, 0.028672704696655272, 0.028695680618286132, 0.02870368003845215, 0.029064416885375977, 0.028760927200317383, 0.028868608474731446, 0.029007871627807616, 0.028868608474731446, 0.028733440399169922, 0.028794719696044923, 0.028857631683349608, 0.028856191635131836, 0.028688703536987305, 0.028768287658691407, 0.02869862365722656, 0.028672351837158203, 0.0287869758605957, 0.029167648315429687, 0.02930796813964844, 0.02910713577270508, 0.029079551696777343, 0.029050880432128907, 0.02892367935180664, 0.028672224044799806, 0.028819456100463867, 0.028765695571899414, 0.02884783935546875, 0.028725856781005858, 0.028778688430786133, 0.028727296829223634, 0.029040639877319335, 0.0287825927734375, 0.02870681571960449, 0.028940223693847657, 0.029313760757446287, 0.029163135528564452, 0.028950431823730468, 0.02893667221069336, 0.028984447479248047, 0.02883628845214844, 0.02894304084777832, 0.028673791885375978, 0.028875040054321288, 0.028698335647583006, 0.0289355525970459, 0.02905766487121582, 0.028846080780029298, 0.0294072322845459, 0.028639232635498047, 0.02874982452392578, 0.028773567199707032, 0.02876089668273926, 0.02877644729614258, 0.02874982452392578, 0.028831743240356447, 0.02880512046813965, 0.028854272842407228, 0.02919424057006836, 0.02954649543762207, 0.029287584304809572, 0.02902716827392578, 0.029222911834716796, 0.029340927124023437, 0.02883865547180176, 0.02870848083496094, 0.028748159408569337, 0.03018956756591797, 0.029814783096313476, 0.02876380729675293, 0.028768224716186522, 0.02866988754272461, 0.02881760025024414, 0.02887295913696289, 0.02876006317138672, 0.028720447540283203, 0.028992191314697265, 0.02874777603149414, 0.0288275203704834, 0.028780031204223632, 0.028924543380737303, 0.02879267120361328, 0.02886841583251953, 0.02874166488647461, 0.02866003227233887, 0.028643264770507812, 0.02887411117553711, 0.028751903533935547, 0.028829568862915038, 0.02882537651062012, 0.029029375076293946, 0.02882745552062988, 0.02883603286743164, 0.02883516883850098, 0.02903856086730957, 0.0289553279876709, 0.02900534439086914, 0.030042591094970702, 0.02873472023010254, 0.028759967803955077, 0.02880556869506836, 0.02932383918762207, 0.029491199493408202, 0.02877644729614258, 0.028849760055541993, 0.028862464904785157, 0.03125494384765625, 0.02920003128051758, 0.02909833526611328, 0.028989280700683594, 0.028737119674682617, 0.028869184494018554, 0.028882944107055664, 0.028853759765625, 0.028860736846923828, 0.028928192138671874, 0.028736671447753905, 0.028717920303344725, 0.02860201644897461, 0.028817760467529298, 0.028688383102416993, 0.02901126480102539, 0.02911097526550293, 0.029014015197753908, 0.028825439453125, 0.02891107177734375, 0.028796640396118164, 0.028784799575805663, 0.029544384002685546, 0.036940128326416015, 0.029493471145629883, 0.028904863357543945, 0.028780895233154295, 0.028830175399780274, 0.028880992889404298, 0.028686336517333984, 0.02892185592651367, 0.028860416412353516, 0.02879897689819336, 0.028738752365112304, 0.02867487907409668, 0.02875801658630371, 0.028951839447021486, 0.02926665687561035, 0.028874015808105467, 0.0289835205078125, 0.02876374435424805, 0.02889411163330078, 0.028792255401611327, 0.028848512649536133, 0.028782079696655274, 0.028748416900634767, 0.02877241516113281, 0.028864320755004884, 0.02865171241760254, 0.02873958396911621, 0.02876825523376465, 0.029011520385742187, 0.02883014488220215, 0.029108224868774416, 0.028819456100463867, 0.02881878471374512, 0.02864387130737305, 0.028591680526733398, 0.02871353530883789, 0.028797279357910155, 0.028694175720214845, 0.028898624420166014, 0.02875257682800293, 0.028929407119750977, 0.028835840225219726, 0.028811040878295897, 0.028881664276123046, 0.02894857597351074, 0.028895231246948243, 0.02922844886779785, 0.029243200302124024, 0.028963647842407226, 0.029077472686767577, 0.028993120193481447, 0.028977567672729493, 0.02887049674987793, 0.029382816314697267, 0.028753055572509765, 0.028930912017822264, 0.029027999877929686, 0.029206207275390625, 0.029145759582519533, 0.029572608947753907, 0.02947942352294922, 0.029347232818603516, 0.029475296020507812, 0.02932134437561035, 0.029250751495361327, 0.029616960525512694, 0.02953625679016113, 0.02938047981262207, 0.02939686393737793, 0.02956723213195801, 0.029287424087524414, 0.02934272003173828, 0.029730335235595703, 0.029501920700073243, 0.02932310485839844, 0.029247648239135744, 0.029237056732177736, 0.02942790412902832, 0.02936832046508789, 0.02973695945739746, 0.02937446403503418, 0.029667327880859375, 0.02939904022216797, 0.02949839973449707, 0.029408224105834962, 0.029203872680664062, 0.029153888702392577, 0.029136831283569337, 0.029134016036987304, 0.029005727767944335, 0.028773344039916993, 0.028947807312011718, 0.028916128158569337, 0.029169919967651368, 0.029746400833129884, 0.029960031509399413, 0.029597759246826172, 0.029247488021850586, 0.029406368255615236, 0.029373279571533205, 0.02925676727294922, 0.029143104553222655, 0.028918655395507812, 0.0293703670501709, 0.028927072525024414, 0.028935007095336914, 0.029185760498046876, 0.029462879180908202, 0.029574432373046876, 0.03015545654296875, 0.029418624877929688, 0.029102655410766603, 0.02917616081237793, 0.029077503204345705, 0.029276159286499022, 0.02920022392272949, 0.028981407165527343, 0.02894374465942383, 0.029210592269897463, 0.02919491195678711, 0.02896895980834961, 0.02889727973937988, 0.028891136169433593, 0.028887039184570314, 0.029453472137451173, 0.0311297607421875, 0.02952262306213379, 0.029450239181518553, 0.029207647323608397, 0.029254560470581056, 0.02985536003112793, 0.029393056869506835, 0.029397216796875, 0.02918400001525879, 0.029409120559692383, 0.029444095611572265, 0.029116575241088866, 0.028990848541259766, 0.029543039321899413, 0.02898739242553711, 0.029035968780517576, 0.029106592178344725, 0.029012128829956053, 0.028770303726196288, 0.028823360443115235, 0.02880940818786621, 0.028876800537109375, 0.028815359115600587, 0.02878873634338379, 0.031192735671997072, 0.030237024307250976, 0.029025312423706054, 0.02884048080444336, 0.029639104843139648, 0.029106176376342774, 0.029112319946289062, 0.029073408126831055, 0.02879078483581543, 0.02909721565246582, 0.029363616943359375, 0.029245759963989256, 0.02936832046508789, 0.028880895614624022, 0.029038591384887694, 0.028872703552246092, 0.02886841583251953, 0.02879302406311035, 0.028862464904785157, 0.028669952392578125, 0.02893619155883789, 0.028848127365112306, 0.028884992599487305, 0.029263231277465822, 0.029319807052612303, 0.029181215286254884, 0.029143775939941406, 0.028882047653198243, 0.028768224716186522, 0.028767135620117186, 0.028757823944091796, 0.028852415084838868, 0.028818687438964843, 0.02888755226135254, 0.02869264030456543, 0.028721248626708985, 0.02874163246154785, 0.02905606460571289, 0.02893305587768555, 0.029087135314941406, 0.02910063934326172, 0.029027360916137696, 0.02880406379699707, 0.02876416015625, 0.02879897689819336, 0.02904473686218262, 0.02897100830078125, 0.029220863342285155, 0.028853504180908204, 0.028697343826293947, 0.028698400497436525, 0.028702207565307617, 0.028766944885253908, 0.02874339294433594, 0.028920095443725587, 0.028851232528686523, 0.028895519256591798, 0.028656320571899416, 0.028822656631469726, 0.029061376571655275, 0.0291146240234375, 0.02886284828186035, 0.028704767227172853, 0.028655071258544922, 0.028712703704833985, 0.02876905632019043, 0.028753440856933595, 0.028824031829833983, 0.029343263626098633, 0.02919830322265625, 0.02906982421875, 0.028788608551025392, 0.02924435234069824, 0.029014015197753908, 0.02871903991699219, 0.028768320083618164, 0.028835840225219726, 0.028844032287597656, 0.028984447479248047, 0.02877529525756836, 0.028747392654418946, 0.0287010555267334, 0.028678144454956055, 0.028785791397094727, 0.02878963279724121, 0.029009920120239258, 0.02896691131591797, 0.028913280487060548, 0.0288155517578125, 0.028824960708618164, 0.028809471130371092, 0.02891993522644043, 0.0289366397857666, 0.028841663360595703, 0.028704608917236328, 0.02871548843383789, 0.028895008087158204, 0.02865558433532715, 0.02913920021057129, 0.029070335388183592, 0.028877824783325196, 0.028620800018310546, 0.028626943588256838, 0.02860598373413086, 0.028694271087646484, 0.02865385627746582, 0.028935840606689453, 0.028863264083862306, 0.029314367294311524, 0.029194719314575197, 0.02916988754272461, 0.029120512008666992, 0.0294021110534668, 0.029612672805786132, 0.028909759521484377, 0.02880441665649414, 0.028699520111083985, 0.02862678337097168, 0.02866320037841797, 0.028770624160766603, 0.028602815628051757, 0.028807167053222657, 0.02855936050415039, 0.028667903900146483, 0.028674047470092775, 0.028733440399169922, 0.029122560501098634, 0.02879475212097168, 0.028607999801635742, 0.029067903518676757, 0.02854707145690918, 0.02866899108886719, 0.028566463470458985, 0.02870841598510742, 0.028795263290405274, 0.02898905563354492, 0.02886899185180664, 0.028837888717651368, 0.0290119686126709, 0.02893619155883789, 0.028786687850952147, 0.02870889663696289, 0.02864944076538086, 0.02874982452392578, 0.028868608474731446, 0.028704767227172853, 0.029014015197753908, 0.02894438362121582, 0.029063167572021483, 0.02954582405090332, 0.029067935943603514, 0.029128095626831055, 0.02946928024291992, 0.029190143585205077, 0.029327360153198243, 0.029224672317504884, 0.031176992416381836, 0.03018342399597168, 0.029560831069946288, 0.029593599319458007, 0.029409183502197265, 0.029389184951782228, 0.029260704040527344, 0.02939974403381348, 0.029171424865722655, 0.029401504516601562, 0.029439456939697267, 0.02931065559387207, 0.029184864044189452, 0.029104127883911132, 0.029243200302124024, 0.029137088775634767, 0.029261823654174804, 0.029328800201416014, 0.029439712524414064, 0.02920537567138672, 0.02915123176574707, 0.029046783447265623, 0.03036774444580078, 0.03038412857055664, 0.02966102409362793, 0.0293090877532959, 0.029360128402709962, 0.029265920639038087, 0.029871103286743163, 0.02896143913269043, 0.02935433578491211, 0.029003135681152342, 0.029141471862792968, 0.029026464462280275, 0.029079551696777343, 0.02917136001586914, 0.029065568923950194, 0.0291429443359375, 0.029447904586791994, 0.02928883171081543, 0.029286399841308593, 0.029212671279907225]",tokens/s,34.425194485132565,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3554.562048,4495.179776,0.0,4116.709376,3980.386816,s,1,9.8548896484375,9.8548896484375,0.0,9.8548896484375,9.8548896484375,9.8548896484375,9.8548896484375,[9.8548896484375],,kWh,9.09966390958336e-05,1.0026190653853335e-05,3.093585808200405e-05,0.000131958687831691,,MB,3485.7984,4826.529792,0.0,4418.699264,4245.89568,s,10,6.620557922363281,0.662055792236328,0.000751265648237151,0.6620900573730468,0.6628945556640625,0.6629605834960938,0.6630134057617187,"[0.6616687622070313, 0.6617026977539062, 0.663026611328125, 0.66051611328125, 0.6628349609375, 0.6612864379882812, 0.6621630859375, 0.6620170288085937, 0.6624623413085937, 0.6628798828125]",tokens/s,386.67436038172747,kWh,1.9296033496614424e-05,2.1279812942374758e-06,1.2802249825124906e-05,3.42262646159768e-05,tokens/kWh,7479635.971741402,MB,3489.87392,4837.015552,0.0,4429.185024,4245.89824,s,10,385.57617187499994,38.5576171875,0.010987278465840647,38.560576171875,38.567292968749996,38.567697265625,38.568020703125,"[38.53258984375, 38.54215234375, 38.55772265625, 38.5681015625, 38.5658203125, 38.5649296875, 38.5565, 38.560171875, 38.56098046875, 38.567203125]",tokens/s,1.6339183952587188,kWh,0.001124747326490886,0.00012406806433800434,0.0007475806918140751,0.0019963960826429655,tokens/kWh,31556.86416524936,,s,630,385.5724367675785,0.6120197409009176,0.0004554953714293266,0.6120278625488281,0.6126125122070313,0.6127261108398437,0.6130161370849609,"[0.6121142578125, 0.6112144165039063, 0.612133056640625, 0.6109717407226563, 0.6118790283203125, 0.6111687622070312, 0.6118563842773438, 0.6111764526367187, 0.611968994140625, 0.6111453247070312, 0.6115288696289063, 0.6115491333007812, 0.61184814453125, 0.6115392456054688, 0.6113744506835938, 0.6116513061523438, 0.6119515380859375, 0.6112620239257812, 0.6114207763671875, 0.6118275146484375, 0.61140771484375, 0.6112462158203125, 0.6116078491210938, 0.6112278442382812, 0.6117545166015625, 0.6113173828125, 0.6115408325195313, 0.6119054565429688, 0.61109716796875, 0.611557373046875, 0.6114898071289062, 0.6120910034179687, 0.6114508666992188, 0.6112526245117188, 0.6114199829101562, 0.6118121337890625, 0.6114620361328125, 0.61165380859375, 0.6115807495117187, 0.6114669799804687, 0.6115678100585937, 0.6115462036132813, 0.6115228881835938, 0.6111729736328125, 0.611970703125, 0.6116990356445312, 0.6120406494140626, 0.611641357421875, 0.6119807739257812, 0.6115968017578125, 0.6114283447265625, 0.6122384643554688, 0.6113780517578125, 0.612173828125, 0.6114588012695312, 0.6116984252929687, 0.6117297973632813, 0.61170703125, 0.6120755004882813, 0.61180126953125, 0.6120068359375, 0.612145263671875, 0.611707763671875, 0.611455078125, 0.6119686889648438, 0.6116396484375, 0.611403564453125, 0.6110066528320313, 0.61208984375, 0.6113250732421875, 0.6116536254882813, 0.6114210815429687, 0.611715087890625, 0.6115339965820312, 0.6111299438476563, 0.6121720581054687, 0.6109406127929687, 0.6123619384765625, 0.6113341064453125, 0.6119102783203125, 0.6113526000976562, 0.611614013671875, 0.6116974487304687, 0.611786376953125, 0.6113773803710938, 0.6118853149414063, 0.611208984375, 0.6120120239257812, 0.6114317626953125, 0.6120004272460937, 0.6119423828125, 0.6115693969726562, 0.6115078735351562, 0.6117171020507812, 0.6123374633789063, 0.6121275024414062, 0.6108787231445313, 0.6121347045898438, 0.6113515014648437, 0.61224267578125, 0.6114926147460937, 0.6115780029296874, 0.611550537109375, 0.6118218383789062, 0.61205126953125, 0.6117457885742188, 0.6117621459960938, 0.6116024169921875, 0.6124619140625, 0.6115656127929687, 0.6119385986328125, 0.6118463134765625, 0.612028564453125, 0.6117929077148437, 0.6125826416015625, 0.6117527465820313, 0.6122456665039062, 0.6116406860351562, 0.6126637573242187, 0.6123397216796875, 0.6117594604492187, 0.6127886352539063, 0.6115760498046875, 0.6121256713867187, 0.6121380004882813, 0.6117232666015625, 0.6116925659179687, 0.6115901489257812, 0.6112005615234375, 0.6118138427734375, 0.6111497192382812, 0.6115753173828125, 0.6116255493164062, 0.6120460205078125, 0.6120271606445312, 0.6112542724609376, 0.6120878295898438, 0.6115795288085938, 0.6120797729492188, 0.6120482788085938, 0.6121416015625, 0.6114710693359375, 0.6121723022460938, 0.6112501831054687, 0.6116390991210937, 0.6114646606445312, 0.6126207275390625, 0.6116801147460937, 0.6122869873046874, 0.61224755859375, 0.6117556762695312, 0.6119776000976562, 0.6119215698242187, 0.6119111938476562, 0.61240380859375, 0.6120157470703125, 0.612395751953125, 0.6117763061523438, 0.6126807861328125, 0.61121630859375, 0.6124871826171875, 0.6119192504882812, 0.6123485717773437, 0.612099365234375, 0.6127904663085938, 0.611822021484375, 0.6121922607421875, 0.6124646606445312, 0.6118911743164063, 0.61201416015625, 0.6117307739257812, 0.612303466796875, 0.61236962890625, 0.6120701904296875, 0.612619384765625, 0.6118327026367187, 0.612288330078125, 0.612212890625, 0.61239013671875, 0.6121643676757812, 0.6127042846679688, 0.61183349609375, 0.6126124877929687, 0.6126674194335937, 0.611536376953125, 0.6123505249023438, 0.612005859375, 0.6123560791015625, 0.6124705200195313, 0.6131610717773438, 0.6112392578125, 0.6117443237304687, 0.6113894653320312, 0.6120325317382812, 0.6118903198242187, 0.6113043212890625, 0.6120017700195313, 0.6121266479492188, 0.61219775390625, 0.6118837280273437, 0.6123126831054687, 0.6115352172851563, 0.6124722290039063, 0.611629638671875, 0.612042724609375, 0.6121021118164063, 0.6123438110351562, 0.6116590576171875, 0.6119451293945313, 0.6118370971679687, 0.6123292846679688, 0.6120560302734375, 0.6118502197265625, 0.612443115234375, 0.6120396728515625, 0.6123577880859375, 0.6119038696289063, 0.6128283081054687, 0.6119330444335938, 0.612441650390625, 0.6119649047851563, 0.6122930908203125, 0.6122843627929687, 0.6123295288085937, 0.6125045776367187, 0.6127236938476562, 0.6114489135742187, 0.61211572265625, 0.6123500366210938, 0.6122659301757812, 0.6124222412109375, 0.6124031982421875, 0.6122719116210937, 0.6120572509765625, 0.6123601684570312, 0.61216064453125, 0.6124381713867187, 0.6126107788085937, 0.6120919189453125, 0.6125908203125, 0.6119821166992188, 0.6124503173828125, 0.6126817016601562, 0.6120588989257812, 0.6132062377929688, 0.6120140991210937, 0.6124320068359375, 0.6122822265625, 0.6124273071289063, 0.612599365234375, 0.6120205078125, 0.61283935546875, 0.6122119140625, 0.6117545166015625, 0.611811279296875, 0.6120430908203125, 0.611078125, 0.61248876953125, 0.6120595703125, 0.612294677734375, 0.6119854125976563, 0.6123458862304687, 0.6114295043945313, 0.611914794921875, 0.612179443359375, 0.6117108154296875, 0.6124776611328125, 0.6116636962890625, 0.6123334350585937, 0.6115018310546875, 0.6118132934570313, 0.612077392578125, 0.6123218994140625, 0.6119627685546875, 0.6126206665039062, 0.6122882690429687, 0.6115143432617187, 0.6121533203125, 0.6119895629882812, 0.6120072021484375, 0.6114556884765625, 0.6126775512695313, 0.61162890625, 0.6123578491210937, 0.6120326538085937, 0.6123626708984375, 0.6125403442382813, 0.612054443359375, 0.6119348754882813, 0.6121572265625, 0.6124013671875, 0.612495361328125, 0.6122327880859375, 0.6121760864257813, 0.6119195556640625, 0.6124318237304688, 0.6122091674804687, 0.6119915771484375, 0.6124253540039063, 0.6124895629882813, 0.6127388916015625, 0.6125733642578125, 0.6124769287109375, 0.6121710815429687, 0.6117905883789062, 0.6126417236328126, 0.6126325073242187, 0.6121554565429688, 0.6125913696289063, 0.61184228515625, 0.6124534912109375, 0.6122402954101562, 0.6122333374023438, 0.612042236328125, 0.6128357543945312, 0.612595703125, 0.6127513427734375, 0.6109691162109375, 0.6123616943359375, 0.6117359619140625, 0.612026611328125, 0.6123339233398437, 0.610981689453125, 0.6121719970703124, 0.6120570678710937, 0.61194677734375, 0.6122832641601562, 0.611919921875, 0.6118634033203125, 0.6124083862304688, 0.6119985961914063, 0.61241357421875, 0.6116821899414062, 0.61247900390625, 0.611831787109375, 0.611758056640625, 0.6124605712890625, 0.61218408203125, 0.6115502319335937, 0.6121154174804687, 0.6121103515625, 0.6117601318359375, 0.6125892333984375, 0.61183349609375, 0.6121336669921875, 0.6117366943359375, 0.612065185546875, 0.61258837890625, 0.6118395385742188, 0.6126959838867188, 0.6116390380859374, 0.6129447021484375, 0.6121799926757813, 0.6119232788085938, 0.611804931640625, 0.6121580810546875, 0.6127963256835938, 0.6115818481445312, 0.6126958618164062, 0.6120201416015625, 0.6121695556640625, 0.61252197265625, 0.6119035034179687, 0.6121950073242187, 0.6117481079101562, 0.6126157836914062, 0.6124855346679687, 0.6115591430664062, 0.6131427612304687, 0.6119464721679687, 0.612766845703125, 0.6125670776367188, 0.61140869140625, 0.6127734985351563, 0.6117210083007812, 0.6126946411132812, 0.6123840942382812, 0.6119880981445313, 0.611838134765625, 0.6118623657226563, 0.6119669189453125, 0.6112620849609375, 0.6125039672851562, 0.6112794189453125, 0.6130339965820313, 0.6112164916992188, 0.6126127319335938, 0.6115816040039063, 0.6117484741210938, 0.61230078125, 0.61129931640625, 0.6126282348632812, 0.6112975463867187, 0.6116823120117187, 0.6121248168945312, 0.61120703125, 0.6125687255859374, 0.6120260620117187, 0.6120589599609375, 0.6121654052734375, 0.6110865478515625, 0.6126713256835937, 0.6112509155273438, 0.6119139404296875, 0.6123639526367187, 0.6120186157226563, 0.6126338500976563, 0.6111279907226562, 0.6127632446289063, 0.6112950439453125, 0.6119976196289062, 0.6120557250976563, 0.6124134521484375, 0.6123069458007813, 0.6116843872070312, 0.6122720336914063, 0.611460693359375, 0.612424072265625, 0.6122516479492187, 0.612010009765625, 0.6124620361328125, 0.6112745361328125, 0.6120944213867188, 0.6120062255859375, 0.6122250366210937, 0.6117908325195313, 0.6119178466796875, 0.6122025146484374, 0.6119874267578125, 0.611997802734375, 0.6123902587890625, 0.6122452392578125, 0.6121665649414062, 0.6117449951171875, 0.6119155883789062, 0.6119039306640625, 0.6129322509765625, 0.6121162719726563, 0.612421630859375, 0.6124832763671875, 0.6116205444335937, 0.6125343627929688, 0.6110094604492188, 0.6124031982421875, 0.6119382934570312, 0.611999755859375, 0.61218603515625, 0.610879150390625, 0.61291259765625, 0.6114223022460937, 0.6118695068359375, 0.6122926635742187, 0.611399658203125, 0.6122921752929688, 0.6110989379882813, 0.6120439453125, 0.6116995239257812, 0.6118563842773438, 0.6123151245117188, 0.6112803955078125, 0.612638427734375, 0.6121705322265625, 0.611858154296875, 0.6119235229492187, 0.6121417236328125, 0.6124308471679687, 0.6114147338867187, 0.6120963134765625, 0.6115348510742188, 0.6124412231445312, 0.6118445434570312, 0.6117661743164062, 0.612811279296875, 0.6112337646484375, 0.6126388549804688, 0.6118950805664063, 0.612406982421875, 0.6118363037109374, 0.6121062622070312, 0.6122528686523437, 0.6123179931640625, 0.6118911743164063, 0.6126052856445312, 0.6117557373046875, 0.612244140625, 0.612090087890625, 0.6121342163085938, 0.612966552734375, 0.6113693237304687, 0.6125150146484375, 0.611779541015625, 0.61260546875, 0.6122430419921875, 0.6119534301757813, 0.6121980590820313, 0.612149169921875, 0.6125381469726563, 0.6121417846679688, 0.612169677734375, 0.61263671875, 0.611600341796875, 0.6127117919921875, 0.6122625732421875, 0.6120914916992187, 0.6121656494140625, 0.6111639404296875, 0.6126246337890625, 0.6118850708007812, 0.6122250366210937, 0.61163134765625, 0.6121688842773437, 0.6111559448242188, 0.6125655517578125, 0.6118174438476562, 0.6122291259765625, 0.6118236083984375, 0.6115594482421876, 0.611704833984375, 0.6121345825195312, 0.6124312744140625, 0.6116069946289062, 0.6121016235351563, 0.6124471435546875, 0.611276123046875, 0.6121101684570313, 0.6114844970703125, 0.6124954833984375, 0.6115463256835938, 0.6123585205078125, 0.612188232421875, 0.6113446655273438, 0.6121123657226563, 0.6114365234375, 0.6124310302734375, 0.6119739379882813, 0.6115614624023438, 0.6124237060546875, 0.61134814453125, 0.6127559204101563, 0.6119259033203125, 0.6119415893554687, 0.61205712890625, 0.6115681762695313, 0.612296875, 0.6123171997070312, 0.61203662109375, 0.6125028686523437, 0.6117075805664063, 0.6124912719726563, 0.6118809814453126, 0.6126448364257813, 0.61213037109375, 0.6118486328125, 0.6125650024414062, 0.6119321899414063, 0.6125468139648438, 0.6120425415039062, 0.6125135498046875, 0.6115678100585937, 0.61297216796875, 0.6116644287109375, 0.612972412109375, 0.6127227172851563, 0.6117510986328125, 0.6131720581054687, 0.6115921630859374, 0.6129044799804687, 0.6119600830078125, 0.6125370483398438, 0.61171435546875, 0.6126210327148438, 0.6113599243164063, 0.6115885620117187, 0.6133087158203125, 0.6110249633789062, 0.6127280883789062, 0.6117313842773437, 0.6121046142578125, 0.61195849609375, 0.6116296997070313, 0.6124127197265625, 0.6114652099609375, 0.61193701171875, 0.612396728515625, 0.6118967895507812, 0.6119945068359375, 0.6115444946289063, 0.6119818725585937, 0.6122965698242188, 0.6124524536132813, 0.6119517211914063, 0.6124677734375, 0.611462158203125, 0.6120108642578125, 0.612780029296875, 0.6114529418945313, 0.6124046630859376, 0.611566162109375, 0.6125131225585938, 0.6121314697265625, 0.6122491455078125, 0.6122808227539063, 0.6119035034179687, 0.6121082763671875, 0.611983154296875, 0.6118319702148437, 0.6126550903320312, 0.612560791015625, 0.6118763427734375, 0.6122172241210937, 0.6117850341796875, 0.6125855712890625, 0.6121488647460938, 0.6121957397460938, 0.6129197387695312, 0.611925537109375, 0.612774658203125, 0.6122659912109375, 0.6121143798828125, 0.6127218627929687, 0.6118162841796875, 0.6126605224609375, 0.6120098266601562, 0.6125699462890625, 0.6128468627929687, 0.6122276000976562, 0.6131796875, 0.61227197265625, 0.612358154296875, 0.6123499755859375]",tokens/s,1.6339342233110976,, 4bit-gptq-exllama-v2-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,2163.884032,2194.604032,0.0,1816.133632,1727.29344,s,1,9.0174072265625,9.0174072265625,0.0,9.0174072265625,9.0174072265625,9.0174072265625,9.0174072265625,[9.0174072265625],,kWh,5.976673873331038e-05,6.585365099496029e-06,1.910834862001165e-05,8.546045245281806e-05,,MB,2234.83904,2406.416384,0.0,1998.585856,1980.448768,s,10,3.2212420043945316,0.32212420043945317,0.00027432602111490955,0.3221717987060547,0.3224371398925781,0.32244046325683595,0.3224431219482422,"[0.32209222412109373, 0.32156170654296873, 0.32244378662109374, 0.3224364013671875, 0.3221385803222656, 0.32232028198242185, 0.3222109985351562, 0.32169442749023436, 0.32217874145507813, 0.32216485595703126]",tokens/s,794.7245182161284,kWh,9.410542486587303e-06,1.037575628221308e-06,6.269536265624508e-06,1.6717654380433117e-05,tokens/kWh,15313153.040155603,MB,2248.503296,2597.257216,0.0,2189.426688,2078.022144,s,10,177.882412109375,17.7882412109375,0.020592925819032642,17.790093749999997,17.8097537109375,17.81297841796875,17.81555818359375,"[17.74033203125, 17.77685546875, 17.772400390625, 17.789318359375, 17.816203125, 17.78546484375, 17.790869140625, 17.7986328125, 17.803298828125, 17.809037109375]",tokens/s,3.541665488618573,kWh,0.0005192048609513302,5.727199115571418e-05,0.0003450639392453764,0.0009215407913524209,tokens/kWh,68363.76706400963,,s,630,177.87812567138693,0.28234623122442337,0.0005002065340032206,0.2823446197509766,0.28293623046875,0.2831180969238281,0.2836704473876953,"[0.2817083740234375, 0.281108642578125, 0.28102655029296875, 0.28117919921875, 0.28116668701171876, 0.2813500671386719, 0.28130703735351564, 0.2817966003417969, 0.28123318481445314, 0.28118856811523435, 0.28105682373046875, 0.2815637817382812, 0.2812744445800781, 0.28089865112304685, 0.2817504272460937, 0.28136038208007813, 0.28095693969726565, 0.2816244812011719, 0.2815550537109375, 0.2813931579589844, 0.280936767578125, 0.2819615783691406, 0.2811295166015625, 0.2813604431152344, 0.2813358154296875, 0.28161227416992185, 0.2817576904296875, 0.2811202392578125, 0.2818810729980469, 0.28143618774414064, 0.2814886474609375, 0.2817134094238281, 0.2818887023925781, 0.2820078735351563, 0.28157867431640626, 0.2822633972167969, 0.28165399169921873, 0.28145050048828124, 0.28195550537109376, 0.2812294921875, 0.2821034851074219, 0.2815816345214844, 0.2820033264160156, 0.2816337890625, 0.28149554443359376, 0.28178369140625, 0.28162832641601565, 0.28182830810546877, 0.28160409545898435, 0.2818009033203125, 0.282184814453125, 0.2814942321777344, 0.28167578125, 0.2819154052734375, 0.28225762939453125, 0.2818082580566406, 0.2819129638671875, 0.2820143127441406, 0.2816607360839844, 0.28195724487304685, 0.28182733154296874, 0.28184173583984373, 0.2815572814941406, 0.2825162048339844, 0.2816000061035156, 0.28129278564453125, 0.28238134765625, 0.28212322998046874, 0.28228607177734377, 0.28375567626953124, 0.28194082641601564, 0.2814460754394531, 0.2823106994628906, 0.28207748413085937, 0.28189495849609375, 0.2820966491699219, 0.28307351684570314, 0.28216644287109377, 0.2815824279785156, 0.2825994262695313, 0.2821038208007812, 0.2816468200683594, 0.2814876403808594, 0.28208740234375, 0.2819433898925781, 0.28198684692382814, 0.28177877807617185, 0.2824645690917969, 0.2820888061523438, 0.28176986694335937, 0.2818728332519531, 0.282263916015625, 0.2813644714355469, 0.2818531494140625, 0.282159912109375, 0.28162213134765623, 0.2818133850097656, 0.281831298828125, 0.2822569580078125, 0.2817108154296875, 0.28234378051757814, 0.28229971313476565, 0.28194680786132814, 0.2821629638671875, 0.282089599609375, 0.28266885375976564, 0.2821143493652344, 0.28176177978515626, 0.28232809448242185, 0.28198574829101564, 0.282744140625, 0.2830360107421875, 0.2825934448242188, 0.2832596130371094, 0.28283056640625, 0.28232498168945314, 0.2819215393066406, 0.28268655395507813, 0.2822210693359375, 0.2829930419921875, 0.28259872436523437, 0.28216085815429687, 0.2821068420410156, 0.28219186401367186, 0.28174951171875, 0.28200244140625, 0.2818103637695312, 0.2818050537109375, 0.28194964599609373, 0.28164801025390623, 0.2816470947265625, 0.28212225341796876, 0.28157131958007814, 0.28144024658203126, 0.28197479248046875, 0.2823550415039062, 0.28141839599609375, 0.28154266357421875, 0.28250521850585936, 0.2820546569824219, 0.2807807922363281, 0.2821868591308594, 0.28201666259765623, 0.2817181396484375, 0.2816468200683594, 0.2822828063964844, 0.2825413818359375, 0.2814042053222656, 0.28236123657226564, 0.28229693603515627, 0.2812333984375, 0.28171878051757815, 0.2826264038085938, 0.2821457824707031, 0.281993896484375, 0.2820177307128906, 0.28194412231445315, 0.28198910522460935, 0.2825441284179688, 0.2827960205078125, 0.2821397399902344, 0.28224371337890625, 0.2820672302246094, 0.28260906982421874, 0.2822496643066406, 0.2821588745117187, 0.2823231811523437, 0.2821611328125, 0.28179608154296876, 0.2822761535644531, 0.2825519104003906, 0.28220291137695314, 0.28239599609375, 0.28195034790039064, 0.28220880126953124, 0.2816912536621094, 0.28253070068359376, 0.2816629943847656, 0.28212066650390627, 0.28200961303710936, 0.28256051635742185, 0.2823777770996094, 0.2829818420410156, 0.282862548828125, 0.28231884765625, 0.28236764526367186, 0.2824459228515625, 0.28264678955078126, 0.28200732421875, 0.2823489990234375, 0.28172946166992185, 0.2823695373535156, 0.28246728515625, 0.28236184692382815, 0.28178411865234376, 0.2822180480957031, 0.2826302185058594, 0.28216717529296875, 0.28230303955078123, 0.28263436889648436, 0.28219390869140626, 0.2823474426269531, 0.28219732666015623, 0.2821455383300781, 0.2820280456542969, 0.2820444030761719, 0.28189697265625, 0.28263177490234376, 0.282442138671875, 0.28246426391601565, 0.28231436157226564, 0.28231512451171875, 0.28233053588867185, 0.28185836791992186, 0.28206314086914064, 0.28238027954101563, 0.2822102966308594, 0.2821610412597656, 0.282501220703125, 0.2822912902832031, 0.2823437194824219, 0.28220660400390624, 0.28217788696289064, 0.28252175903320315, 0.2824208068847656, 0.28231231689453123, 0.28185836791992186, 0.28272256469726564, 0.28227789306640627, 0.2822451171875, 0.28217138671875, 0.28220416259765624, 0.28259686279296875, 0.28197296142578127, 0.28252093505859377, 0.2827130126953125, 0.28260107421875, 0.2826029663085938, 0.2827558898925781, 0.28268142700195314, 0.2825068359375, 0.28281671142578124, 0.2828082580566406, 0.2827901611328125, 0.2826642761230469, 0.28224517822265627, 0.28231536865234375, 0.28244378662109376, 0.2823638916015625, 0.28244992065429686, 0.2825603332519531, 0.283182373046875, 0.2824149169921875, 0.28214898681640627, 0.28238482666015624, 0.2825198974609375, 0.28207839965820314, 0.28243026733398435, 0.2831707458496094, 0.28252578735351563, 0.2823947448730469, 0.28252685546875, 0.2841689147949219, 0.28261346435546875, 0.2823191223144531, 0.28272845458984375, 0.28269329833984375, 0.28300521850585936, 0.28303466796875, 0.28245709228515625, 0.2824744873046875, 0.281973876953125, 0.28299066162109376, 0.28248556518554685, 0.2822279357910156, 0.2835259094238281, 0.2836643371582031, 0.2839423828125, 0.2836729431152344, 0.28421142578125, 0.2832015380859375, 0.2830908203125, 0.2829354248046875, 0.28259231567382814, 0.2824910278320312, 0.2826756591796875, 0.2829981689453125, 0.28238104248046875, 0.2826528625488281, 0.28226971435546877, 0.2829794006347656, 0.282104736328125, 0.28296807861328127, 0.2830824279785156, 0.28277996826171875, 0.28335104370117187, 0.28256869506835935, 0.2826506042480469, 0.2839163208007813, 0.2831787414550781, 0.2821790161132812, 0.282032958984375, 0.28291915893554687, 0.28312551879882814, 0.2829066162109375, 0.28294964599609373, 0.2832795104980469, 0.28237298583984377, 0.28226153564453127, 0.28324884033203124, 0.28287667846679687, 0.2823016052246094, 0.2827273254394531, 0.282625, 0.2823463134765625, 0.2826581726074219, 0.28176394653320314, 0.2821018981933594, 0.2824953918457031, 0.28187026977539065, 0.28230593872070314, 0.2822806091308594, 0.2824806518554687, 0.281499755859375, 0.2825419921875, 0.28195135498046875, 0.28178289794921874, 0.2821245422363281, 0.28252569580078124, 0.28158108520507813, 0.28236846923828124, 0.2817228698730469, 0.28231884765625, 0.28214019775390625, 0.2818748474121094, 0.2822943115234375, 0.28198092651367185, 0.2826136779785156, 0.28222476196289065, 0.2823065490722656, 0.2823987121582031, 0.2818655700683594, 0.28213723754882813, 0.2818925476074219, 0.2822043762207031, 0.2822302551269531, 0.28203631591796874, 0.28266143798828125, 0.2824294128417969, 0.2824390869140625, 0.28216995239257814, 0.2819297180175781, 0.28267111206054685, 0.2821983337402344, 0.2819841003417969, 0.28223959350585937, 0.28231475830078123, 0.28229632568359375, 0.28255587768554685, 0.28281704711914063, 0.28269158935546873, 0.2822287292480469, 0.2822830505371094, 0.2823976745605469, 0.28256997680664064, 0.2825523071289063, 0.2826650390625, 0.282540771484375, 0.282830810546875, 0.2821959533691406, 0.28281964111328123, 0.2822872314453125, 0.2828547668457031, 0.28284771728515623, 0.282723876953125, 0.28235415649414064, 0.28240869140625, 0.2825396728515625, 0.28260894775390627, 0.28239041137695314, 0.28224798583984373, 0.2827673645019531, 0.28229428100585935, 0.2820782775878906, 0.2822442626953125, 0.2819520263671875, 0.2820889892578125, 0.2825404968261719, 0.282499267578125, 0.28215277099609376, 0.28228512573242187, 0.28275830078125, 0.2826625671386719, 0.28218994140625, 0.28231884765625, 0.28244610595703123, 0.2819981079101562, 0.2818420715332031, 0.282692138671875, 0.282208251953125, 0.2823740844726563, 0.28222061157226563, 0.28262374877929686, 0.28240887451171875, 0.28204629516601565, 0.28255691528320315, 0.28304940795898437, 0.28197909545898436, 0.28234378051757814, 0.28224920654296876, 0.2820809326171875, 0.2819485168457031, 0.2823261413574219, 0.2826187438964844, 0.2821982116699219, 0.2824906005859375, 0.282846923828125, 0.2824277954101562, 0.2825990295410156, 0.2828082580566406, 0.28278585815429685, 0.2824396667480469, 0.28202023315429686, 0.2823386840820313, 0.28228607177734377, 0.282679931640625, 0.2820782775878906, 0.28205517578125, 0.2826039733886719, 0.2818924865722656, 0.28278207397460936, 0.2825441284179688, 0.2825146179199219, 0.2823456115722656, 0.28275888061523435, 0.28253692626953125, 0.2823302612304687, 0.2827496643066406, 0.2826689147949219, 0.2818419189453125, 0.2827179565429688, 0.2824683532714844, 0.28237203979492187, 0.2814505615234375, 0.28211163330078126, 0.2820980224609375, 0.2821591186523438, 0.28242718505859377, 0.28200775146484375, 0.2821791687011719, 0.28169052124023436, 0.2829434814453125, 0.282093017578125, 0.2827833862304687, 0.28231283569335935, 0.28199798583984376, 0.28288214111328125, 0.282334228515625, 0.2829158020019531, 0.28237109375, 0.28195120239257815, 0.28232235717773435, 0.28237677001953126, 0.28265472412109377, 0.2826524658203125, 0.282267333984375, 0.2826734619140625, 0.2824541015625, 0.283025390625, 0.28260562133789063, 0.28247674560546876, 0.2826320495605469, 0.28254443359375, 0.28234735107421877, 0.282380126953125, 0.28298239135742187, 0.282345458984375, 0.282208251953125, 0.2828554382324219, 0.2826026306152344, 0.28202203369140627, 0.2827025451660156, 0.28374346923828125, 0.28333273315429686, 0.28216339111328126, 0.28254568481445314, 0.28293011474609375, 0.2825252380371094, 0.2828234252929688, 0.282904296875, 0.2824818420410156, 0.2824889831542969, 0.28289688110351563, 0.2820088195800781, 0.28275912475585935, 0.28214938354492186, 0.283443603515625, 0.28240280151367186, 0.28236163330078123, 0.28312188720703124, 0.282489990234375, 0.282265625, 0.28280435180664065, 0.2829030151367187, 0.28249981689453124, 0.2827157897949219, 0.2818607788085937, 0.28287387084960935, 0.2825871276855469, 0.28198211669921874, 0.28234225463867185, 0.2826886901855469, 0.28228436279296876, 0.2823562316894531, 0.28245303344726563, 0.2820813293457031, 0.2823396911621094, 0.2829031066894531, 0.28270797729492186, 0.2821275024414063, 0.2832491455078125, 0.28295849609375, 0.28206051635742185, 0.2828975219726563, 0.282876708984375, 0.28224725341796875, 0.2821158447265625, 0.28251162719726564, 0.2826855163574219, 0.28227783203125, 0.28352947998046873, 0.28261312866210936, 0.28258547973632814, 0.28250323486328127, 0.28231478881835936, 0.283111328125, 0.28280416870117187, 0.282333251953125, 0.28235589599609373, 0.28247406005859377, 0.28249728393554685, 0.28256256103515626, 0.28277120971679687, 0.28252108764648437, 0.2828787231445313, 0.28241510009765625, 0.2828995666503906, 0.282104736328125, 0.2827202453613281, 0.283009033203125, 0.2821937561035156, 0.28226309204101563, 0.2824374694824219, 0.28251800537109373, 0.2822692260742187, 0.2821905517578125, 0.28261135864257814, 0.2824639892578125, 0.28300875854492186, 0.2826269226074219, 0.2827056579589844, 0.28254635620117186, 0.28302133178710936, 0.2829619445800781, 0.2832652587890625, 0.2830226135253906, 0.2830750732421875, 0.2827343139648438, 0.2820447082519531, 0.2826931762695313, 0.2829349365234375, 0.2825732421875, 0.2821565246582031, 0.28265933227539064, 0.28219830322265627, 0.2824922180175781, 0.2822982177734375, 0.28269049072265623, 0.2825780944824219, 0.28191806030273436, 0.2827262268066406, 0.28285516357421875, 0.282481201171875, 0.282574951171875, 0.28316058349609374, 0.2822366027832031, 0.28232736206054687, 0.2828328857421875, 0.28230859375, 0.28245196533203126, 0.28311346435546875, 0.2831810607910156, 0.2820157470703125, 0.28297354125976565, 0.2824956359863281, 0.28224920654296876, 0.28210519409179685, 0.28260140991210936, 0.28277188110351564, 0.2822618103027344, 0.2835672302246094, 0.28298330688476564, 0.2829537353515625, 0.28221600341796876, 0.2828394775390625, 0.2828790588378906, 0.2829869689941406, 0.28328958129882814, 0.2826731262207031, 0.28282318115234373, 0.28256979370117186, 0.28257949829101564, 0.28313018798828127, 0.28251962280273435, 0.28293533325195314, 0.283202880859375, 0.2822878723144531, 0.2829209594726563, 0.28301806640625, 0.2826587829589844, 0.282595458984375, 0.2827507629394531, 0.28313739013671874, 0.28288912963867185, 0.282435546875, 0.2828511657714844, 0.2827154235839844, 0.2824917907714844, 0.2834964599609375, 0.28251898193359376]",tokens/s,3.541750834298009,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v2-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,2,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,3163.000832,4423.876608,0.0,4028.628992,3944.723968,s,1,10.2890380859375,10.2890380859375,0.0,10.2890380859375,10.2890380859375,10.2890380859375,10.2890380859375,[10.2890380859375],,kWh,9.265283422500184e-05,1.0210715612788045e-05,2.773502218800933e-05,0.00013059857202579923,,MB,3183.652864,4763.615232,0.0,4353.687552,4305.05728,s,10,1.145394432067871,0.11453944320678713,0.0002339463254169406,0.11449860763549805,0.11482673568725586,0.11494184837341308,0.11503393852233887,"[0.1150569610595703, 0.11436332702636719, 0.1142347183227539, 0.11432816314697265, 0.11465875244140625, 0.1143918685913086, 0.11456227111816407, 0.11446249389648437, 0.11453472137451172, 0.11480115509033204]",tokens/s,2235.037929578747,kWh,3.4183840612885793e-06,3.7688180050823733e-07,2.2660515544417967e-06,6.061317416238614e-06,tokens/kWh,42235042.71763783,MB,3187.810304,4763.615232,0.0,4353.687552,4305.05984,s,10,25.420324462890623,2.5420324462890624,0.00740630854366198,2.5402193603515624,2.552800537109375,2.5546341552734373,2.5561010498046874,"[2.5564677734375, 2.55239306640625, 2.533532958984375, 2.5334658203125, 2.536947998046875, 2.540232666015625, 2.536437744140625, 2.546279052734375, 2.544361328125, 2.5402060546875]",tokens/s,24.78331859688469,kWh,7.489263759996022e-05,8.260680932844667e-06,3.806064737355796e-05,0.00012121396590636286,tokens/kWh,519742.0901867625,,s,630,25.41778401947023,0.04034568891979399,0.0005551954603061547,0.04022352027893067,0.04074762496948242,0.04107856597900391,0.04241985176086426,"[0.040673408508300785, 0.040661502838134765, 0.04061715316772461, 0.04047705459594726, 0.04062995147705078, 0.040651519775390624, 0.04033033752441406, 0.04043254470825195, 0.04060160064697266, 0.04055654525756836, 0.040473697662353515, 0.04043244934082031, 0.04102944183349609, 0.04362678527832031, 0.0407276496887207, 0.04527302551269531, 0.04102409744262695, 0.040957504272460935, 0.04071916961669922, 0.04134707260131836, 0.04053811264038086, 0.04056195068359375, 0.04037295913696289, 0.040683231353759765, 0.040735008239746094, 0.04055270385742187, 0.04081638336181641, 0.04091494369506836, 0.04069539260864258, 0.04033782577514648, 0.04096409606933594, 0.040339359283447264, 0.04035356903076172, 0.040245567321777344, 0.040204288482666016, 0.04024115371704102, 0.04128768157958984, 0.04006911849975586, 0.04072652816772461, 0.040045982360839845, 0.04247817611694336, 0.040529918670654294, 0.040114177703857425, 0.039972862243652346, 0.0405805778503418, 0.040454689025878905, 0.04016537475585937, 0.0399268798828125, 0.03990220642089844, 0.039812576293945315, 0.03988115310668945, 0.040103935241699216, 0.0401541748046875, 0.040274879455566404, 0.03986355209350586, 0.04002838516235351, 0.03991606521606445, 0.039932926177978514, 0.03998646545410156, 0.0398759994506836, 0.03993017578125, 0.04008550262451172, 0.04032716751098633, 0.04026208114624023, 0.04047257614135742, 0.04038383865356445, 0.0402786865234375, 0.04030054473876953, 0.04016332626342774, 0.0401162223815918, 0.04010720062255859, 0.03997779083251953, 0.04005068969726563, 0.04050124740600586, 0.04012236785888672, 0.04036608123779297, 0.04062617492675781, 0.04044800186157226, 0.040141918182373046, 0.04490742492675781, 0.04033052825927735, 0.04028387069702148, 0.040049568176269534, 0.04110345458984375, 0.040691585540771485, 0.040382591247558594, 0.04055199813842773, 0.04029894256591797, 0.04053104019165039, 0.04022544097900391, 0.04019356918334961, 0.04038524627685547, 0.04019830322265625, 0.04029993438720703, 0.03998764801025391, 0.040088897705078126, 0.040336063385009766, 0.04074655914306641, 0.04026959991455078, 0.040269824981689455, 0.041433761596679684, 0.04206768035888672, 0.04018739318847656, 0.04014889526367187, 0.04120249557495117, 0.04270844650268555, 0.04035644912719726, 0.040323070526123043, 0.04175462341308594, 0.04074454498291016, 0.04064092636108398, 0.04037392044067383, 0.04061014556884766, 0.04024115371704102, 0.04011606216430664, 0.04053798294067383, 0.04017523193359375, 0.040433792114257815, 0.04063900756835938, 0.040089569091796874, 0.040124446868896484, 0.04019404983520508, 0.04001587295532227, 0.040153087615966795, 0.040188129425048826, 0.04022643280029297, 0.040514049530029295, 0.040224704742431644, 0.040048702239990235, 0.040003360748291014, 0.04034377670288086, 0.04004044723510742, 0.04036608123779297, 0.040224704742431644, 0.04014400100708008, 0.04009056091308594, 0.04003609466552734, 0.0401082878112793, 0.04018175888061523, 0.0402630729675293, 0.04031948852539063, 0.04014416122436523, 0.04046828842163086, 0.040330238342285156, 0.04040703964233398, 0.040417278289794925, 0.04022819137573242, 0.04018780899047852, 0.04050543975830078, 0.04001244735717773, 0.04021420669555664, 0.04015955352783203, 0.04038800048828125, 0.04018982315063477, 0.03995107269287109, 0.04071331024169922, 0.04025436782836914, 0.04013840103149414, 0.03995888137817383, 0.040017822265625, 0.040169567108154294, 0.04029439926147461, 0.04022886276245117, 0.04031094360351563, 0.040253536224365234, 0.04001152038574219, 0.040187904357910156, 0.040136703491210936, 0.039858177185058595, 0.039925121307373045, 0.040059040069580075, 0.04015292739868164, 0.04033561706542969, 0.04018739318847656, 0.04012940979003906, 0.0401162223815918, 0.04013075256347656, 0.04014470291137695, 0.04026761627197266, 0.040406944274902344, 0.04071209716796875, 0.04042736053466797, 0.04023689651489258, 0.040100032806396485, 0.04019247817993164, 0.04014080047607422, 0.04024934387207031, 0.04027801513671875, 0.040030174255371094, 0.04064604949951172, 0.04039535903930664, 0.04016332626342774, 0.04013382339477539, 0.04006732940673828, 0.040030017852783206, 0.039994110107421876, 0.04017356872558594, 0.04005068969726563, 0.040101886749267575, 0.03993798446655274, 0.03999068832397461, 0.04009408187866211, 0.04048076629638672, 0.040100128173828124, 0.039997089385986326, 0.03999574279785156, 0.03989503860473633, 0.04000678253173828, 0.03997148895263672, 0.039921440124511716, 0.04002041625976562, 0.04038246536254883, 0.040252735137939456, 0.04032083129882812, 0.040341793060302736, 0.040251998901367186, 0.04047052764892578, 0.040433345794677736, 0.04023689651489258, 0.04021295928955078, 0.040213665008544924, 0.0400362548828125, 0.040239776611328125, 0.04009571075439453, 0.04030905532836914, 0.04023910522460938, 0.0401627197265625, 0.04020080184936523, 0.03999948883056641, 0.03997625732421875, 0.04009235382080078, 0.04017897415161133, 0.040276702880859376, 0.04032921600341797, 0.03991548919677734, 0.040459999084472655, 0.04180204772949219, 0.04045366287231445, 0.04073107147216797, 0.04010601425170898, 0.040065120697021485, 0.04018166351318359, 0.040275966644287106, 0.040123775482177736, 0.04074467086791992, 0.040323135375976565, 0.039996257781982424, 0.04014604949951172, 0.04030271911621094, 0.04013747024536133, 0.039962623596191404, 0.04003430557250977, 0.0414048957824707, 0.040562305450439456, 0.040652702331542966, 0.0404376335144043, 0.040241569519042966, 0.04036012649536133, 0.04032921600341797, 0.04022224044799805, 0.04085398483276367, 0.0407347183227539, 0.040869888305664064, 0.040525825500488284, 0.04035379028320313, 0.04042931365966797, 0.04032742309570313, 0.040325119018554685, 0.040277503967285154, 0.04033116912841797, 0.04029241561889649, 0.04001795196533203, 0.04015478515625, 0.04026556777954102, 0.04018617630004883, 0.03998585510253906, 0.039979007720947264, 0.03994131088256836, 0.04010067367553711, 0.040665088653564455, 0.04081459045410156, 0.04035583877563476, 0.04062825775146484, 0.040482017517089845, 0.04018662261962891, 0.040486751556396486, 0.04027612686157227, 0.04023910522460938, 0.04007526397705078, 0.04020633697509766, 0.04003635025024414, 0.04003859329223633, 0.04046623992919922, 0.040374271392822264, 0.04017295837402344, 0.04002588653564453, 0.04011004638671875, 0.0399532470703125, 0.04012236785888672, 0.039962623596191404, 0.03996876907348633, 0.03993360137939453, 0.03991587066650391, 0.04015919876098633, 0.040081409454345705, 0.04003036880493164, 0.0400010871887207, 0.040092063903808595, 0.04044524765014648, 0.03995868682861328, 0.0402334098815918, 0.040007038116455076, 0.04006361770629883, 0.04013993453979492, 0.03982342529296875, 0.04083977508544922, 0.04112319946289063, 0.04227705764770508, 0.04024911880493164, 0.04004556655883789, 0.040351486206054686, 0.04028416061401367, 0.040191295623779294, 0.04012716674804687, 0.042264575958251956, 0.040191070556640625, 0.03984476852416992, 0.03983769607543945, 0.04014284896850586, 0.03990729522705078, 0.039796768188476564, 0.04008550262451172, 0.0402083854675293, 0.03998720169067383, 0.03996041488647461, 0.03985833740234375, 0.039989246368408206, 0.040103935241699216, 0.04172009658813477, 0.040768863677978516, 0.040175071716308595, 0.04117504119873047, 0.040632320404052735, 0.04018220901489258, 0.04023664093017578, 0.04145379257202148, 0.04054697418212891, 0.04098252868652344, 0.04027391815185547, 0.040268863677978516, 0.04030915069580078, 0.04033795166015625, 0.040322399139404295, 0.04011484909057617, 0.04009369659423828, 0.04028006362915039, 0.04063641738891602, 0.03999334335327148, 0.03996006393432617, 0.04019395065307617, 0.04017203140258789, 0.04038016128540039, 0.03989923095703125, 0.04029695892333984, 0.040295711517333986, 0.03996105575561523, 0.0400992317199707, 0.04010863876342773, 0.039874561309814455, 0.0399458236694336, 0.04024566268920898, 0.040030208587646485, 0.03997081756591797, 0.04004006576538086, 0.040301982879638674, 0.04001020812988281, 0.04008729553222656, 0.039944480895996094, 0.04158246231079102, 0.04054243087768555, 0.04012713623046875, 0.04033536148071289, 0.040153087615966795, 0.04028416061401367, 0.04007526397705078, 0.0405129280090332, 0.04043836975097656, 0.04019993591308594, 0.040184062957763673, 0.04018175888061523, 0.039944000244140625, 0.04013657760620117, 0.04049132919311523, 0.04012403106689453, 0.04009817504882812, 0.0400357437133789, 0.04006768035888672, 0.03999334335327148, 0.0400175666809082, 0.040019519805908205, 0.0399815673828125, 0.03993423843383789, 0.040022014617919925, 0.040785919189453124, 0.03997238540649414, 0.039963104248046874, 0.040000545501708985, 0.040010719299316405, 0.04025360107421875, 0.04022233581542969, 0.04042160034179688, 0.04030054473876953, 0.04032921600341797, 0.04089846420288086, 0.04012656021118164, 0.04041523361206055, 0.040527393341064456, 0.04056889724731445, 0.040583873748779295, 0.04040265655517578, 0.04030575942993164, 0.040643489837646485, 0.04021193695068359, 0.04011859130859375, 0.04009334564208984, 0.04005849456787109, 0.040104511260986325, 0.04017776107788086, 0.04076531219482422, 0.040089534759521483, 0.04030860900878906, 0.04021299362182617, 0.04000982284545898, 0.0401899528503418, 0.04003168106079102, 0.04055843353271484, 0.040143585205078124, 0.040304447174072264, 0.040398143768310545, 0.040182655334472656, 0.03999961471557617, 0.04027913665771484, 0.04006358337402344, 0.04000297546386719, 0.04006755065917969, 0.040134464263916016, 0.040011680603027344, 0.03995641708374023, 0.04002608108520508, 0.039887584686279294, 0.040217823028564456, 0.040065216064453124, 0.04009235382080078, 0.0401448974609375, 0.04006092834472656, 0.0400928955078125, 0.04001984024047851, 0.040369056701660154, 0.040535903930664065, 0.04041129684448242, 0.04048691177368164, 0.040304641723632816, 0.04017766571044922, 0.040304641723632816, 0.04008345413208008, 0.04021452713012695, 0.040286209106445314, 0.04020547103881836, 0.040547168731689454, 0.04023091125488281, 0.040089599609375, 0.040312416076660154, 0.041940673828125, 0.04206252670288086, 0.04040256118774414, 0.04070646286010742, 0.04046233749389649, 0.040343551635742186, 0.04044800186157226, 0.04010598373413086, 0.040052734375, 0.04001574325561524, 0.04039443206787109, 0.0401228141784668, 0.04057702255249023, 0.040804126739501956, 0.04062844848632813, 0.04014694213867188, 0.0416255989074707, 0.041981952667236325, 0.040809921264648434, 0.04065951919555664, 0.04046976089477539, 0.040628990173339846, 0.0404213752746582, 0.04047872161865235, 0.0403394546508789, 0.04017926406860352, 0.040411487579345706, 0.04009910583496094, 0.04095699310302734, 0.04088332748413086, 0.0407674560546875, 0.04040975952148437, 0.040565567016601564, 0.04009897613525391, 0.040147647857666016, 0.04036214447021484, 0.04004044723510742, 0.04002732849121094, 0.039995296478271485, 0.039973438262939455, 0.0400096321105957, 0.03998764801025391, 0.03985609436035156, 0.0398306884765625, 0.039826465606689454, 0.03992057418823242, 0.0401005744934082, 0.040175552368164065, 0.040382720947265624, 0.04038361740112305, 0.040868736267089846, 0.04086150360107422, 0.040605438232421874, 0.0405016975402832, 0.0405667839050293, 0.04046601486206055, 0.04063273620605469, 0.04089772796630859, 0.04026451110839844, 0.040357887268066404, 0.040353889465332034, 0.0401585922241211, 0.040210559844970704, 0.04062422561645508, 0.04020406341552735, 0.040305183410644534, 0.039923713684082034, 0.03987836837768555, 0.040296192169189456, 0.0401229133605957, 0.04019516754150391, 0.04019398498535156, 0.04060176086425781, 0.04104060745239258, 0.04039075088500976, 0.04023616027832031, 0.04041747283935547, 0.04044790267944336, 0.04032985687255859, 0.040341663360595706, 0.04013071823120117, 0.040381534576416016, 0.040385311126708984, 0.04006038284301758, 0.04011468887329102, 0.04356022262573242, 0.04087472152709961, 0.04102963256835938, 0.04092313766479492, 0.04057292938232422, 0.040581119537353515, 0.04032924652099609, 0.04075721740722656, 0.04040419387817383, 0.04004521560668945, 0.041010238647460937, 0.04047999954223633, 0.04008310317993164, 0.04002361679077148, 0.040239551544189456, 0.04022476959228516, 0.04053923034667969, 0.04000656127929687, 0.04101500701904297, 0.04006940841674805, 0.03994214248657227, 0.04186111831665039, 0.040570079803466795, 0.04043993759155273, 0.04119414520263672, 0.041095169067382815, 0.040664352416992185, 0.04058323287963867, 0.040376991271972654, 0.04065622329711914, 0.04014352035522461, 0.040013824462890625, 0.04005414581298828, 0.041353855133056644, 0.04001177597045898, 0.039916671752929685, 0.03987955093383789, 0.03977830505371094, 0.040097118377685544, 0.04015785598754883, 0.040350784301757814, 0.039832511901855466, 0.03970816040039062, 0.040108097076416015, 0.03975936126708984, 0.03975980758666992, 0.03990425491333008, 0.040011585235595705, 0.0397305908203125, 0.04022665786743164, 0.03992243194580078, 0.03984918212890625, 0.03978931045532227, 0.03980310440063477, 0.04050281524658203, 0.039842273712158205, 0.039809024810791016, 0.04008755111694336, 0.04005068969726563, 0.04004355239868164, 0.04001276779174805, 0.0398699836730957, 0.03996902465820312, 0.045717727661132815, 0.04005068969726563, 0.040130561828613284, 0.03986636734008789, 0.03994214248657227, 0.04015625762939453, 0.03981609725952148, 0.04132044982910156, 0.04105827331542969, 0.04047248077392578]",tokens/s,24.785795627085953,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1173.385216,1101.98784,0.0,706.740224,681.6384,s,1,7.9774697265625,7.9774697265625,0.0,7.9774697265625,7.9774697265625,7.9774697265625,7.9774697265625,[7.9774697265625],,kWh,3.170235369582694e-05,3.489330949884943e-06,9.687785528005033e-06,4.487947017371692e-05,,MB,1504.735232,1406.07488,0.0,996.1472,949.238272,s,10,0.30593103981018066,0.030593103981018065,0.0002849342081377975,0.030481040000915526,0.031006976318359376,0.031121599769592286,0.031213298530578613,"[0.031236223220825195, 0.030656864166259765, 0.03054080009460449, 0.030380895614624023, 0.030413471221923827, 0.030314720153808594, 0.030421279907226564, 0.03062700843811035, 0.030981504440307617, 0.030358272552490233]",tokens/s,8367.898862398497,kWh,9.069501885869118e-07,1.0001952580079885e-07,5.511840158260737e-07,1.5581537302137844e-06,tokens/kWh,164297010.64533335,MB,1538.02752,1414.463488,0.0,1004.535808,949.240832,s,10,14.960107177734374,1.4960107177734376,0.0069726967375618835,1.4946002197265624,1.5034655639648438,1.507519464111328,1.5107625842285155,"[1.49989990234375, 1.4917362060546875, 1.4974642333984376, 1.4908616943359374, 1.497645751953125, 1.502564697265625, 1.488336181640625, 1.4883565673828125, 1.4916685791015625, 1.5115733642578124]",tokens/s,42.111997762800115,kWh,4.406717211932881e-05,4.8602477698235655e-06,1.7025524489974185e-05,6.595294437912654e-05,tokens/kWh,955226.4966041285,,s,630,14.958072921752935,0.023742972891671318,0.0004972487734326744,0.023646528244018555,0.02399850559234619,0.024191565704345705,0.025756715698242196,"[0.0238920955657959, 0.023654272079467773, 0.023745567321777343, 0.02382703971862793, 0.023885536193847656, 0.02376156806945801, 0.023725088119506837, 0.024677343368530273, 0.023870784759521483, 0.023814847946166992, 0.023971839904785155, 0.023897504806518553, 0.02444758415222168, 0.024135679244995118, 0.02389580726623535, 0.023705856323242187, 0.02391196823120117, 0.023658016204833984, 0.023755647659301757, 0.023525440216064453, 0.023517183303833008, 0.02353971290588379, 0.02370969581604004, 0.023607295989990236, 0.023822336196899413, 0.023699424743652345, 0.023924736022949217, 0.02362985610961914, 0.023901407241821288, 0.02396454429626465, 0.023752607345581055, 0.023817535400390624, 0.02366320037841797, 0.023678592681884766, 0.023622112274169924, 0.023478239059448243, 0.023652032852172853, 0.023728479385375978, 0.02414556884765625, 0.02365884780883789, 0.0237260799407959, 0.02378495979309082, 0.023675392150878907, 0.023558176040649415, 0.023850175857543947, 0.023820383071899414, 0.02391110420227051, 0.023975807189941405, 0.02596284866333008, 0.02398134422302246, 0.023884288787841795, 0.023661632537841797, 0.023696319580078125, 0.02366166305541992, 0.023554624557495116, 0.023478336334228515, 0.023506656646728515, 0.023402240753173827, 0.023532352447509765, 0.023711103439331055, 0.023646848678588867, 0.023658496856689453, 0.02378278350830078, 0.02378976058959961, 0.0236112003326416, 0.023476224899291992, 0.02346188735961914, 0.023562240600585937, 0.023410688400268553, 0.023617536544799804, 0.023404735565185547, 0.023539520263671874, 0.023471519470214842, 0.023356000900268556, 0.023464096069335937, 0.02350592041015625, 0.02359996795654297, 0.023672224044799805, 0.02400320053100586, 0.02384009552001953, 0.023814783096313477, 0.023559520721435547, 0.023621408462524415, 0.023564863204956054, 0.02370591926574707, 0.023459808349609375, 0.023504735946655274, 0.02372380828857422, 0.024148384094238282, 0.024465599060058595, 0.023997983932495116, 0.023940383911132814, 0.02381670379638672, 0.02376550483703613, 0.024311040878295897, 0.02413369560241699, 0.0237795524597168, 0.0238637752532959, 0.023680639266967774, 0.023707103729248048, 0.023808927536010743, 0.023803903579711915, 0.023560192108154295, 0.023592960357666014, 0.02345779228210449, 0.0236395206451416, 0.02342108726501465, 0.023621984481811523, 0.02348569679260254, 0.023857952117919922, 0.023580671310424805, 0.02370684814453125, 0.0236408634185791, 0.023848543167114256, 0.02374083137512207, 0.02370355224609375, 0.023479551315307618, 0.02351923179626465, 0.023674688339233398, 0.02378438377380371, 0.023554048538208007, 0.023619583129882812, 0.02358460807800293, 0.023527584075927734, 0.02352924728393555, 0.023446752548217775, 0.023617504119873046, 0.02362166404724121, 0.023708736419677735, 0.023718528747558594, 0.023900480270385743, 0.023969791412353517, 0.023959711074829103, 0.02392848014831543, 0.02376313591003418, 0.02369331169128418, 0.02344960021972656, 0.02361302375793457, 0.02344905662536621, 0.023319488525390626, 0.02344688034057617, 0.023536224365234375, 0.023565568923950196, 0.023497535705566407, 0.023414783477783203, 0.02334467124938965, 0.023496992111206056, 0.023496896743774413, 0.02350601577758789, 0.02366582489013672, 0.02581068801879883, 0.023883775711059572, 0.023609344482421874, 0.02353958320617676, 0.023476352691650392, 0.023654399871826173, 0.02388159942626953, 0.023726463317871094, 0.023613183975219727, 0.023547903060913086, 0.023568384170532225, 0.02352025604248047, 0.02357046318054199, 0.02351203155517578, 0.023586559295654296, 0.02359321594238281, 0.02428313636779785, 0.02404761505126953, 0.02369126319885254, 0.023748607635498048, 0.023826208114624024, 0.023574304580688477, 0.023705312728881836, 0.02383535957336426, 0.023810176849365233, 0.023713632583618163, 0.02376406478881836, 0.024500543594360352, 0.025285247802734376, 0.024777759552001954, 0.02402777671813965, 0.02388115119934082, 0.023776159286499024, 0.02366464042663574, 0.023738048553466798, 0.02401299285888672, 0.023677055358886718, 0.023554048538208007, 0.023588863372802735, 0.02651683235168457, 0.027435680389404297, 0.023688671112060546, 0.023634271621704103, 0.02352761650085449, 0.023463552474975585, 0.02341516876220703, 0.023565824508666993, 0.023623424530029295, 0.023630592346191408, 0.023575679779052734, 0.02353660774230957, 0.023527328491210937, 0.023584768295288085, 0.02354380798339844, 0.023459840774536132, 0.02346188735961914, 0.02349465560913086, 0.02344960021972656, 0.023384063720703126, 0.023343103408813477, 0.023417024612426757, 0.023719743728637697, 0.02355311965942383, 0.023613855361938475, 0.023706111907958984, 0.023842079162597656, 0.02378607940673828, 0.023995807647705078, 0.023763679504394532, 0.02370515251159668, 0.023648704528808594, 0.023568384170532225, 0.023488512039184572, 0.02351513671875, 0.023537311553955078, 0.023556255340576173, 0.023514911651611327, 0.02364361572265625, 0.023466943740844726, 0.02348236846923828, 0.023358720779418946, 0.023522016525268554, 0.02350601577758789, 0.023714208602905275, 0.023570976257324218, 0.023617727279663086, 0.02346988868713379, 0.023434751510620116, 0.023302528381347658, 0.02348044776916504, 0.023435264587402343, 0.023410240173339845, 0.02344799995422363, 0.023459840774536132, 0.02344550323486328, 0.023537664413452147, 0.02352742385864258, 0.02349635124206543, 0.023596704483032225, 0.023621599197387697, 0.023651008605957032, 0.02367081642150879, 0.023865440368652343, 0.023478176116943358, 0.023646207809448243, 0.02352332878112793, 0.023597055435180665, 0.02364348793029785, 0.023633920669555664, 0.023861791610717772, 0.023758975982666016, 0.023631872177124022, 0.023455680847167967, 0.02335491180419922, 0.0233538875579834, 0.023797567367553712, 0.023684543609619142, 0.02394598388671875, 0.02389798355102539, 0.02368320083618164, 0.023658496856689453, 0.023635551452636717, 0.023480735778808593, 0.023541759490966797, 0.02361315155029297, 0.0234803524017334, 0.028160255432128908, 0.023734272003173826, 0.02369945526123047, 0.023613183975219727, 0.023668991088867188, 0.023822336196899413, 0.023793472290039062, 0.02366044807434082, 0.02385334396362305, 0.023746496200561525, 0.023670848846435548, 0.023650400161743163, 0.023701408386230468, 0.02367283248901367, 0.023576576232910155, 0.023528768539428712, 0.023548511505126952, 0.023664255142211914, 0.02386172866821289, 0.0237238712310791, 0.02363612747192383, 0.023692607879638672, 0.023715776443481447, 0.023724800109863282, 0.02372345542907715, 0.023970367431640625, 0.023705440521240233, 0.023459999084472657, 0.023611391067504883, 0.023667808532714843, 0.024595359802246093, 0.025053119659423827, 0.02361759948730469, 0.023590911865234376, 0.02371788787841797, 0.023484287261962892, 0.02350726318359375, 0.023835935592651368, 0.023568063735961913, 0.024106496810913085, 0.02358732795715332, 0.023638015747070314, 0.023400447845458985, 0.023506336212158203, 0.023501472473144533, 0.02361939239501953, 0.023484544754028322, 0.02359702491760254, 0.02338819122314453, 0.024063615798950194, 0.025059711456298827, 0.023543039321899415, 0.02350966453552246, 0.023421024322509764, 0.023375104904174805, 0.023519680023193358, 0.02355232048034668, 0.02393052864074707, 0.023877792358398438, 0.02459872055053711, 0.025624576568603515, 0.024131584167480468, 0.024153919219970704, 0.02418911933898926, 0.02391993522644043, 0.02420307159423828, 0.024927104949951172, 0.02432614326477051, 0.024131584167480468, 0.024252416610717774, 0.02410220718383789, 0.024013504028320313, 0.023901952743530273, 0.02386764717102051, 0.024004608154296874, 0.02386124801635742, 0.023799808502197265, 0.023782880783081054, 0.023681568145751952, 0.02364825630187988, 0.02368921661376953, 0.023641216278076173, 0.023401344299316406, 0.02346134376525879, 0.02345212745666504, 0.023467296600341796, 0.023490976333618165, 0.02362713623046875, 0.0238023681640625, 0.023919103622436523, 0.023779327392578126, 0.02386528015136719, 0.024145055770874023, 0.023959711074829103, 0.024110912322998047, 0.023845823287963867, 0.023741727828979493, 0.02358550453186035, 0.023525087356567383, 0.023758655548095704, 0.023585248947143554, 0.02368307113647461, 0.02375379180908203, 0.023647167205810546, 0.02371379280090332, 0.02349260711669922, 0.023917600631713866, 0.023833568572998048, 0.023750656127929686, 0.023805952072143553, 0.023812095642089845, 0.02364825630187988, 0.023727487564086915, 0.02373081588745117, 0.02365235137939453, 0.02361142349243164, 0.023481311798095702, 0.023634944915771484, 0.02344550323486328, 0.023478271484375, 0.02338515281677246, 0.023528064727783203, 0.023850400924682616, 0.023707584381103517, 0.023720928192138672, 0.023535167694091797, 0.023518783569335937, 0.023571264266967772, 0.023476287841796874, 0.023479551315307618, 0.023488672256469726, 0.023569087982177734, 0.023566240310668944, 0.023546880722045898, 0.02345235252380371, 0.023388351440429687, 0.023478399276733397, 0.023557855606079103, 0.023511072158813477, 0.023388320922851563, 0.023482271194458008, 0.023654367446899412, 0.02412566375732422, 0.023699583053588866, 0.023651647567749023, 0.023853311538696288, 0.023595327377319335, 0.023514911651611327, 0.02369968032836914, 0.02393087959289551, 0.023635967254638672, 0.023433216094970705, 0.023549951553344727, 0.023541952133178713, 0.023494464874267578, 0.02348236846923828, 0.02384000015258789, 0.023757087707519532, 0.02349235153198242, 0.023627552032470703, 0.02356934356689453, 0.023602848052978517, 0.023673120498657226, 0.02357004737854004, 0.023801792144775392, 0.023581375122070314, 0.023445695877075196, 0.023418752670288086, 0.02340255928039551, 0.0234432315826416, 0.023419168472290038, 0.02339027214050293, 0.023357440948486328, 0.023373760223388673, 0.023778335571289062, 0.023823328018188476, 0.023533504486083986, 0.0236945915222168, 0.023545759201049805, 0.023580671310424805, 0.023509920120239256, 0.02370512008666992, 0.02346236801147461, 0.02351923179626465, 0.023514175415039064, 0.023491199493408204, 0.023521600723266603, 0.023566144943237305, 0.02358086395263672, 0.02382195281982422, 0.02401523208618164, 0.023830528259277343, 0.023763071060180663, 0.023690208435058594, 0.023704479217529297, 0.023799392700195314, 0.02363155174255371, 0.02359574317932129, 0.024160255432128908, 0.023770624160766602, 0.023710399627685546, 0.02361724853515625, 0.023607391357421875, 0.02365644836425781, 0.02367897605895996, 0.023818239212036133, 0.023644159317016602, 0.02365644836425781, 0.023517183303833008, 0.023584192276000976, 0.02411782455444336, 0.02386025619506836, 0.02382080078125, 0.023628255844116212, 0.023550975799560548, 0.023591936111450194, 0.023549951553344727, 0.023625728607177734, 0.02351696014404297, 0.02349603271484375, 0.02354470443725586, 0.02344550323486328, 0.023379199981689452, 0.02353433609008789, 0.023574079513549805, 0.02368556785583496, 0.023517183303833008, 0.023764352798461914, 0.023732511520385743, 0.02350432014465332, 0.023540191650390625, 0.023801952362060546, 0.023756479263305662, 0.02350111961364746, 0.02357481575012207, 0.02376675224304199, 0.02349465560913086, 0.02352060890197754, 0.02338268852233887, 0.023472127914428712, 0.02352742385864258, 0.023615455627441405, 0.023563711166381836, 0.02394918441772461, 0.023687904357910156, 0.023696479797363282, 0.023825311660766603, 0.023432384490966796, 0.02360198402404785, 0.023541408538818358, 0.02349007987976074, 0.023571264266967772, 0.023561920166015625, 0.023548223495483397, 0.023594335556030275, 0.023567007064819335, 0.023479488372802733, 0.023530303955078127, 0.02371401596069336, 0.023621408462524415, 0.02374380874633789, 0.024146240234375, 0.023884159088134765, 0.02369923210144043, 0.023642335891723633, 0.02358787155151367, 0.023841760635375978, 0.023601152420043944, 0.023506591796875, 0.02368342399597168, 0.023487903594970702, 0.02343948745727539, 0.023555904388427733, 0.023920799255371095, 0.02368054389953613, 0.02377398490905762, 0.023646080017089843, 0.023786815643310547, 0.02373324775695801, 0.02388991928100586, 0.023820287704467775, 0.023615264892578126, 0.023450944900512697, 0.023567264556884765, 0.023588064193725587, 0.023624479293823244, 0.024071775436401367, 0.02362614440917969, 0.02446335983276367, 0.024461311340332033, 0.023755903244018554, 0.023903104782104494, 0.02375699234008789, 0.02372364807128906, 0.02379385566711426, 0.02369536018371582, 0.02373017692565918, 0.02354380798339844, 0.023576576232910155, 0.023626976013183594, 0.023567136764526368, 0.023570432662963867, 0.02375600051879883, 0.023857152938842774, 0.02377996826171875, 0.023670944213867187, 0.02356163215637207, 0.023685728073120117, 0.023803647994995118, 0.02412486457824707, 0.025300031661987306, 0.02402639961242676, 0.023986400604248045, 0.024169759750366213, 0.02516870307922363, 0.02745974349975586, 0.024098751068115234, 0.024070207595825194, 0.023814144134521483, 0.023736320495605468, 0.02353775978088379, 0.023548095703125, 0.023594079971313478, 0.023865440368652343, 0.02353721618652344, 0.023485183715820312, 0.025204959869384765, 0.023816192626953125, 0.023580671310424805, 0.030139583587646485, 0.024097440719604492, 0.023752864837646485, 0.023604671478271486, 0.023658464431762696, 0.023744287490844725, 0.023666912078857422, 0.02359891128540039, 0.023440160751342774, 0.023369728088378908, 0.023519392013549804, 0.023502687454223632, 0.02352345657348633, 0.023521408081054688, 0.023670528411865236, 0.023545856475830077, 0.02465177536010742, 0.02525539207458496, 0.024193567276000978, 0.023969791412353517, 0.02370150375366211, 0.023560287475585938, 0.0236911678314209, 0.023731391906738283, 0.023533920288085937]",tokens/s,42.117724876432185,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1505.906688,1596.915712,0.0,1201.668096,1189.151232,s,1,8.179638671875,8.179638671875,0.0,8.179638671875,8.179638671875,8.179638671875,8.179638671875,[8.179638671875],,kWh,3.4542718758334936e-05,3.8032259343420668e-06,1.0888064266001071e-05,4.9234008958678075e-05,,MB,1524.883456,1791.950848,0.0,1382.023168,1351.367168,s,10,0.4748804168701172,0.04748804168701172,8.626458128418844e-05,0.04748456001281738,0.04758217430114746,0.04760303974151611,0.04761973209381103,"[0.04757753753662109, 0.04741312026977539, 0.047552288055419924, 0.04748134231567383, 0.04741155242919922, 0.04733055877685547, 0.04744131088256836, 0.047623905181884765, 0.04748777770996094, 0.0475610237121582]",tokens/s,5390.830847211323,kWh,1.4249498766260126e-06,1.5714683171962336e-07,9.500861259219454e-07,2.532182834267581e-06,tokens/kWh,101098544.91373903,MB,1528.918016,1833.893888,0.0,1423.966208,1407.328256,s,10,13.786848022460937,1.3786848022460938,0.0034189820094292227,1.3792277221679687,1.3835193969726562,1.3840247131347656,1.384428966064453,"[1.3790538330078126, 1.3803687744140625, 1.375017822265625, 1.3734044189453125, 1.379401611328125, 1.3756253662109375, 1.37638134765625, 1.3834071044921874, 1.37965771484375, 1.384530029296875]",tokens/s,45.695723850268834,kWh,4.049869935587363e-05,4.466583156182899e-06,1.8252484791678163e-05,6.32177673037347e-05,tokens/kWh,996555.2832214333,,s,630,13.784107973098747,0.021879536465236122,0.0002631747546613138,0.021808064460754395,0.022150712776184082,0.02236365451812744,0.022853109550476074,"[0.021778495788574218, 0.02174732780456543, 0.021688703536987305, 0.02183366394042969, 0.022048831939697266, 0.02204876708984375, 0.02185385513305664, 0.021788864135742186, 0.02177427291870117, 0.021960927963256837, 0.02182963180541992, 0.02185625648498535, 0.02177961540222168, 0.022281280517578127, 0.02176153564453125, 0.021694751739501954, 0.021700607299804688, 0.02172313690185547, 0.02201190376281738, 0.02191564750671387, 0.02171494483947754, 0.021778432846069336, 0.021729280471801758, 0.02169856071472168, 0.02166169548034668, 0.02194867134094238, 0.02190105628967285, 0.021749696731567382, 0.021851327896118163, 0.021825439453125, 0.02172003173828125, 0.021716991424560548, 0.021737472534179687, 0.02176924705505371, 0.021820383071899416, 0.021746784210205077, 0.021676895141601562, 0.021897279739379882, 0.021954559326171876, 0.022089824676513672, 0.022149023056030274, 0.022235136032104492, 0.02239190483093262, 0.022292959213256837, 0.022095680236816406, 0.022239328384399414, 0.0223045768737793, 0.02197987174987793, 0.022015071868896483, 0.022520767211914063, 0.02183718490600586, 0.0217872314453125, 0.02183884811401367, 0.02181427192687988, 0.021807104110717773, 0.02188902473449707, 0.021886144638061523, 0.021817983627319334, 0.021745311737060548, 0.021783136367797853, 0.021722272872924806, 0.02184419250488281, 0.021764671325683594, 0.021803680419921874, 0.021819391250610352, 0.021774240493774414, 0.021673919677734375, 0.021659807205200197, 0.021809152603149414, 0.021731327056884766, 0.021931392669677734, 0.021693056106567382, 0.021699583053588867, 0.021825824737548828, 0.021707487106323243, 0.021755456924438477, 0.022004159927368164, 0.022732223510742187, 0.02278438377380371, 0.021881023406982423, 0.022161407470703123, 0.021897216796875, 0.021882463455200195, 0.02214134407043457, 0.022901920318603514, 0.022288799285888672, 0.02204275131225586, 0.0219736328125, 0.02192918395996094, 0.021956607818603514, 0.02182192039489746, 0.022082624435424806, 0.02186502456665039, 0.021887487411499023, 0.02190652847290039, 0.021796735763549804, 0.02182636833190918, 0.021842016220092773, 0.021910720825195313, 0.02179078483581543, 0.022016767501831055, 0.021749536514282228, 0.021898527145385743, 0.02183468818664551, 0.021695552825927736, 0.021814207077026367, 0.02178656005859375, 0.021741024017333986, 0.021899871826171875, 0.021931264877319338, 0.021879552841186523, 0.021783552169799804, 0.021744640350341796, 0.021725183486938478, 0.02190745544433594, 0.022089471817016603, 0.02180940818786621, 0.021788671493530275, 0.02197283172607422, 0.021821599960327148, 0.021941791534423827, 0.021915935516357423, 0.021915199279785157, 0.021753856658935547, 0.021834239959716797, 0.021700735092163085, 0.02161664009094238, 0.02190745544433594, 0.02192793655395508, 0.021721088409423828, 0.021618015289306642, 0.02179715156555176, 0.02173334312438965, 0.022065568923950195, 0.021669792175292968, 0.021928031921386718, 0.021805055618286134, 0.02188083267211914, 0.022034431457519533, 0.021769535064697264, 0.021689023971557617, 0.02172867202758789, 0.02186240005493164, 0.02177276802062988, 0.02166592025756836, 0.021780384063720702, 0.02191574478149414, 0.021737472534179687, 0.021704704284667968, 0.021772064208984376, 0.02189334487915039, 0.022226943969726562, 0.02191321563720703, 0.021843807220458984, 0.021807199478149415, 0.02202684783935547, 0.021812448501586913, 0.021887615203857423, 0.021664928436279297, 0.02175881576538086, 0.02168320083618164, 0.02171494483947754, 0.0217807674407959, 0.021747936248779298, 0.021801279067993163, 0.021738719940185548, 0.021783424377441407, 0.021702783584594727, 0.021651424407958985, 0.021983232498168945, 0.021819391250610352, 0.02179452705383301, 0.021839391708374022, 0.021889184951782225, 0.022256223678588868, 0.021809152603149414, 0.02174729537963867, 0.021780672073364257, 0.021819616317749025, 0.021831872940063477, 0.021679935455322267, 0.021708799362182618, 0.0216760311126709, 0.022042240142822266, 0.02206528091430664, 0.021762304306030274, 0.021847711563110352, 0.021942655563354493, 0.021951839447021483, 0.022052671432495115, 0.02184796714782715, 0.02192207908630371, 0.0217161922454834, 0.021605152130126953, 0.021589632034301757, 0.0220546875, 0.021807712554931642, 0.021784223556518555, 0.021709152221679687, 0.02183737564086914, 0.022038976669311525, 0.021979135513305666, 0.021700191497802734, 0.021729503631591797, 0.021921503067016603, 0.021718591690063477, 0.02177935981750488, 0.021845407485961914, 0.02186204719543457, 0.021814207077026367, 0.021882015228271483, 0.021729536056518554, 0.02180134391784668, 0.021696735382080078, 0.021753856658935547, 0.021651456832885742, 0.021884735107421876, 0.021780351638793945, 0.021678176879882813, 0.021704927444458007, 0.021675296783447266, 0.021695104598999024, 0.021702560424804687, 0.021726879119873047, 0.02170854377746582, 0.021965599060058592, 0.02174787139892578, 0.021773439407348633, 0.022024927139282228, 0.021826976776123046, 0.02182819175720215, 0.02189427185058594, 0.0218919677734375, 0.021823488235473632, 0.021762048721313477, 0.021796863555908205, 0.021739519119262696, 0.021708383560180664, 0.021684576034545898, 0.02169196891784668, 0.02158355140686035, 0.02200454330444336, 0.021777952194213867, 0.02182806396484375, 0.021772287368774415, 0.02176425552368164, 0.021878623962402345, 0.021934080123901366, 0.021733375549316408, 0.02169036865234375, 0.02169254493713379, 0.021765888214111326, 0.021672607421875, 0.021807392120361327, 0.02176582336425781, 0.0217127685546875, 0.02174611282348633, 0.021827392578125, 0.022003807067871094, 0.02201113510131836, 0.021797727584838868, 0.022521535873413087, 0.021841279983520506, 0.021838560104370117, 0.021717023849487305, 0.02177039909362793, 0.021802400588989256, 0.02174425506591797, 0.021786624908447266, 0.021927679061889648, 0.021824928283691408, 0.021744480133056642, 0.022013887405395508, 0.02195167922973633, 0.021879167556762696, 0.021920255661010742, 0.02189030456542969, 0.02190822410583496, 0.021834943771362306, 0.021916479110717774, 0.021819391250610352, 0.02181875228881836, 0.021875328063964843, 0.02192153549194336, 0.02211164855957031, 0.021867359161376953, 0.02183123207092285, 0.021916095733642577, 0.021823488235473632, 0.021989280700683594, 0.02185635185241699, 0.021876735687255858, 0.02185420799255371, 0.021743583679199218, 0.02174569511413574, 0.02197020721435547, 0.021906143188476564, 0.021861440658569337, 0.021826240539550783, 0.021868799209594728, 0.02189030456542969, 0.021777280807495115, 0.021839744567871095, 0.021823488235473632, 0.021716928482055663, 0.021748960494995116, 0.02403619194030762, 0.021998624801635742, 0.021828575134277342, 0.021712928771972655, 0.021823455810546875, 0.021803007125854493, 0.021743616104125976, 0.022015775680541992, 0.021736831665039064, 0.0217893123626709, 0.021675519943237305, 0.021699071884155274, 0.021777664184570313, 0.021785343170166015, 0.021893119812011717, 0.02239676856994629, 0.02177155113220215, 0.02190835189819336, 0.02166774368286133, 0.021689855575561523, 0.02163158416748047, 0.021722944259643554, 0.021587392807006837, 0.021757728576660158, 0.021648319244384765, 0.021680160522460936, 0.021710048675537108, 0.022042943954467775, 0.021712352752685547, 0.02182601547241211, 0.021811456680297853, 0.021712736129760744, 0.021797632217407225, 0.021775136947631835, 0.021697248458862305, 0.021653696060180663, 0.02170675277709961, 0.0216760311126709, 0.021687583923339845, 0.021740255355834962, 0.021714559555053713, 0.021675615310668944, 0.021623296737670897, 0.022134559631347656, 0.02285532760620117, 0.02276438331604004, 0.02244607925415039, 0.02189107131958008, 0.0219965763092041, 0.021826528549194337, 0.021700607299804688, 0.021756128311157228, 0.022300447463989258, 0.021731327056884766, 0.02171683120727539, 0.0221812801361084, 0.021960447311401367, 0.021693376541137694, 0.021827648162841797, 0.021798912048339843, 0.021843584060668945, 0.021735807418823243, 0.021719039916992186, 0.021743616104125976, 0.021755903244018555, 0.021770240783691407, 0.021763711929321288, 0.02178291130065918, 0.021743616104125976, 0.021809152603149414, 0.02171452713012695, 0.021782943725585938, 0.021818944931030274, 0.02172153663635254, 0.021780479431152345, 0.021728927612304688, 0.02169215965270996, 0.021665599822998045, 0.021697311401367186, 0.021811199188232423, 0.021782527923583983, 0.021794815063476563, 0.021702655792236326, 0.021722944259643554, 0.02173766326904297, 0.021687519073486327, 0.021733631134033204, 0.021796640396118165, 0.021865215301513672, 0.021803007125854493, 0.021908863067626953, 0.021854240417480467, 0.021721696853637694, 0.021746847152709962, 0.02170163154602051, 0.021778207778930664, 0.021614431381225586, 0.021782720565795898, 0.021730527877807618, 0.022096607208251955, 0.021760095596313478, 0.021831680297851562, 0.021778079986572267, 0.02183407974243164, 0.021798816680908203, 0.02190985679626465, 0.02186809539794922, 0.0217458553314209, 0.021718271255493166, 0.02168294334411621, 0.021683616638183592, 0.021661951065063478, 0.021676383972167968, 0.02192140769958496, 0.02196019172668457, 0.022227807998657225, 0.0222761287689209, 0.022470304489135742, 0.022237184524536133, 0.022408639907836914, 0.021993663787841795, 0.021846912384033204, 0.02191958427429199, 0.021774335861206053, 0.02182713508605957, 0.021907039642333984, 0.021875551223754883, 0.022380544662475587, 0.021667295455932618, 0.02169705581665039, 0.02167955207824707, 0.021755552291870116, 0.02185513687133789, 0.021820608139038085, 0.022218656539916993, 0.021695552825927736, 0.021689056396484375, 0.02163430404663086, 0.02178553581237793, 0.021682207107543944, 0.021946367263793946, 0.022006944656372072, 0.022039392471313476, 0.021823488235473632, 0.021774335861206053, 0.021710847854614256, 0.021798912048339843, 0.02187468719482422, 0.021796319961547853, 0.022030624389648437, 0.02185241508483887, 0.021772287368774415, 0.021927871704101563, 0.021796384811401368, 0.021819328308105467, 0.02177084732055664, 0.02173855972290039, 0.022092832565307616, 0.02183353614807129, 0.02183900833129883, 0.021838399887084962, 0.021995904922485352, 0.02176963233947754, 0.021727872848510743, 0.021798879623413085, 0.021766271591186524, 0.022150463104248046, 0.021879360198974608, 0.021960704803466798, 0.02185830307006836, 0.02190745544433594, 0.021852224349975587, 0.021851104736328127, 0.022323200225830078, 0.021980127334594726, 0.02202828788757324, 0.022224704742431642, 0.0221529598236084, 0.022525503158569337, 0.022256511688232422, 0.021970943450927736, 0.021934080123901366, 0.02179180717468262, 0.021732383728027344, 0.021900800704956053, 0.02389232063293457, 0.023971904754638673, 0.022113407135009765, 0.021984128952026366, 0.02185215950012207, 0.021929983139038087, 0.021814815521240233, 0.021746143341064453, 0.02168832015991211, 0.021798303604125976, 0.02186835289001465, 0.02178656005859375, 0.021768224716186522, 0.021749343872070313, 0.0217542724609375, 0.021720127105712892, 0.02173014450073242, 0.02173347282409668, 0.021786624908447266, 0.021764095306396485, 0.02182713508605957, 0.02177609634399414, 0.02175049591064453, 0.02165555191040039, 0.021652544021606445, 0.021626976013183592, 0.021627744674682616, 0.021984512329101563, 0.02337420845031738, 0.022847679138183592, 0.022040735244750975, 0.022428800582885742, 0.021906335830688475, 0.021751808166503905, 0.021934080123901366, 0.02266659164428711, 0.02228700828552246, 0.02206105613708496, 0.022120288848876953, 0.022055072784423826, 0.021886816024780275, 0.02174991989135742, 0.02169990348815918, 0.021733184814453126, 0.021746559143066405, 0.021685407638549804, 0.021727775573730467, 0.02178041648864746, 0.02172496032714844, 0.021723583221435548, 0.02173513603210449, 0.021815296173095702, 0.02172140884399414, 0.02177142333984375, 0.02200054359436035, 0.02197715187072754, 0.021808416366577148, 0.021881568908691407, 0.021975040435791016, 0.022929407119750975, 0.021826751708984377, 0.021756736755371094, 0.021714015960693358, 0.021803680419921874, 0.021803264617919923, 0.021942272186279296, 0.02187059211730957, 0.022054912567138672, 0.021719039916992186, 0.021618688583374023, 0.021731199264526366, 0.021733503341674804, 0.02169206428527832, 0.02189961624145508, 0.021807104110717773, 0.02176598358154297, 0.02173967933654785, 0.021781984329223632, 0.02187913513183594, 0.021919551849365233, 0.021684608459472655, 0.02165555191040039, 0.021800960540771484, 0.021841920852661133, 0.02169343948364258, 0.02167091178894043, 0.021673759460449218, 0.021694719314575197, 0.021692384719848634, 0.02165113639831543, 0.021967168807983398, 0.021766143798828123, 0.021750848770141603, 0.02185100746154785, 0.021690208435058592, 0.021763904571533203, 0.021770656585693358, 0.021813247680664064, 0.02172313690185547, 0.02171494483947754, 0.021624704360961915, 0.021819360733032228, 0.021769792556762695, 0.02178927993774414, 0.02177340888977051, 0.021697439193725587, 0.02176348876953125, 0.02175030326843262, 0.021692480087280273, 0.021794815063476563, 0.021581823348999024, 0.02180019187927246, 0.021822208404541014, 0.021845184326171874, 0.02176083183288574, 0.021874015808105468, 0.021840543746948243, 0.022032384872436524, 0.02237824058532715, 0.02223708724975586, 0.022657567977905274, 0.022343488693237306, 0.022171648025512695, 0.02235935974121094, 0.02226655960083008, 0.022486080169677736, 0.02240812873840332, 0.02245631980895996, 0.022599679946899414, 0.022517759323120116, 0.02231888008117676, 0.022552799224853516, 0.02229043197631836, 0.02222198486328125, 0.022266719818115236, 0.022179840087890625, 0.022580480575561522, 0.02223904037475586, 0.02236716842651367]",tokens/s,45.704807393377656,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1506.066432,1596.915712,0.0,1201.668096,1189.151232,s,1,8.4394453125,8.4394453125,0.0,8.4394453125,8.4394453125,8.4394453125,8.4394453125,[8.4394453125],,kWh,3.494024245833695e-05,3.846210831008193e-06,1.0811675316000496e-05,4.959812860534564e-05,,MB,1522.200576,1791.950848,0.0,1382.023168,1351.367168,s,10,0.4749305305480957,0.04749305305480957,0.00011023556915181127,0.04746963310241699,0.0475606086730957,0.047669617080688474,0.047756823806762695,"[0.04777862548828125, 0.047507423400878906, 0.04743027114868164, 0.047454689025878904, 0.047536384582519534, 0.04740451049804688, 0.04734524917602539, 0.047470401763916016, 0.047534111022949216, 0.04746886444091797]",tokens/s,5390.262017995812,kWh,1.4211896730987327e-06,1.5673211640795952e-07,9.467806926990326e-07,2.524702482205725e-06,tokens/kWh,101398086.23166707,MB,1527.451648,1833.893888,0.0,1423.966208,1407.328256,s,10,13.804923950195311,1.3804923950195311,0.005752157842506621,1.379092041015625,1.3883178833007812,1.3886030334472657,1.3888311535644533,"[1.377676513671875, 1.3759522705078124, 1.383525146484375, 1.3769593505859374, 1.3882545166015625, 1.3716900634765625, 1.37472216796875, 1.380507568359375, 1.38888818359375, 1.3867481689453125]",tokens/s,45.635890662844744,kWh,4.023062634273427e-05,4.4370357060596444e-06,1.8130345680100675e-05,6.27980077288946e-05,tokens/kWh,1003216.5394796827,,s,630,13.802479480743418,0.021908697588481598,0.00033537922035371343,0.021842127799987794,0.02214827880859375,0.02232315511703491,0.023321606845855717,"[0.02208777618408203, 0.022468511581420898, 0.021942304611206054, 0.02188287925720215, 0.021726303100585938, 0.021657855987548828, 0.021713184356689452, 0.021792896270751955, 0.021780736923217775, 0.021810176849365235, 0.021832704544067383, 0.021899295806884767, 0.021881887435913086, 0.021863359451293946, 0.02205695915222168, 0.02188902473449707, 0.021795936584472656, 0.021681055068969727, 0.02186854362487793, 0.021819391250610352, 0.021790271759033204, 0.021774784088134765, 0.021819263458251952, 0.02200752067565918, 0.02195088005065918, 0.021934080123901366, 0.021901311874389647, 0.02181679916381836, 0.02196329689025879, 0.021825216293334962, 0.021825632095336913, 0.02169264030456543, 0.021663679122924804, 0.021791967391967773, 0.021822303771972657, 0.021876735687255858, 0.0217227840423584, 0.021752511978149414, 0.021717920303344726, 0.021838336944580077, 0.021879039764404296, 0.022120447158813478, 0.021747711181640626, 0.02202828788757324, 0.0220446720123291, 0.02226380729675293, 0.0221529598236084, 0.02221696090698242, 0.02189673614501953, 0.021852863311767577, 0.021908319473266602, 0.021764448165893555, 0.02162505531311035, 0.021723520278930663, 0.021855552673339843, 0.02184262466430664, 0.02181724739074707, 0.0217109432220459, 0.021793920516967772, 0.021940223693847655, 0.021809535980224608, 0.021858495712280275, 0.021655296325683592, 0.021861215591430665, 0.0221265926361084, 0.02202828788757324, 0.021768192291259765, 0.021701856613159178, 0.02181353569030762, 0.021916160583496092, 0.0217969913482666, 0.02179574394226074, 0.02168931198120117, 0.02181065559387207, 0.022006303787231445, 0.021870304107666015, 0.021764127731323243, 0.02162441635131836, 0.021696928024291993, 0.021627071380615235, 0.021692480087280273, 0.021713056564331056, 0.021618816375732423, 0.02194112014770508, 0.02173401641845703, 0.021988639831542967, 0.02163580894470215, 0.0216529598236084, 0.021639904022216796, 0.021700159072875976, 0.021860832214355468, 0.02169856071472168, 0.021800960540771484, 0.02172047996520996, 0.021696128845214845, 0.0216560001373291, 0.021658143997192382, 0.0216944637298584, 0.02165113639831543, 0.021819007873535155, 0.021785280227661134, 0.02177142333984375, 0.021707584381103515, 0.021708768844604494, 0.02165510368347168, 0.021713312149047852, 0.02234582328796387, 0.025286848068237305, 0.021980607986450195, 0.021975488662719728, 0.021821151733398436, 0.021725439071655275, 0.021667999267578127, 0.021706911087036134, 0.021709983825683593, 0.021715456008911133, 0.021805055618286134, 0.02193017578125, 0.021912736892700194, 0.02188355255126953, 0.021760000228881835, 0.02176367950439453, 0.02175632095336914, 0.021768192291259765, 0.021776384353637695, 0.021628480911254883, 0.02236582374572754, 0.0216625919342041, 0.02176406478881836, 0.02185795211791992, 0.021551488876342773, 0.021654720306396483, 0.02156979179382324, 0.021749664306640625, 0.022313087463378907, 0.022829599380493164, 0.023365631103515624, 0.022073280334472655, 0.022161376953125, 0.022216064453125, 0.021853120803833007, 0.021657215118408204, 0.024447296142578127, 0.021847904205322264, 0.021849952697753906, 0.021932319641113283, 0.02182310485839844, 0.02184832000732422, 0.021929983139038087, 0.021878528594970702, 0.022477216720581054, 0.02195644760131836, 0.021795103073120117, 0.021894208908081053, 0.021889503479003907, 0.02184815979003906, 0.021881088256835938, 0.02190048027038574, 0.021815839767456054, 0.021929119110107424, 0.021950912475585938, 0.021988895416259764, 0.02203526306152344, 0.02194246482849121, 0.02191155242919922, 0.021777664184570313, 0.021861120223999022, 0.02188662338256836, 0.02180291175842285, 0.021757535934448242, 0.021876991271972655, 0.021860895156860353, 0.02191321563720703, 0.02187718391418457, 0.02206934356689453, 0.02184592056274414, 0.021780479431152345, 0.021735424041748046, 0.021750816345214842, 0.021758943557739257, 0.021957887649536132, 0.022002431869506837, 0.021825279235839844, 0.021740095138549805, 0.021677280426025392, 0.021670047760009765, 0.02187107276916504, 0.021782463073730468, 0.021798816680908203, 0.02171219253540039, 0.021844671249389647, 0.021613983154296874, 0.021748319625854492, 0.022103967666625975, 0.021784671783447264, 0.021767295837402344, 0.02174611282348633, 0.02170444869995117, 0.02181190490722656, 0.02183302307128906, 0.021783199310302735, 0.021693599700927733, 0.022080352783203125, 0.02197711944580078, 0.021842016220092773, 0.021736576080322267, 0.021826335906982422, 0.021841920852661133, 0.021825023651123047, 0.021694847106933594, 0.021784095764160155, 0.02175651168823242, 0.02183590316772461, 0.02175164794921875, 0.021927808761596678, 0.021698720932006837, 0.02195609664916992, 0.02197875213623047, 0.022218847274780275, 0.021961503982543946, 0.021954559326171876, 0.02182963180541992, 0.021722431182861327, 0.02176233673095703, 0.022051231384277344, 0.021921567916870117, 0.02176652717590332, 0.021864063262939454, 0.021719263076782225, 0.021855615615844728, 0.02209270477294922, 0.021880544662475587, 0.02178771209716797, 0.021922752380371092, 0.021782527923583983, 0.021762271881103516, 0.021923103332519532, 0.021899776458740236, 0.021854368209838868, 0.021895008087158205, 0.02183600044250488, 0.021774208068847656, 0.021790624618530274, 0.02175702476501465, 0.021885759353637697, 0.0219420166015625, 0.021987903594970704, 0.021851551055908202, 0.022118783950805663, 0.02193561553955078, 0.021934431076049806, 0.021827743530273436, 0.021836736679077148, 0.021729280471801758, 0.02169036865234375, 0.021800575256347657, 0.021739904403686523, 0.021817344665527344, 0.021940288543701173, 0.02198428726196289, 0.021869760513305664, 0.021978847503662108, 0.021869823455810546, 0.02172185516357422, 0.02179043197631836, 0.021817344665527344, 0.023213823318481444, 0.024300064086914062, 0.0221014404296875, 0.02187731170654297, 0.021934080123901366, 0.021737472534179687, 0.02176646423339844, 0.021939903259277343, 0.022360063552856444, 0.021862079620361328, 0.021866111755371093, 0.02308371162414551, 0.0220153923034668, 0.021895456314086913, 0.021962432861328124, 0.021844608306884766, 0.02180735969543457, 0.021839584350585937, 0.0218439998626709, 0.021925344467163085, 0.021821632385253906, 0.021754079818725586, 0.021723264694213866, 0.021786144256591797, 0.021811391830444334, 0.02175116729736328, 0.022369184494018556, 0.021955968856811524, 0.021814176559448242, 0.02185513687133789, 0.021918752670288085, 0.021806880950927733, 0.021917695999145507, 0.022011423110961915, 0.02187516784667969, 0.02182054328918457, 0.021808000564575197, 0.021806848526000976, 0.021857568740844727, 0.024050016403198243, 0.02310736083984375, 0.022021184921264647, 0.02186422348022461, 0.021796863555908205, 0.0218787841796875, 0.0220446720123291, 0.022828863143920897, 0.022120672225952147, 0.022045888900756837, 0.021937856674194334, 0.02186777687072754, 0.021787391662597657, 0.02161471939086914, 0.021600128173828125, 0.02168556785583496, 0.021665824890136718, 0.02172947120666504, 0.021600223541259764, 0.021586431503295898, 0.02182143974304199, 0.021936479568481444, 0.021799680709838867, 0.02166655921936035, 0.02157583999633789, 0.021661535263061523, 0.021710687637329102, 0.021893152236938475, 0.022117759704589842, 0.02195542335510254, 0.022003423690795897, 0.02239523124694824, 0.022083295822143554, 0.022098207473754884, 0.021929983139038087, 0.021894720077514647, 0.02172972869873047, 0.021757951736450197, 0.02180463981628418, 0.021903455734252928, 0.021848384857177734, 0.021663999557495116, 0.021595903396606445, 0.021675359725952147, 0.02171299171447754, 0.021713056564331056, 0.021596832275390623, 0.021626623153686523, 0.021722591400146485, 0.021776575088500977, 0.02185273551940918, 0.02182032012939453, 0.021738592147827147, 0.021759775161743163, 0.021716543197631836, 0.02167238426208496, 0.021725183486938478, 0.02162892723083496, 0.021689632415771484, 0.021662431716918944, 0.021785728454589842, 0.021618688583374023, 0.0216909122467041, 0.021723487854003905, 0.02169241523742676, 0.021769376754760743, 0.021821952819824218, 0.021748064041137695, 0.021811199188232423, 0.021670207977294922, 0.021669023513793944, 0.021658143997192382, 0.021792512893676758, 0.021791200637817382, 0.021731199264526366, 0.021686656951904297, 0.021786815643310548, 0.021659648895263672, 0.021618688583374023, 0.02180838394165039, 0.021828351974487306, 0.021901311874389647, 0.021702655792236326, 0.021694303512573242, 0.021785888671875, 0.021635711669921873, 0.021704959869384765, 0.021684288024902344, 0.02183558464050293, 0.02200726318359375, 0.022334112167358398, 0.021788768768310547, 0.02180415916442871, 0.021670623779296874, 0.021626752853393556, 0.02190905570983887, 0.021723743438720702, 0.02159619140625, 0.021794815063476563, 0.02186854362487793, 0.02175811195373535, 0.02173526382446289, 0.021790719985961913, 0.021937824249267577, 0.021840223312377928, 0.021713119506835937, 0.021724895477294923, 0.021868320465087892, 0.0218176326751709, 0.022011327743530273, 0.02206572723388672, 0.021842144012451173, 0.02194000053405762, 0.021929536819458008, 0.021920255661010742, 0.021747392654418947, 0.021852096557617186, 0.021974720001220704, 0.021913248062133787, 0.021808095932006836, 0.021724288940429687, 0.021955455780029297, 0.02176540756225586, 0.02180374336242676, 0.021784576416015625, 0.021720447540283204, 0.021792512893676758, 0.021817792892456056, 0.021710784912109374, 0.021664255142211913, 0.02181046485900879, 0.021875423431396486, 0.02223308753967285, 0.02190332794189453, 0.02196272087097168, 0.021780832290649414, 0.021789920806884765, 0.021792640686035158, 0.021898143768310546, 0.021855615615844728, 0.021670528411865234, 0.02163302421569824, 0.021752864837646484, 0.021871007919311524, 0.02182406425476074, 0.02178825569152832, 0.021668256759643553, 0.021816864013671874, 0.02180963134765625, 0.021902912139892577, 0.02167612838745117, 0.02163337516784668, 0.021744895935058593, 0.02172319984436035, 0.021834272384643555, 0.021811359405517577, 0.02180214309692383, 0.021840351104736328, 0.021862783432006837, 0.02191564750671387, 0.021812480926513673, 0.021850879669189454, 0.021948320388793945, 0.02190140724182129, 0.021876735687255858, 0.02195462417602539, 0.021839103698730468, 0.022005887985229493, 0.021907487869262696, 0.021976640701293945, 0.021804000854492186, 0.02209174346923828, 0.021980863571166992, 0.021970848083496093, 0.021933919906616212, 0.021910112380981447, 0.022138784408569336, 0.022306911468505858, 0.021975040435791016, 0.02230588722229004, 0.022006656646728514, 0.022063039779663087, 0.022029600143432616, 0.021865280151367187, 0.022585119247436523, 0.022034656524658202, 0.021929983139038087, 0.02188902473449707, 0.02185420799255371, 0.021772287368774415, 0.021792192459106446, 0.021955135345458985, 0.021921279907226563, 0.021891584396362306, 0.02186835289001465, 0.021932287216186522, 0.02189267158508301, 0.022294271469116212, 0.022198911666870116, 0.022417407989501953, 0.02215920066833496, 0.02197443199157715, 0.021887744903564453, 0.022714368820190428, 0.02211167907714844, 0.02228384017944336, 0.022207040786743164, 0.02214784049987793, 0.021814783096313475, 0.021842111587524415, 0.021934080123901366, 0.021989280700683594, 0.022206560134887695, 0.022039968490600585, 0.02193276786804199, 0.021874048233032226, 0.022082048416137694, 0.022331392288208008, 0.022171520233154298, 0.022017311096191407, 0.022227807998657225, 0.022124544143676757, 0.022050304412841795, 0.021873151779174805, 0.021927679061889648, 0.021909824371337892, 0.02182975959777832, 0.02187884712219238, 0.021843584060668945, 0.02179033660888672, 0.02174208068847656, 0.02173097610473633, 0.021801055908203124, 0.02180678367614746, 0.021709375381469727, 0.021747711181640626, 0.021784576416015625, 0.02186419105529785, 0.021989152908325194, 0.021915615081787108, 0.021774112701416017, 0.02176063919067383, 0.02172480010986328, 0.022883071899414062, 0.023624895095825195, 0.022219295501708983, 0.021976736068725584, 0.021887584686279295, 0.022031328201293946, 0.021953311920166016, 0.02196873664855957, 0.02239299201965332, 0.02224508857727051, 0.022255680084228516, 0.022353216171264647, 0.022068031311035158, 0.022126848220825196, 0.0221628475189209, 0.021832128524780274, 0.021816383361816405, 0.022019264221191406, 0.02187775993347168, 0.021813087463378907, 0.02181545639038086, 0.02178166389465332, 0.02215990447998047, 0.022110048294067382, 0.021965311050415038, 0.021794336318969727, 0.021868192672729492, 0.022483327865600585, 0.022421056747436524, 0.022393247604370118, 0.021807647705078124, 0.021798303604125976, 0.02170230484008789, 0.02195916748046875, 0.022182239532470702, 0.022289600372314453, 0.02194710350036621, 0.025202144622802736, 0.02198796844482422, 0.022403072357177735, 0.022409023284912108, 0.022170047760009765, 0.021812992095947267, 0.021729280471801758, 0.022263872146606446, 0.02225161552429199, 0.022152223587036134, 0.021957439422607423, 0.022183168411254884, 0.02192665672302246, 0.0218024959564209, 0.021822975158691405, 0.021716064453125, 0.02188035202026367, 0.021989503860473634, 0.02184976005554199, 0.022272319793701173, 0.021989856719970703, 0.022089536666870118, 0.021940223693847655, 0.021835775375366212, 0.02166988754272461, 0.021722400665283203, 0.021801824569702147, 0.021854080200195313, 0.02190336036682129, 0.02184601593017578, 0.021814367294311524, 0.021939104080200195, 0.02185420799255371, 0.021730655670166014, 0.021809375762939454, 0.02193174362182617, 0.021799583435058594, 0.021864511489868163, 0.021795040130615236, 0.021738431930541993, 0.02190598487854004, 0.022024192810058595, 0.02194486427307129, 0.02189695930480957, 0.021736928939819336]",tokens/s,45.64397294550935,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-30b,huggyllama/llama-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4372.512768,4566.482944,0.0,4188.012544,4187.049984,s,1,10.332669921875,10.332669921875,0.0,10.332669921875,10.332669921875,10.332669921875,10.332669921875,[10.332669921875],,kWh,0.00010267034029583305,1.1317863835509072e-05,3.084280245199992e-05,0.00014483100658334205,,MB,4080.443392,4962.844672,0.0,4555.014144,4514.269184,s,10,7.865827026367188,0.7865827026367188,0.002886280729514126,0.7850776062011718,0.7900420410156249,0.7905072570800781,0.7908794299316406,"[0.782828369140625, 0.7894422607421875, 0.7844773559570313, 0.7850126953125, 0.7840709228515625, 0.7897021484375, 0.7842396240234375, 0.7899386596679687, 0.7851425170898437, 0.7909724731445312]",tokens/s,325.4584662767914,kWh,2.2918281938461133e-05,2.5274666805281998e-06,1.5180375392153848e-05,4.062612401114318e-05,tokens/kWh,6301364.115606568,MB,4093.394944,4979.621888,0.0,4571.79136,4514.271744,s,10,467.798828125,46.7798828125,0.03317416613981883,46.7930546875,46.8095484375,46.81011796875,46.81057359375,"[46.7034296875, 46.74363671875, 46.7610078125, 46.77698046875, 46.78384375, 46.80287109375, 46.802265625, 46.809421875, 46.80468359375, 46.8106875]",tokens/s,1.3467327451954592,kWh,0.0013654926656507058,0.000150622730472546,0.0009080636687580463,0.002424179064881298,tokens/kWh,25988.179220203292,,s,630,467.7878660888669,0.7425204223632813,0.0006844989959605742,0.7426236572265625,0.7431574462890624,0.7433347930908203,0.7435878228759765,"[0.7409111938476562, 0.740742431640625, 0.7414298706054687, 0.74062060546875, 0.7404442138671875, 0.7408536987304688, 0.7409601440429687, 0.7411483764648438, 0.74078662109375, 0.7409418334960938, 0.7408561401367187, 0.7414207153320312, 0.7407407836914063, 0.7410364379882812, 0.7412715454101563, 0.7415802612304687, 0.7406494750976562, 0.7412059936523437, 0.7412817993164063, 0.741195068359375, 0.7406961669921875, 0.7416878662109375, 0.740632080078125, 0.7417431030273437, 0.7411015625, 0.741113525390625, 0.740952392578125, 0.7412178955078125, 0.7411934204101562, 0.7409158935546875, 0.741591064453125, 0.7417518920898437, 0.740760498046875, 0.7420047607421875, 0.7417855834960938, 0.741658203125, 0.7413723754882813, 0.7413206787109375, 0.7414326171875, 0.74105517578125, 0.7418880004882813, 0.7414899291992187, 0.7414234619140625, 0.7416295166015625, 0.7411597290039063, 0.7413309326171875, 0.741670166015625, 0.7417576904296875, 0.7414681396484375, 0.7412572021484375, 0.7414517822265625, 0.7421171264648437, 0.7413455200195312, 0.741306396484375, 0.74177490234375, 0.7413662109375, 0.7415738525390625, 0.7421973266601563, 0.741670654296875, 0.7415838623046875, 0.742012939453125, 0.7419064331054688, 0.7414863891601563, 0.7411098022460938, 0.7416702880859375, 0.7419783935546875, 0.7411612548828125, 0.7413350219726562, 0.7418200073242187, 0.741941650390625, 0.7415685424804688, 0.7422476196289063, 0.7416410522460938, 0.7412612915039063, 0.7419465942382812, 0.7418907470703126, 0.7419454345703125, 0.7413104858398437, 0.7418941650390625, 0.741507080078125, 0.7417914428710938, 0.7418411865234374, 0.74210302734375, 0.7418203735351563, 0.7427645874023437, 0.7417232055664063, 0.7411324462890625, 0.7418697509765625, 0.7416817016601562, 0.742033203125, 0.7417816772460938, 0.7421992797851562, 0.7420682373046875, 0.7422382202148438, 0.7418982543945313, 0.742023193359375, 0.74232763671875, 0.7421692504882812, 0.7418585205078125, 0.7418699951171875, 0.74219482421875, 0.7417301025390625, 0.741923583984375, 0.7422916259765625, 0.74202734375, 0.7420128784179687, 0.7420436401367188, 0.74224853515625, 0.7418878173828125, 0.7422157592773437, 0.7422811889648437, 0.7418238525390625, 0.741875732421875, 0.7418477172851563, 0.7424307250976563, 0.7423569946289063, 0.7418634033203125, 0.7422015991210937, 0.7421802978515625, 0.741806396484375, 0.742371337890625, 0.742463623046875, 0.7422913208007812, 0.742451171875, 0.7423262329101562, 0.7423321533203125, 0.7417332763671876, 0.7420638427734375, 0.7420910034179687, 0.7422750854492187, 0.7414292602539062, 0.7421375732421875, 0.742060302734375, 0.7421511840820313, 0.7419559936523438, 0.7420770263671875, 0.7415540771484375, 0.741965087890625, 0.7424330444335937, 0.7415834350585937, 0.74231396484375, 0.741759033203125, 0.7421541748046875, 0.742, 0.7415894165039062, 0.7419058227539063, 0.7423639526367187, 0.7421171875, 0.7419309692382813, 0.7422015380859375, 0.742751953125, 0.7422569580078126, 0.7420476684570313, 0.7418409423828125, 0.742561767578125, 0.7424368896484375, 0.742372802734375, 0.7426729736328125, 0.7423775024414062, 0.7418040161132813, 0.742319580078125, 0.7422195434570312, 0.7423568725585937, 0.7422083740234375, 0.7421634521484375, 0.742289794921875, 0.7424149169921875, 0.7425884399414062, 0.7427276611328125, 0.74241845703125, 0.7423897705078125, 0.7428956298828125, 0.7419310302734375, 0.742454345703125, 0.7419319458007813, 0.7426245727539063, 0.7416572875976563, 0.742635498046875, 0.7424710693359375, 0.7423289184570312, 0.742068115234375, 0.7431066284179687, 0.7425264892578125, 0.7424691162109375, 0.7425054931640624, 0.7422279663085938, 0.7425269775390625, 0.7424140625, 0.7426787719726563, 0.7426966552734375, 0.7415352172851563, 0.7422392578125, 0.7424102172851562, 0.742135009765625, 0.7422636108398437, 0.7420353393554687, 0.74172021484375, 0.74231103515625, 0.7420568237304688, 0.7420620727539062, 0.7426764526367188, 0.742227783203125, 0.7420909423828125, 0.7422996215820312, 0.742192626953125, 0.7425576171875, 0.7425132446289062, 0.7418695678710937, 0.7424423217773437, 0.7422299194335937, 0.7424633178710938, 0.7417919311523438, 0.742465576171875, 0.7422327270507812, 0.7426171264648438, 0.742260009765625, 0.7421241455078125, 0.7425425415039062, 0.7420343017578125, 0.742509765625, 0.7425892944335938, 0.7424696044921875, 0.7419692993164062, 0.7424620971679687, 0.742371337890625, 0.7421785888671875, 0.7423941040039063, 0.7422993774414063, 0.7428602905273437, 0.7424945068359375, 0.7421895141601562, 0.7425863647460937, 0.7418142700195313, 0.7424737548828125, 0.7430901489257813, 0.7421828002929688, 0.7430094604492188, 0.7428085327148437, 0.7429366455078125, 0.7423128662109375, 0.7424125366210937, 0.7427161254882813, 0.7429427490234375, 0.7427215576171875, 0.7429300537109375, 0.7427828369140625, 0.7426687622070313, 0.7426682739257813, 0.7428546752929688, 0.7472858276367188, 0.7425925903320313, 0.7426705932617188, 0.7421051025390625, 0.7418914184570312, 0.7425516967773438, 0.7425357055664062, 0.7420498046875, 0.7424694213867188, 0.7420654907226563, 0.7424951171875, 0.7422190551757812, 0.7421734008789063, 0.7426744384765624, 0.7417849731445313, 0.7421753540039062, 0.7425023803710937, 0.7420511474609375, 0.7422849731445312, 0.7427368774414063, 0.7424122924804688, 0.7424389038085938, 0.7426638793945313, 0.7428917846679688, 0.742703125, 0.7427176513671875, 0.7426803588867188, 0.7424163818359375, 0.742846435546875, 0.7427088623046875, 0.7428919067382812, 0.7428956298828125, 0.7427333984375, 0.7425970458984374, 0.7429732666015625, 0.7428092041015625, 0.7422715454101563, 0.7426232299804687, 0.7429365234375, 0.7422946166992187, 0.7425728759765625, 0.7430309448242187, 0.7424307250976563, 0.7419351196289062, 0.7428231201171875, 0.7425114135742188, 0.74288330078125, 0.742803466796875, 0.7427543334960938, 0.7422457885742187, 0.7433970947265625, 0.7424357299804687, 0.7428424072265625, 0.7427125244140625, 0.74261572265625, 0.7431414184570313, 0.7426329345703125, 0.7430205078125, 0.7426730346679687, 0.7428487548828125, 0.7423252563476562, 0.7427470703125, 0.7431675415039063, 0.742809814453125, 0.7430718383789062, 0.742619140625, 0.7426431274414063, 0.7423594970703125, 0.7428670654296875, 0.7424796752929688, 0.7430535278320313, 0.7420407104492187, 0.7421405639648437, 0.7426275634765624, 0.7426573486328125, 0.7423167114257813, 0.7425001831054687, 0.7434381713867187, 0.7422440185546875, 0.7427672119140625, 0.74290087890625, 0.742628173828125, 0.742381591796875, 0.742920166015625, 0.7431004028320313, 0.742475341796875, 0.7425416870117187, 0.7425712890625, 0.7420874633789063, 0.743067626953125, 0.7426334838867188, 0.7430707397460937, 0.7431751708984375, 0.7429895629882812, 0.7426439819335937, 0.74296728515625, 0.7430427856445313, 0.7428402099609375, 0.74272802734375, 0.7427555541992188, 0.7429782104492187, 0.7431640014648437, 0.7428445434570312, 0.7430631713867187, 0.7427684326171875, 0.7425909423828125, 0.742961181640625, 0.7423259887695313, 0.74312060546875, 0.7428482055664063, 0.7428569946289062, 0.7432578125, 0.7426240844726563, 0.743041015625, 0.742920166015625, 0.7431248779296875, 0.7429837646484375, 0.7431264038085937, 0.7429137573242187, 0.743111572265625, 0.7432763061523437, 0.7424658203125, 0.7430245971679688, 0.7433277587890625, 0.7429918823242188, 0.7425571899414063, 0.7433282470703125, 0.7428646850585937, 0.743037109375, 0.7425703125, 0.7429478759765625, 0.7422984619140625, 0.742576171875, 0.7425693359375, 0.7424683227539063, 0.7430922241210938, 0.742842529296875, 0.7428029174804688, 0.7423410034179687, 0.7428628540039063, 0.7429490356445313, 0.742640625, 0.7428678588867188, 0.7427801513671874, 0.7429978637695313, 0.7429356689453125, 0.7426107788085937, 0.7426436767578125, 0.742823974609375, 0.7427727661132812, 0.7442432250976563, 0.7429447631835937, 0.7430430908203125, 0.7428211059570312, 0.7427387084960938, 0.7429916381835937, 0.742849853515625, 0.7425873413085937, 0.742582275390625, 0.7429816284179688, 0.743125, 0.742664306640625, 0.7427764892578125, 0.7429058837890625, 0.743031005859375, 0.7429959716796875, 0.742522705078125, 0.7427412719726563, 0.7431339111328125, 0.7428846435546875, 0.7428405151367188, 0.7426342163085937, 0.7431577758789063, 0.742472900390625, 0.7430396728515625, 0.742861083984375, 0.7432180786132813, 0.7428720703125, 0.7430491943359375, 0.7427246704101562, 0.743373779296875, 0.7430021362304687, 0.7431200561523438, 0.7430538330078125, 0.7428633422851563, 0.7426433715820312, 0.7431026611328125, 0.742940673828125, 0.7435852661132812, 0.7429833984375, 0.7430778198242187, 0.7431577758789063, 0.7431532592773438, 0.7425741577148437, 0.7428815307617187, 0.7427513427734375, 0.7430576171875, 0.7426541137695313, 0.7425327758789062, 0.7432507934570313, 0.7426170654296875, 0.7427522583007813, 0.7428915405273437, 0.7424327392578125, 0.7430390014648437, 0.7426314086914062, 0.7429222412109375, 0.7431489868164063, 0.7427958374023438, 0.7436157836914062, 0.7425665893554687, 0.7428231201171875, 0.742515380859375, 0.7431558227539062, 0.7427317504882812, 0.7427861938476562, 0.7427708740234376, 0.7428307495117188, 0.7424716796875, 0.7424383544921875, 0.7432681274414062, 0.7425994262695312, 0.7430263671875, 0.7423818359375, 0.7434302368164063, 0.7426638793945313, 0.7433649291992187, 0.7426434326171875, 0.7430082397460938, 0.7428876953125, 0.7429345092773437, 0.7427215576171875, 0.7425567016601563, 0.7435888671875, 0.742903564453125, 0.7430648193359375, 0.7429068603515625, 0.7430791015625, 0.7429815673828125, 0.7432242431640625, 0.743103759765625, 0.7426015014648437, 0.7428159790039063, 0.7433822631835938, 0.7434183959960937, 0.7428648681640625, 0.7430839233398437, 0.7431104736328125, 0.7426787719726563, 0.7426023559570313, 0.7431417846679688, 0.743210693359375, 0.7427914428710938, 0.7485798950195313, 0.7432222290039062, 0.7423714599609375, 0.7427328491210937, 0.7425728759765625, 0.742863037109375, 0.742371337890625, 0.742516845703125, 0.7428583984375, 0.7426624145507813, 0.7424384155273438, 0.7427845458984375, 0.7433097534179688, 0.74272412109375, 0.7423936157226563, 0.7428265380859375, 0.7431574096679687, 0.7425597534179688, 0.7424810180664062, 0.7430985107421875, 0.7432814331054688, 0.7429212646484376, 0.742916259765625, 0.7430966796875, 0.7423143310546875, 0.7430452270507812, 0.7427455444335938, 0.7430186157226563, 0.742625732421875, 0.7432007446289063, 0.743462890625, 0.742307861328125, 0.742781005859375, 0.7429815063476563, 0.7430794067382812, 0.7428836669921876, 0.74315185546875, 0.7430922241210938, 0.7428587646484375, 0.7430697021484375, 0.7426969604492187, 0.7434301147460938, 0.74296630859375, 0.743320556640625, 0.7429058837890625, 0.7432684326171874, 0.7429072265625, 0.7427815551757813, 0.7426837768554687, 0.7428739624023437, 0.7429467163085938, 0.7428485717773438, 0.7434170532226563, 0.7433401489257813, 0.7428226928710937, 0.7428097534179687, 0.7429998168945312, 0.743096435546875, 0.7431119384765625, 0.7429306640625, 0.7432291259765625, 0.7430718383789062, 0.7435374145507813, 0.7433564453125, 0.7432493896484375, 0.7426903686523437, 0.7428428344726562, 0.7428362426757813, 0.7431109008789063, 0.7427963256835938, 0.7429578247070312, 0.7426099243164063, 0.7430643920898438, 0.7425025634765625, 0.742628662109375, 0.7431317138671875, 0.74294287109375, 0.7432335205078126, 0.742649658203125, 0.7429142456054687, 0.7428546752929688, 0.7432407836914062, 0.7422105102539063, 0.7429706420898438, 0.7433489990234375, 0.7431597900390625, 0.742063720703125, 0.7429671020507812, 0.7425288696289063, 0.7424314575195312, 0.7430123291015625, 0.7431261596679688, 0.743260009765625, 0.743404541015625, 0.7429522705078125, 0.7430451049804687, 0.7432089233398438, 0.7428690795898437, 0.7429454956054687, 0.74342822265625, 0.74301123046875, 0.7425867919921875, 0.7429883422851562, 0.7435775756835937, 0.742518798828125, 0.7427189331054688, 0.7433569946289063, 0.7431270141601563, 0.7429991455078125, 0.7428924560546875, 0.7433113403320313, 0.743530517578125, 0.7433584594726562, 0.7430082397460938, 0.743664794921875, 0.7432050170898438, 0.7432547607421875, 0.7431248779296875, 0.7426888427734375, 0.7428217163085937, 0.7434033203125, 0.7434325561523437, 0.7432396850585937, 0.743583740234375, 0.743044921875, 0.7427442626953125, 0.743669189453125, 0.7433466796875]",tokens/s,1.3467643042291242,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,824.741888,554.631168,0.0,159.383552,143.673856,s,1,7.478853515625,7.478853515625,0.0,7.478853515625,7.478853515625,7.478853515625,7.478853515625,[7.478853515625],,kWh,1.0678520679164194e-05,1.170553645839295e-06,2.7013910500056637e-06,1.4550465375009153e-05,,MB,1334.976512,609.15712,0.0,199.22944,186.684928,s,26,0.20124217653274534,0.007740083712797898,8.766793833376148e-05,0.007727728128433227,0.007832304000854492,0.007928336143493652,0.00797323191165924,"[0.007979519844055176, 0.007784575939178467, 0.007776576042175293, 0.0077358717918396, 0.007770431995391846, 0.0077610878944396975, 0.007806848049163819, 0.007745632171630859, 0.007740416049957275, 0.007731872081756592, 0.007612895965576172, 0.007652063846588134, 0.007627200126647949, 0.007639679908752441, 0.007671711921691894, 0.007814367771148682, 0.007954368114471436, 0.007850240230560303, 0.007647424221038818, 0.007723584175109864, 0.007691872119903564, 0.007701504230499268, 0.007705183982849121, 0.007722176074981689, 0.007712160110473633, 0.00768291187286377]",tokens/s,33074.57767888413,kWh,2.3046161862339852e-07,2.5411420892259663e-08,9.955721373323103e-08,3.5543025324888916e-07,tokens/kWh,720253826.6227344,MB,1374.285824,611.254272,0.0,201.326592,186.687488,s,26,10.150502136230466,0.39040392831655646,0.002830543431388422,0.3892741394042969,0.3940727081298828,0.3958575744628906,0.3988802185058594,"[0.39970950317382814, 0.38872210693359377, 0.3894590148925781, 0.3931019897460937, 0.3898243103027344, 0.3889993896484375, 0.3889587707519531, 0.3901562805175781, 0.3920888366699219, 0.38913449096679686, 0.38812295532226565, 0.3888493347167969, 0.38840655517578127, 0.3893247375488281, 0.3899820251464844, 0.3942532043457031, 0.39639236450195314, 0.39110336303710935, 0.3938922119140625, 0.38784860229492185, 0.38820147705078123, 0.3884596252441406, 0.38892135620117185, 0.3893332214355469, 0.3880328674316406, 0.3892235412597656]",tokens/s,161.3713270551849,kWh,1.1370478016312588e-05,1.2539743753767515e-06,3.9676896298051265e-06,1.6592142021494465e-05,tokens/kWh,3796978.10676801,,s,1638,10.138676737308518,0.006189668337795178,0.00015010116841278822,0.006172384023666383,0.006271177625656128,0.0063377505302429195,0.0067069341897964445,"[0.006173952102661133, 0.006246623992919922, 0.006181119918823242, 0.006245664119720459, 0.006173855781555175, 0.006268864154815674, 0.00621292781829834, 0.006273695945739746, 0.007050464153289795, 0.00792742395401001, 0.007961567878723144, 0.00797705602645874, 0.007917471885681152, 0.006174047946929931, 0.006233920097351074, 0.006347616195678711, 0.00642790412902832, 0.006175487995147705, 0.006289408206939697, 0.006230016231536865, 0.006166528224945069, 0.0061972479820251464, 0.006258687973022461, 0.006250495910644531, 0.006127391815185547, 0.006266335964202881, 0.006126336097717285, 0.006236159801483154, 0.006182911872863769, 0.006148384094238281, 0.0061718721389770505, 0.006175136089324951, 0.006199391841888427, 0.006127615928649902, 0.0062321281433105466, 0.006131648063659668, 0.0062197761535644535, 0.0061066560745239255, 0.006230303764343262, 0.006174911975860595, 0.006319680213928223, 0.006214079856872559, 0.006130943775177002, 0.0062041602134704586, 0.006108704090118408, 0.0062015681266784665, 0.006108543872833252, 0.00656492805480957, 0.006303071975708008, 0.006158304214477539, 0.006210048198699952, 0.0061296639442443845, 0.006237760066986084, 0.006144639968872071, 0.0063071041107177735, 0.006178783893585205, 0.006289984226226807, 0.006260735988616943, 0.006172671794891358, 0.006244383811950684, 0.00617468786239624, 0.006208831787109375, 0.006131904125213623, 0.006114848136901855, 0.006083040237426758, 0.0061972479820251464, 0.006131840229034424, 0.006174592018127442, 0.006196544170379638, 0.006159039974212646, 0.006188064098358154, 0.0061279358863830565, 0.006481728076934814, 0.006204127788543701, 0.006236288070678711, 0.006166783809661866, 0.006196000099182129, 0.006201632022857666, 0.006105663776397705, 0.006170752048492431, 0.006119423866271972, 0.006167712211608886, 0.006113408088684082, 0.006212319850921631, 0.006088704109191895, 0.006227968215942382, 0.006080383777618408, 0.006205535888671875, 0.006090784072875976, 0.006154240131378174, 0.006164480209350586, 0.006244128227233887, 0.006176383972167969, 0.006111839771270752, 0.006186592102050781, 0.006255008220672607, 0.006194431781768799, 0.006099679946899414, 0.006213664054870605, 0.006088736057281494, 0.006207456111907959, 0.0062481918334960935, 0.00610643196105957, 0.006170656204223633, 0.006091904163360595, 0.006170400142669678, 0.006086656093597412, 0.006207488059997559, 0.006111104011535645, 0.006193408012390137, 0.006071392059326172, 0.006202144145965576, 0.006078271865844726, 0.006167840003967285, 0.006120160102844239, 0.006146207809448242, 0.00616809606552124, 0.0061077442169189455, 0.006149919986724853, 0.0061175041198730466, 0.006162079811096191, 0.006107039928436279, 0.006227488040924072, 0.006108128070831299, 0.0062258877754211425, 0.006128672122955322, 0.006184832096099853, 0.006167103767395019, 0.006141952037811279, 0.006189055919647217, 0.00610643196105957, 0.00617910385131836, 0.006213024139404297, 0.006206816196441651, 0.006098015785217285, 0.0061773438453674315, 0.006066431999206543, 0.006172416210174561, 0.006108320236206054, 0.0061346240043640135, 0.0061421761512756344, 0.006100255966186524, 0.00613651180267334, 0.006088511943817139, 0.006162015914916992, 0.006089119911193847, 0.006164415836334229, 0.006076767921447754, 0.006176640033721923, 0.006084447860717774, 0.006213632106781006, 0.006115392208099365, 0.006266816139221192, 0.006196767807006836, 0.006263199806213379, 0.00625055980682373, 0.006180863857269287, 0.0062259521484375, 0.006635488033294678, 0.006211584091186524, 0.0061214399337768555, 0.006153439998626709, 0.00620198392868042, 0.006125760078430176, 0.006240255832672119, 0.006209536075592041, 0.006229023933410644, 0.006101984024047852, 0.006224991798400879, 0.00611740779876709, 0.006222720146179199, 0.006153823852539063, 0.006174272060394287, 0.00621449613571167, 0.006158336162567139, 0.006188543796539306, 0.006123231887817383, 0.006304543972015381, 0.00608790397644043, 0.006193952083587646, 0.006080319881439209, 0.006238656044006348, 0.00611081600189209, 0.006142111778259277, 0.0061521921157836916, 0.006109183788299561, 0.006160384178161621, 0.006350399971008301, 0.006186431884765625, 0.006044223785400391, 0.006187007904052734, 0.006105088233947754, 0.006185184001922608, 0.006106592178344726, 0.0061907520294189455, 0.006178688049316406, 0.006144927978515625, 0.006193183898925782, 0.006118783950805664, 0.006168352127075195, 0.006105760097503662, 0.006190207958221436, 0.00606873607635498, 0.006181280136108399, 0.006067647933959961, 0.006385471820831299, 0.006174975872039795, 0.006232063770294189, 0.006155968189239502, 0.00611411190032959, 0.006192768096923828, 0.0061032319068908695, 0.006282815933227539, 0.006098591804504395, 0.0061859521865844725, 0.0060928001403808595, 0.006176767826080322, 0.0060863041877746585, 0.006250080108642578, 0.006159039974212646, 0.006139071941375732, 0.006153088092803955, 0.0060928001403808595, 0.00616156816482544, 0.006111584186553955, 0.006152512073516846, 0.006134208202362061, 0.006202720165252686, 0.006105408191680908, 0.006185056209564209, 0.006063168048858643, 0.006153151988983154, 0.006107135772705078, 0.0061421761512756344, 0.006355967998504639, 0.006161183834075928, 0.006227519989013672, 0.006147744178771973, 0.006255551815032959, 0.0061049280166625974, 0.006220032215118408, 0.006097792148590088, 0.006187903881072998, 0.006128960132598877, 0.00618345594406128, 0.00683958387374878, 0.008580991744995117, 0.006486815929412842, 0.007170271873474121, 0.0062542400360107425, 0.006131040096282959, 0.0062904319763183595, 0.006124576091766357, 0.006222623825073242, 0.0061970877647399905, 0.006148416042327881, 0.006188223838806153, 0.00610975980758667, 0.0062297601699829105, 0.006095232009887696, 0.006189087867736817, 0.00610316801071167, 0.006217504024505615, 0.006191328048706055, 0.006170400142669678, 0.006172895908355713, 0.006144000053405762, 0.0061972479820251464, 0.0061380801200866695, 0.0062576642036437985, 0.006117856025695801, 0.006202847957611084, 0.006103392124176025, 0.006199808120727539, 0.006141952037811279, 0.006177887916564941, 0.006199520111083984, 0.006130112171173096, 0.006160639762878418, 0.006111423969268798, 0.006174431800842285, 0.0060867519378662105, 0.006164480209350586, 0.006070367813110352, 0.006209375858306884, 0.006156352043151856, 0.006256351947784424, 0.0061485438346862795, 0.00617574405670166, 0.006181727886199951, 0.006160384178161621, 0.006209536075592041, 0.006151711940765381, 0.0064058880805969234, 0.006130208015441894, 0.006245888233184814, 0.0061151041984558105, 0.006211520195007324, 0.0062137598991394045, 0.006155072212219238, 0.0061996798515319826, 0.006565536022186279, 0.006258687973022461, 0.006137887954711914, 0.006241951942443848, 0.006146368026733399, 0.006178624153137207, 0.006181056022644043, 0.006236159801483154, 0.006196447849273682, 0.006112192153930664, 0.006213471889495849, 0.00608787202835083, 0.006212224006652832, 0.006117216110229492, 0.0061562881469726565, 0.006193280220031738, 0.0061950721740722655, 0.006215007781982422, 0.006146719932556152, 0.0062259202003479, 0.006184288024902344, 0.006214079856872559, 0.00611894416809082, 0.006215968132019043, 0.006113791942596435, 0.006227424144744873, 0.006195519924163818, 0.006156576156616211, 0.006203199863433838, 0.006141983985900879, 0.006205440044403076, 0.0061214399337768555, 0.0061972799301147465, 0.0060965437889099125, 0.006205984115600586, 0.0061038718223571774, 0.006227295875549316, 0.006116608142852783, 0.006186431884765625, 0.006158400058746338, 0.0061244478225708, 0.0061799359321594236, 0.006122399806976318, 0.006185184001922608, 0.006125376224517822, 0.006211647987365723, 0.006099008083343506, 0.006217567920684814, 0.006146143913269043, 0.006229919910430908, 0.006119423866271972, 0.0061500477790832515, 0.006155807971954346, 0.006115808010101319, 0.006194399833679199, 0.006117280006408691, 0.0061933121681213375, 0.006119647979736328, 0.006203999996185303, 0.006098944187164307, 0.006177023887634277, 0.006100800037384033, 0.006206624031066895, 0.00628111982345581, 0.006189727783203125, 0.006224095821380615, 0.006139776229858398, 0.0061829757690429685, 0.006109119892120362, 0.006205088138580323, 0.006094687938690185, 0.006193984031677246, 0.006124576091766357, 0.006204192161560059, 0.006139904022216797, 0.006187007904052734, 0.0061561279296875, 0.0060414719581604005, 0.0061970877647399905, 0.006132800102233887, 0.006231904029846191, 0.006140223979949951, 0.00623145580291748, 0.006110496044158935, 0.006194303989410401, 0.006137983798980713, 0.006147903919219971, 0.006258304119110107, 0.006266975879669189, 0.006224095821380615, 0.006154016017913818, 0.006250720024108886, 0.006215519905090332, 0.006215712070465088, 0.0061703681945800785, 0.006166687965393066, 0.006172671794891358, 0.006129888057708741, 0.006178944110870361, 0.006129631996154785, 0.006193056106567383, 0.006117568016052246, 0.006186016082763672, 0.006103839874267578, 0.006192160129547119, 0.0061140480041503905, 0.006213856220245361, 0.006105343818664551, 0.006210912227630616, 0.006156832218170166, 0.00610700798034668, 0.006356959819793701, 0.006127776145935059, 0.006209248065948486, 0.006096992015838623, 0.006225984096527099, 0.006092319965362549, 0.006189536094665527, 0.006081535816192627, 0.006198400020599365, 0.0061418237686157225, 0.006129183769226074, 0.006170207977294922, 0.00611030387878418, 0.006165472030639649, 0.006115839958190918, 0.006169151782989502, 0.0061080641746521, 0.006216639995574951, 0.006104991912841797, 0.0062259202003479, 0.006106527805328369, 0.0062206401824951175, 0.006176544189453125, 0.0061560640335083005, 0.006199488162994385, 0.006111487865447998, 0.006198239803314209, 0.0061194877624511715, 0.006193888187408447, 0.005999040126800537, 0.006200799942016602, 0.006185247898101807, 0.006334720134735107, 0.006686336040496827, 0.0061627840995788575, 0.006373407840728759, 0.006572319984436035, 0.006242047786712646, 0.006223840236663818, 0.006174623966217041, 0.006199391841888427, 0.0061645441055297855, 0.006243264198303223, 0.0061242241859436036, 0.006224192142486572, 0.006196224212646485, 0.00621235179901123, 0.006292064189910889, 0.006149151802062988, 0.006162303924560547, 0.006136064052581787, 0.006199808120727539, 0.006121471881866455, 0.0061968002319335936, 0.006078911781311035, 0.006190144062042237, 0.006101280212402344, 0.006202303886413575, 0.006087423801422119, 0.006182112216949463, 0.006164224147796631, 0.006188032150268555, 0.006173120021820068, 0.006129248142242432, 0.0061898880004882815, 0.006113056182861328, 0.006219295978546142, 0.006097760200500488, 0.006204671859741211, 0.006089471817016602, 0.006213791847229004, 0.006110527992248535, 0.006177311897277832, 0.006141600131988526, 0.006142303943634033, 0.006170623779296875, 0.006123519897460937, 0.006243936061859131, 0.006128032207489014, 0.006212831974029541, 0.006087552070617676, 0.00620688009262085, 0.006101791858673096, 0.006200384140014648, 0.0061200962066650395, 0.006189055919647217, 0.006178944110870361, 0.00614796781539917, 0.006221824169158936, 0.006121471881866455, 0.006180863857269287, 0.006105088233947754, 0.006118368148803711, 0.006082560062408447, 0.006242015838623047, 0.006096223831176758, 0.006180960178375244, 0.006153312206268311, 0.006145792007446289, 0.00616864013671875, 0.006115263938903809, 0.006166528224945069, 0.006127615928649902, 0.0061682238578796384, 0.0061073598861694335, 0.006203519821166992, 0.006088704109191895, 0.006158080101013184, 0.0060841598510742185, 0.006183775901794433, 0.006243743896484375, 0.007389279842376709, 0.006201695919036865, 0.0060945281982421875, 0.006195519924163818, 0.006130015850067139, 0.006121119976043701, 0.0061541438102722164, 0.00610700798034668, 0.00614576005935669, 0.0060871682167053225, 0.006156576156616211, 0.006090528011322022, 0.006180960178375244, 0.0060793919563293455, 0.006198016166687012, 0.006087999820709228, 0.006204288005828857, 0.006072319984436035, 0.006187263965606689, 0.006192031860351562, 0.006116064071655274, 0.006174816131591797, 0.0061008319854736325, 0.006144383907318115, 0.00609987211227417, 0.006162432193756104, 0.006199359893798828, 0.006858848094940186, 0.006587135791778565, 0.0067358717918396, 0.006393856048583985, 0.00617574405670166, 0.006964223861694336, 0.006443039894104004, 0.006099167823791504, 0.0062481918334960935, 0.006105055809020996, 0.006192512035369873, 0.006161056041717529, 0.006168896198272705, 0.006166207790374756, 0.006139904022216797, 0.006174592018127442, 0.006126016139984131, 0.006082592010498047, 0.00609830379486084, 0.006261375904083252, 0.006381504058837891, 0.006215424060821533, 0.006175007820129395, 0.006134880065917969, 0.006193247795104981, 0.00613702392578125, 0.006212480068206787, 0.006124512195587158, 0.006182240009307861, 0.006177631855010987, 0.006182752132415772, 0.006090079784393311, 0.0062009282112121585, 0.0061874880790710445, 0.006162879943847656, 0.006187168121337891, 0.006119167804718018, 0.006201663970947266, 0.006143519878387451, 0.006274367809295654, 0.006105984210968017, 0.0062197761535644535, 0.006117055892944336, 0.006205760002136231, 0.006115327835083008, 0.006160416126251221, 0.006162335872650146, 0.006135424137115478, 0.006147712230682373, 0.006124351978302002, 0.006180543899536133, 0.0060910720825195315, 0.006237760066986084, 0.006120128154754639, 0.006196896076202393, 0.006094431877136231, 0.006244639873504639, 0.006244512081146241, 0.00611894416809082, 0.006144032001495361, 0.0061114559173583985, 0.006160672187805176, 0.006180863857269287, 0.006205344200134277, 0.006217823982238769, 0.006208896160125732, 0.006092576026916504, 0.006197440147399902, 0.0062304000854492185, 0.0062507839202880855, 0.006182911872863769, 0.006148096084594727, 0.006201344013214111, 0.006119423866271972, 0.006215167999267578, 0.006106815814971924, 0.006183680057525635, 0.0061010560989379885, 0.006158336162567139, 0.0060657281875610355, 0.006072319984436035, 0.006121471881866455, 0.0061411519050598145, 0.0061502718925476076, 0.006101664066314697, 0.006169663906097412, 0.006115808010101319, 0.006150815963745117, 0.006090816020965576, 0.006191199779510498, 0.006106783866882324, 0.0062156801223754886, 0.00609388780593872, 0.0062145919799804685, 0.006119391918182373, 0.0061785922050476075, 0.006156544208526612, 0.006105088233947754, 0.006174528121948243, 0.006109344005584717, 0.006193183898925782, 0.0061066560745239255, 0.006224671840667725, 0.006097695827484131, 0.006216608047485352, 0.006121312141418457, 0.0062046079635620114, 0.006159327983856201, 0.0061561279296875, 0.006190847873687744, 0.006128032207489014, 0.0061764798164367675, 0.006115935802459717, 0.006166207790374756, 0.006155807971954346, 0.006209472179412842, 0.006109119892120362, 0.00622160005569458, 0.006118207931518555, 0.0062197761535644535, 0.00614412784576416, 0.006129536151885986, 0.006170944213867187, 0.006131392002105713, 0.006170623779296875, 0.00612556791305542, 0.00618009614944458, 0.006138239860534668, 0.00619484806060791, 0.006062272071838379, 0.006180895805358887, 0.006189407825469971, 0.006240255832672119, 0.0061625919342041015, 0.006120831966400147, 0.006204095840454102, 0.006133920192718506, 0.006188416004180909, 0.006123936176300049, 0.006197567939758301, 0.006079264163970947, 0.006194272041320801, 0.006112383842468262, 0.006110400199890137, 0.0061305279731750486, 0.006189919948577881, 0.006168575763702393, 0.006111328125, 0.006166431903839111, 0.006119423866271972, 0.006158336162567139, 0.006123072147369385, 0.006214431762695313, 0.006108255863189698, 0.006234687805175781, 0.00613100814819336, 0.00636575984954834, 0.006233312129974365, 0.006153120040893555, 0.006230016231536865, 0.006137856006622314, 0.006191359996795654, 0.006133600234985352, 0.0062135357856750485, 0.006100992202758789, 0.006203680038452148, 0.0060984320640563965, 0.006197472095489502, 0.006166528224945069, 0.006144000053405762, 0.0061931519508361815, 0.006121471881866455, 0.006264544010162353, 0.006107423782348633, 0.006180416107177735, 0.006088992118835449, 0.006201632022857666, 0.006080383777618408, 0.006213791847229004, 0.00607747220993042, 0.0063127679824829105, 0.006158656120300293, 0.006135424137115478, 0.006185023784637451, 0.006182496070861816, 0.006190591812133789, 0.006112160205841065, 0.006196896076202393, 0.006092864036560059, 0.006314559936523438, 0.006102240085601807, 0.00619484806060791, 0.0061307201385498045, 0.006125376224517822, 0.006155744075775147, 0.006106815814971924, 0.006171487808227539, 0.006119423866271972, 0.006193120002746582, 0.006131680011749268, 0.006219840049743653, 0.006108736038208008, 0.006213471889495849, 0.006102719783782959, 0.006210464000701904, 0.006163584232330322, 0.00611516809463501, 0.006199295997619629, 0.006129824161529541, 0.006199295997619629, 0.006118783950805664, 0.006257215976715088, 0.006084671974182129, 0.006192736148834229, 0.006077119827270508, 0.0061803522109985356, 0.0061559038162231445, 0.006159039974212646, 0.006173920154571533, 0.006129600048065185, 0.0061877760887146, 0.006195199966430664, 0.006203264236450195, 0.006131487846374512, 0.006214272022247314, 0.006096608161926269, 0.006196512222290039, 0.006355679988861084, 0.006189055919647217, 0.006178815841674804, 0.006135968208312989, 0.006229856014251709, 0.006120800018310547, 0.00617244815826416, 0.006123904228210449, 0.006210048198699952, 0.006097087860107422, 0.0061868162155151365, 0.006083648204803466, 0.006161375999450684, 0.006131103992462158, 0.006150112152099609, 0.006156352043151856, 0.006136032104492187, 0.006162144184112549, 0.006115551948547363, 0.006173056125640869, 0.006107039928436279, 0.006207583904266357, 0.0060867519378662105, 0.006184671878814697, 0.006068031787872314, 0.006295360088348388, 0.006119584083557129, 0.00614847993850708, 0.006141791820526123, 0.0061289920806884765, 0.0061571521759033205, 0.006113599777221679, 0.006148863792419434, 0.006095808029174804, 0.006224127769470214, 0.006088448047637939, 0.0061933121681213375, 0.00609878396987915, 0.006205535888671875, 0.006108352184295654, 0.00619001579284668, 0.006176544189453125, 0.006088479995727539, 0.006166783809661866, 0.006109087944030762, 0.006182464122772216, 0.006111199855804443, 0.006208255767822266, 0.006094751834869384, 0.0062642240524291995, 0.006125631809234619, 0.0062176318168640134, 0.006131807804107666, 0.0061504640579223635, 0.006203616142272949, 0.006109183788299561, 0.0061662721633911136, 0.006096896171569824, 0.006193408012390137, 0.006137856006622314, 0.0062271361351013185, 0.006090943813323975, 0.006226560115814209, 0.006303872108459473, 0.006264544010162353, 0.006214144229888916, 0.006139552116394043, 0.006186495780944825, 0.006121312141418457, 0.00617958402633667, 0.006090752124786377, 0.006188960075378418, 0.006080704212188721, 0.006214943885803223, 0.006114175796508789, 0.006219711780548096, 0.006191904067993164, 0.006173503875732422, 0.006219903945922852, 0.006217023849487305, 0.0061918082237243655, 0.006135807991027832, 0.0062259202003479, 0.006131711959838867, 0.006187039852142334, 0.0060927681922912594, 0.006244351863861084, 0.0061662721633911136, 0.00626854419708252, 0.006206399917602539, 0.006126944065093994, 0.006426976203918457, 0.006102015972137451, 0.006214655876159668, 0.006108960151672363, 0.006217951774597168, 0.006181024074554444, 0.006188896179199219, 0.006168575763702393, 0.006126719951629639, 0.006155136108398437, 0.006117728233337403, 0.006172287940979004, 0.006094304084777832, 0.006204127788543701, 0.00598195219039917, 0.006206975936889648, 0.006071040153503418, 0.00620854377746582, 0.00611846399307251, 0.006164383888244629, 0.006315616130828858, 0.006221343994140625, 0.006166463851928711, 0.006116288185119629, 0.006187007904052734, 0.006072351932525635, 0.006188767910003662, 0.006076032161712646, 0.006181503772735596, 0.006094655990600586, 0.006199776172637939, 0.006170688152313232, 0.0061641278266906735, 0.006170559883117676, 0.006146111965179443, 0.006207488059997559, 0.006184351921081543, 0.006181663990020752, 0.0060878081321716305, 0.006174528121948243, 0.006075039863586425, 0.006158559799194336, 0.006067776203155518, 0.0061651840209960935, 0.006118591785430908, 0.006128416061401367, 0.00613705587387085, 0.00610591983795166, 0.006133503913879394, 0.006097119808197021, 0.006147935867309571, 0.006082496166229248, 0.006258687973022461, 0.00610316801071167, 0.00618016004562378, 0.00609503984451294, 0.006200992107391358, 0.006077151775360107, 0.006182784080505371, 0.006563519954681397, 0.006335231781005859, 0.006338240146636963, 0.006274591922760009, 0.006287839889526367, 0.006211647987365723, 0.006373311996459961, 0.006240255832672119, 0.006195199966430664, 0.006299647808074951, 0.006245728015899658, 0.006271647930145264, 0.006175968170166015, 0.006265632152557373, 0.006261792182922363, 0.006187808036804199, 0.006232255935668945, 0.0062009282112121585, 0.006176928043365479, 0.006148640155792236, 0.006262784004211426, 0.006334464073181153, 0.006250495910644531, 0.006241951942443848, 0.006256991863250732, 0.00628326416015625, 0.0062046399116516115, 0.006303616046905517, 0.0062024321556091305, 0.006346816062927246, 0.006411744117736816, 0.006244671821594238, 0.006303135871887207, 0.006172287940979004, 0.006286367893218994, 0.006196352005004882, 0.006319200038909912, 0.006275968074798584, 0.006217984199523926, 0.006293471813201904, 0.00635148811340332, 0.006282815933227539, 0.0061807999610900876, 0.0062754878997802735, 0.006260992050170899, 0.006199488162994385, 0.006231776237487793, 0.006247392177581787, 0.006279200077056885, 0.006146431922912598, 0.006232639789581299, 0.006146175861358643, 0.006256063938140869, 0.006286079883575439, 0.006185664176940918, 0.006230559825897217, 0.006316127777099609, 0.006285727977752686, 0.00616649580001831, 0.006245791912078857, 0.006222432136535645, 0.00620908784866333, 0.006230463981628418, 0.006199295997619629, 0.006209792137145996, 0.006148863792419434, 0.006343008041381836, 0.006185152053833008, 0.006244319915771485, 0.006283455848693847, 0.006205760002136231, 0.006354623794555664, 0.006203936100006103, 0.006686495780944824, 0.006151487827301025, 0.0062707200050354005, 0.006242591857910157, 0.006175680160522461, 0.00621062421798706, 0.006219744205474853, 0.00625273609161377, 0.006111072063446045, 0.006349664211273193, 0.006262815952301025, 0.00631820821762085, 0.006315936088562011, 0.006198751926422119, 0.006341119766235351, 0.006180704116821289, 0.006717152118682861, 0.006281888008117676, 0.006287168025970459, 0.006315711975097656, 0.006211584091186524, 0.006320032119750976, 0.00680998420715332, 0.006266880035400391, 0.006314112186431885, 0.00625161600112915, 0.006359456062316894, 0.0062631678581237795, 0.006272768020629883, 0.006321695804595948, 0.006329247951507569, 0.006326015949249268, 0.0062032961845397945, 0.006296768188476563, 0.006213791847229004, 0.00630406379699707, 0.006287871837615967, 0.006217728137969971, 0.006254591941833496, 0.006205632209777832, 0.006284863948822022, 0.006160704135894776, 0.0062871999740600586, 0.006266335964202881, 0.0062921919822692875, 0.006342559814453125, 0.006551136016845703, 0.006318496227264404, 0.006192416191101074, 0.006288095951080323, 0.006270400047302246, 0.006183616161346436, 0.00624832010269165, 0.006232063770294189, 0.006288479804992675, 0.006154304027557373, 0.0062679038047790524, 0.006217343807220459, 0.006244351863861084, 0.0062568001747131344, 0.006193215847015381, 0.006291456222534179, 0.006311935901641846, 0.006284543991088867, 0.006222559928894043, 0.006379551887512207, 0.006257919788360595, 0.0062000641822814945, 0.006253888130187988, 0.006189760208129883, 0.006302752017974853, 0.006072319984436035, 0.006305600166320801, 0.006354176044464112, 0.006210847854614258, 0.006264544010162353, 0.006193088054656982, 0.006348991870880127, 0.006192255973815918, 0.006265312194824219, 0.006220032215118408, 0.0063504958152771, 0.006315648078918457, 0.006419007778167725, 0.006330495834350586, 0.006233727931976319, 0.006428800106048584, 0.006207744121551514, 0.006150144100189209, 0.006260096073150635, 0.0061421761512756344, 0.006201759815216064, 0.0061194877624511715, 0.006418176174163818, 0.00609939193725586, 0.00621449613571167, 0.006185887813568115, 0.006146048069000244, 0.006182911872863769, 0.006107135772705078, 0.006168416023254394, 0.006096479892730713, 0.006149824142456055, 0.006103648185729981, 0.00618723201751709, 0.006082496166229248, 0.006205088138580323, 0.006689536094665527, 0.006420256137847901, 0.006267072200775147, 0.006102784156799317, 0.006166528224945069, 0.006072415828704834, 0.00617571210861206, 0.00605679988861084, 0.006178016185760498, 0.006082687854766846, 0.0061550078392028805, 0.006111231803894043, 0.006123104095458984, 0.0061324481964111326, 0.006176447868347168, 0.006261087894439697, 0.006110879898071289, 0.006166528224945069, 0.006123519897460937, 0.006268928050994873, 0.006063392162322998, 0.0061675839424133305, 0.006059967994689942, 0.006246143817901611, 0.0061147198677062985, 0.006091104030609131, 0.0061337919235229495, 0.006010752201080322, 0.006124800205230713, 0.006286431789398193, 0.006368256092071533, 0.006089375972747803, 0.0061931519508361815, 0.006231776237487793, 0.006203680038452148, 0.006143392086029053, 0.006103456020355225, 0.006164768218994141, 0.006110496044158935, 0.006303616046905517, 0.006189824104309082, 0.006205440044403076, 0.006068287849426269, 0.006189184188842773, 0.0060659837722778324, 0.00618064022064209, 0.0061875200271606446, 0.006358751773834229, 0.006431007862091064, 0.006843999862670898, 0.00625871992111206, 0.0065821118354797365, 0.0071478400230407715, 0.006469567775726318, 0.006234432220458984, 0.006172351837158203, 0.0061931519508361815, 0.006137856006622314, 0.00618720006942749, 0.006184768199920654, 0.006209504127502441, 0.006232096195220947, 0.006479872226715088, 0.006178815841674804, 0.006123519897460937, 0.006371327877044678, 0.006107135772705078, 0.006187007904052734, 0.006090079784393311, 0.006215936183929444, 0.006120192050933838, 0.006217567920684814, 0.006267871856689453, 0.006204351902008056, 0.006539167881011963, 0.006270976066589356, 0.006508543968200684, 0.006148352146148682, 0.006258431911468506, 0.006188672065734863, 0.00620147180557251, 0.00627888011932373, 0.006156832218170166, 0.006233151912689209, 0.006136064052581787, 0.006220479965209961, 0.006156576156616211, 0.006211296081542968, 0.00611737585067749, 0.006194623947143554, 0.00602291202545166, 0.006112927913665771, 0.006146399974822998, 0.0061151041984558105, 0.006158559799194336, 0.0060928001403808595, 0.006301504135131836, 0.006090943813323975, 0.0061699838638305665, 0.006066815853118896, 0.006174719810485839, 0.006055935859680176, 0.006187007904052734, 0.00606447982788086, 0.006151840209960937, 0.006158336162567139, 0.006129280090332031, 0.006156703948974609, 0.006176447868347168, 0.006171072006225586, 0.006100992202758789, 0.0061847038269042965, 0.006065343856811524, 0.006173952102661133, 0.006067071914672852, 0.006179840087890625, 0.006106912136077881, 0.006146048069000244, 0.006094848155975342, 0.006129151821136475, 0.006129824161529541, 0.006090176105499267, 0.0061281280517578125, 0.006105343818664551, 0.006125728130340576, 0.00606822395324707, 0.0066130561828613285, 0.006204991817474365, 0.006161888122558593, 0.006059135913848877, 0.006186783790588379, 0.0061289920806884765, 0.0061200962066650395, 0.006232063770294189, 0.006107135772705078, 0.006258687973022461, 0.006098336219787598, 0.006226784229278565, 0.006090496063232422, 0.006213632106781006, 0.0060878400802612306, 0.00619212818145752, 0.006091968059539795, 0.006199967861175537, 0.006163839817047119, 0.006341248035430908, 0.0061784000396728515, 0.006109600067138672, 0.0062230081558227535, 0.006081376075744629, 0.0062176637649536135, 0.006060256004333496, 0.006157567977905273, 0.0059502081871032715, 0.00615993595123291, 0.006111743927001953, 0.006131648063659668, 0.00614799976348877, 0.006110559940338134, 0.006169343948364258, 0.006100736141204834, 0.006338304042816162, 0.006103551864624023, 0.006189216136932373, 0.006075551986694336, 0.0061651840209960935, 0.00609062385559082, 0.0061809921264648435, 0.00607747220993042, 0.006169568061828614, 0.006133632183074951, 0.006127488136291504, 0.006156415939331055, 0.006125696182250976, 0.006157919883728027, 0.006094751834869384, 0.006148128032684326, 0.006155839920043945, 0.006163360118865967, 0.006143583774566651, 0.006171103954315186, 0.006072159767150879, 0.0064635839462280275, 0.006185311794281006, 0.006172063827514648, 0.0062120318412780765, 0.006110879898071289, 0.0062035517692565914, 0.00612886381149292, 0.006243103981018066, 0.006117055892944336, 0.0061848959922790525, 0.0060993280410766605, 0.006176767826080322, 0.00611737585067749, 0.006160031795501709, 0.00614844799041748, 0.00613702392578125, 0.006187839984893799, 0.006129312038421631, 0.006170976161956787, 0.0060908799171447755, 0.0061765117645263675, 0.006088223934173584, 0.006173408031463623, 0.006073728084564209, 0.006387968063354493, 0.00612172794342041, 0.006182079792022705, 0.006274943828582764, 0.0061244797706604005, 0.006159808158874512, 0.006105216026306153, 0.006263552188873291, 0.0060795841217041015, 0.0061855678558349605, 0.005990015983581543, 0.006193535804748535, 0.006113279819488526, 0.006154240131378174, 0.006146048069000244, 0.006174719810485839, 0.0061561598777771, 0.0060908479690551754, 0.006169727802276611, 0.006086880207061767, 0.006199359893798828, 0.006068128108978272, 0.006173408031463623, 0.006139904022216797, 0.006191008090972901, 0.006353280067443848, 0.006235712051391602, 0.0062527041435241695, 0.006120672225952148, 0.006187263965606689, 0.006099487781524658, 0.006238207817077636, 0.006153215885162353, 0.006185887813568115, 0.006143167972564697, 0.006203423976898193, 0.006280064105987549, 0.0061437439918518065, 0.006154496192932129, 0.006105088233947754, 0.006163936138153076, 0.006131264209747314, 0.006179808139801025, 0.006122879981994629, 0.0061896958351135255, 0.006090752124786377, 0.0061701440811157224, 0.006070752143859864, 0.006176352024078369, 0.006101408004760742, 0.006425792217254638, 0.0063376641273498536, 0.0060815677642822264, 0.006170559883117676, 0.006099679946899414, 0.006191103935241699, 0.006090271949768067, 0.006195680141448974, 0.0061040959358215335, 0.00618390417098999, 0.006114560127258301, 0.00613427209854126, 0.006146304130554199, 0.006114336013793945, 0.006247392177581787, 0.006116928100585938, 0.0061550397872924805, 0.0061164479255676266, 0.006193600177764893, 0.006071616172790528, 0.006167359828948974, 0.006082592010498047, 0.006178751945495605, 0.005960800170898437, 0.006173439979553223, 0.00612502384185791, 0.006124320030212402, 0.006139904022216797, 0.00616755199432373, 0.006232160091400147, 0.006148064136505127, 0.006178880214691162, 0.00607913589477539, 0.006183135986328125, 0.00608460807800293, 0.006269152164459228, 0.0060917119979858395, 0.006187359809875489, 0.006127359867095947, 0.006103519916534424, 0.006211872100830078, 0.006113279819488526, 0.0061519680023193355, 0.006123744010925293, 0.0061708478927612305, 0.006135168075561523, 0.006221568107604981, 0.006283552169799805, 0.006261119842529297, 0.0061374402046203615, 0.006165088176727295, 0.006596255779266358, 0.006148255825042724, 0.0062156801223754886, 0.006106336116790772, 0.006185919761657715, 0.006072159767150879, 0.0061972479820251464, 0.00611078405380249, 0.006207935810089112, 0.0061868162155151365, 0.006139711856842041, 0.0062073922157287595, 0.00617465591430664, 0.006171167850494385, 0.006221248149871826, 0.006192895889282226, 0.006074656009674073, 0.0061998400688171385, 0.006096320152282715, 0.0061866559982299806, 0.006138656139373779, 0.006159840106964111, 0.006186975955963135, 0.006118080139160156, 0.0062046079635620114, 0.006118207931518555, 0.0061983041763305664, 0.006108128070831299, 0.006189343929290772, 0.0061356801986694335, 0.006256383895874023, 0.006051680088043213, 0.006168831825256347, 0.006290783882141113, 0.006113823890686035, 0.006031551837921143, 0.0060845761299133305, 0.006146016120910644, 0.006089727878570556, 0.00616480016708374, 0.006097536087036132, 0.00617299222946167, 0.006074048042297363, 0.006172063827514648, 0.00606441593170166, 0.006302015781402588, 0.006107391834259034, 0.006141695976257324, 0.006143712043762207, 0.00617091178894043, 0.006176767826080322, 0.006113279819488526, 0.006180895805358887, 0.006103072166442871, 0.006178751945495605, 0.00609497594833374, 0.007206111907958984, 0.006517471790313721, 0.006143807888031006, 0.006250463962554932, 0.006157599925994873, 0.0062350077629089356, 0.006146080017089843, 0.006153567790985108, 0.006261631965637207, 0.0061265921592712404, 0.006304863929748535, 0.006113279819488526, 0.006237855911254883, 0.006086656093597412, 0.006170048236846924, 0.006059711933135987, 0.00615718412399292, 0.006144192218780518, 0.006252575874328614, 0.006130784034729004, 0.006095359802246094, 0.006111072063446045, 0.0060991039276123045, 0.006112448215484619, 0.006065343856811524, 0.006154399871826172, 0.006076384067535401, 0.006211264133453369, 0.006080512046813965, 0.006166304111480713, 0.006258592128753662, 0.006342527866363526, 0.006160831928253173, 0.006140960216522217, 0.006146304130554199, 0.006195775985717774, 0.006193376064300537, 0.00609609603881836, 0.0061972799301147465, 0.006068927764892578, 0.006184959888458252, 0.006060192108154297, 0.006086368083953858, 0.0061018881797790525, 0.006192607879638672, 0.006165023803710938, 0.006123104095458984, 0.006154496192932129, 0.006146207809448242, 0.0061699519157409665, 0.006165152072906494, 0.0061842241287231444, 0.006288095951080323, 0.0061943359375, 0.006077375888824463, 0.006188320159912109, 0.0061027522087097165, 0.006154816150665283, 0.006172255992889404, 0.0061173119544982914, 0.006173503875732422, 0.0061064958572387695, 0.00617852783203125, 0.006089983940124511, 0.006190080165863037, 0.006077280044555664, 0.006174528121948243, 0.00605785608291626, 0.006174848079681396, 0.006068287849426269, 0.00616428804397583, 0.006087007999420166, 0.006149919986724853, 0.0061521921157836916, 0.006090752124786377, 0.006151840209960937, 0.006093152046203613, 0.006139488220214844, 0.0060829758644104, 0.006145567893981934, 0.006088319778442383, 0.006277984142303467, 0.006068128108978272, 0.006285344123840332, 0.006094912052154541, 0.006166528224945069, 0.006110208034515381, 0.006140927791595459, 0.006203392028808594, 0.006203392028808594, 0.0062008957862854, 0.0060830078125, 0.006169663906097412, 0.006107679843902588, 0.006187136173248291, 0.006308127880096435, 0.006217887878417969, 0.006126751899719238, 0.006160704135894776, 0.006162047863006592, 0.006337503910064698, 0.006180543899536133, 0.006093952178955078, 0.006188064098358154, 0.006094783782958984, 0.006118656158447266, 0.006049471855163574, 0.006165535926818848, 0.006074687957763672, 0.006185632228851318, 0.006135647773742676, 0.006133920192718506, 0.006150144100189209, 0.0061211838722229, 0.006180672168731689, 0.006129983901977539, 0.006166687965393066, 0.006105088233947754, 0.006186304092407227, 0.006081215858459473, 0.006178624153137207, 0.00608076810836792, 0.006188992023468017, 0.006154240131378174, 0.006180384159088135, 0.006191584110260009, 0.006241375923156738, 0.006236991882324219, 0.006129983901977539, 0.006217504024505615, 0.006131487846374512, 0.0063654079437255855, 0.00620963191986084, 0.0062195839881896975, 0.006183008193969727, 0.006141952037811279, 0.006253632068634033, 0.006185919761657715, 0.00619923210144043, 0.006109248161315918, 0.006244448184967041, 0.006119264125823975, 0.006209216117858887, 0.0061075201034545895, 0.006219295978546142, 0.006213856220245361, 0.0061357121467590335, 0.006222015857696534, 0.006146431922912598, 0.006183712005615234, 0.006132863998413086, 0.006207359790802002, 0.006097087860107422, 0.006196544170379638, 0.006095359802246094, 0.006189055919647217, 0.006150144100189209, 0.006182623863220215, 0.006248000144958496, 0.006150496006011963, 0.006195583820343018, 0.00630790376663208, 0.006225855827331543, 0.006108992099761963, 0.006248960018157959, 0.0061047677993774415, 0.006188735961914062, 0.006148223876953125]",tokens/s,161.55954494263096,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,837.746688,556.72832,0.0,178.25792,176.52224,s,1,7.51967626953125,7.51967626953125,0.0,7.51967626953125,7.51967626953125,7.51967626953125,7.51967626953125,[7.51967626953125],,kWh,1.982594503750761e-05,2.179734761547903e-06,5.404726546004435e-06,2.741040634505995e-05,,MB,1194.688512,669.974528,0.0,262.144,221.118976,s,10,0.23773827171325684,0.023773827171325684,0.00024283595479606624,0.02371673583984375,0.024118610572814943,0.02418594560623169,0.02423981363296509,"[0.02391481590270996, 0.023476768493652343, 0.024103647232055665, 0.023773056030273437, 0.02366041564941406, 0.024253280639648437, 0.023616479873657226, 0.023656160354614257, 0.02347360038757324, 0.023810047149658203]",tokens/s,10768.1442350506,kWh,6.932403663103739e-07,7.645196220950019e-08,4.059873926176255e-07,1.1756797211374995e-06,tokens/kWh,217746377.17856833,MB,1228.357632,684.654592,0.0,276.824064,221.271552,s,10,13.6162353515625,1.36162353515625,0.004976171477569547,1.3627197875976562,1.3672108764648436,1.369263397216797,1.3709054138183594,"[1.362764404296875, 1.36269970703125, 1.37131591796875, 1.3627398681640626, 1.36317236328125, 1.3562159423828124, 1.355752197265625, 1.3607286376953125, 1.354091552734375, 1.3667547607421875]",tokens/s,46.2682954380416,kWh,3.9575149517440624e-05,4.3647022323524135e-06,2.0418029266581237e-05,6.435788101637427e-05,tokens/kWh,978901.0919108914,,s,630,13.611357091903685,0.021605328717307436,0.0004793603854581813,0.02150827217102051,0.021850230407714846,0.022027892112731935,0.024121036033630375,"[0.02136659240722656, 0.0215164794921875, 0.021698240280151368, 0.021655712127685547, 0.02155523109436035, 0.02168614387512207, 0.02161235237121582, 0.021825983047485353, 0.021884639739990233, 0.02169878387451172, 0.02162518310546875, 0.021489376068115233, 0.021884767532348633, 0.021545440673828124, 0.021544639587402343, 0.021530336380004882, 0.021551551818847655, 0.021600095748901368, 0.021439872741699218, 0.021392000198364257, 0.02143833541870117, 0.021472639083862304, 0.024135967254638672, 0.02312588882446289, 0.021810911178588868, 0.02173776054382324, 0.021477535247802736, 0.02143440055847168, 0.02140985679626465, 0.02182588768005371, 0.021575679779052736, 0.02159187126159668, 0.02151030349731445, 0.021499935150146483, 0.021395423889160155, 0.02136476707458496, 0.021339935302734377, 0.021369056701660158, 0.021441631317138672, 0.02128700828552246, 0.021468032836914064, 0.021498016357421875, 0.021790655136108398, 0.021624223709106445, 0.02154902458190918, 0.021496288299560545, 0.021591232299804686, 0.021506591796875, 0.021518943786621093, 0.021501056671142577, 0.02148726463317871, 0.021643680572509767, 0.02153558349609375, 0.021646175384521484, 0.021754688262939453, 0.02164735984802246, 0.021940448760986327, 0.021501056671142577, 0.021501663208007813, 0.021425088882446288, 0.021379072189331053, 0.021536991119384764, 0.021421056747436523, 0.02101702308654785, 0.021399999618530275, 0.021557247161865235, 0.021405696868896484, 0.021420320510864257, 0.02151340866088867, 0.02134003257751465, 0.021434240341186524, 0.021394208908081056, 0.02137276840209961, 0.02144476890563965, 0.021656831741333007, 0.02145254325866699, 0.021547552108764648, 0.021483327865600584, 0.021494495391845704, 0.02148086357116699, 0.021369279861450194, 0.021417760848999025, 0.02136300849914551, 0.021350400924682617, 0.021356800079345702, 0.021284704208374024, 0.021188512802124023, 0.021666944503784178, 0.02145552062988281, 0.021422367095947265, 0.021528703689575195, 0.021296384811401368, 0.021418432235717773, 0.02142972755432129, 0.021324447631835938, 0.021401952743530274, 0.021565088272094725, 0.02145020866394043, 0.0215283203125, 0.02165830421447754, 0.021699871063232422, 0.021638336181640624, 0.021610111236572267, 0.02158835220336914, 0.021537471771240234, 0.02157459259033203, 0.021479328155517577, 0.02157708740234375, 0.021626976013183592, 0.021566240310668946, 0.021578655242919922, 0.021658559799194337, 0.02170579147338867, 0.021830528259277344, 0.021774368286132814, 0.022078975677490235, 0.021792512893676758, 0.02187104034423828, 0.021737823486328123, 0.02186240005493164, 0.021937952041625977, 0.021948991775512697, 0.02188047981262207, 0.022009855270385743, 0.024481439590454103, 0.023181695938110352, 0.02150982475280762, 0.02202150344848633, 0.022033119201660158, 0.021868223190307616, 0.02185004806518555, 0.021687904357910157, 0.021854944229125976, 0.022159263610839842, 0.022081920623779297, 0.02169068717956543, 0.02184694480895996, 0.021613311767578126, 0.021553184509277342, 0.02147737693786621, 0.021483776092529296, 0.021738815307617187, 0.02158140754699707, 0.021500736236572265, 0.02176527976989746, 0.02169862365722656, 0.026327936172485352, 0.02262182426452637, 0.021944063186645508, 0.021870687484741212, 0.0217607364654541, 0.021548992156982423, 0.02157548713684082, 0.02147123146057129, 0.02151628875732422, 0.021580127716064452, 0.021536415100097656, 0.02148476791381836, 0.021438880920410155, 0.021467519760131837, 0.021615999221801758, 0.021488256454467773, 0.021593151092529298, 0.021485759735107423, 0.021507135391235353, 0.02160310363769531, 0.02150275230407715, 0.021628480911254883, 0.021714656829833985, 0.02171913528442383, 0.021863487243652342, 0.021599264144897462, 0.021681983947753905, 0.02163603210449219, 0.021661600112915038, 0.021764095306396485, 0.0217391357421875, 0.021729375839233397, 0.02162076759338379, 0.021944000244140626, 0.021716575622558593, 0.021654367446899414, 0.02160985565185547, 0.021559680938720703, 0.02159654426574707, 0.021668895721435547, 0.021605375289916993, 0.021594432830810546, 0.021518335342407227, 0.02150399971008301, 0.021709152221679687, 0.02188902473449707, 0.0218656005859375, 0.021591936111450195, 0.02156835174560547, 0.021468416213989257, 0.021535680770874022, 0.02148054313659668, 0.021408639907836913, 0.02152448081970215, 0.02137843132019043, 0.021545600891113282, 0.021481472015380858, 0.021436447143554686, 0.021485536575317384, 0.02149344062805176, 0.02163539123535156, 0.021420383453369142, 0.021362335205078124, 0.02138047981262207, 0.021594751358032228, 0.02137660789489746, 0.021499391555786132, 0.02147011184692383, 0.022449600219726563, 0.02164588737487793, 0.02155958366394043, 0.02158393669128418, 0.02158729553222656, 0.021549152374267577, 0.021548671722412108, 0.02177699279785156, 0.021866207122802735, 0.021884191513061525, 0.02242252731323242, 0.021835519790649415, 0.022227264404296874, 0.02184185600280762, 0.021837215423583984, 0.021719776153564452, 0.02168409538269043, 0.021589824676513672, 0.021589599609375, 0.02159881591796875, 0.02153494453430176, 0.02167532730102539, 0.021672351837158203, 0.02173139190673828, 0.021700159072875976, 0.021606847763061522, 0.021892927169799806, 0.021809152603149414, 0.021710304260253905, 0.021492576599121092, 0.021417856216430664, 0.021518335342407227, 0.021376224517822267, 0.021529151916503907, 0.02148111915588379, 0.021357120513916014, 0.02145631980895996, 0.02141417694091797, 0.021029344558715822, 0.021476415634155272, 0.021285823822021484, 0.02128281593322754, 0.021509632110595703, 0.021264352798461915, 0.02138175964355469, 0.02148566436767578, 0.021392351150512696, 0.02136150360107422, 0.021458879470825195, 0.021374912261962892, 0.021343360900878905, 0.02145417594909668, 0.021397151947021485, 0.021501951217651367, 0.02157535934448242, 0.021520544052124023, 0.02142838478088379, 0.02166988754272461, 0.021341663360595703, 0.021469728469848633, 0.021317632675170898, 0.021250272750854494, 0.021408544540405274, 0.021305856704711915, 0.02129929542541504, 0.021445024490356446, 0.021794815063476563, 0.0216494083404541, 0.021599552154541016, 0.021498559951782226, 0.024669408798217773, 0.027470624923706055, 0.021816768646240235, 0.021571647644042968, 0.021488128662109376, 0.021507999420166016, 0.021315744400024414, 0.021516223907470704, 0.021454240798950194, 0.021448448181152345, 0.0213832950592041, 0.02142313575744629, 0.02150592041015625, 0.021527679443359374, 0.021436927795410156, 0.021508544921875, 0.02133286476135254, 0.021478271484375, 0.021581823348999024, 0.021728256225585937, 0.021507200241088868, 0.021416896820068358, 0.021629823684692382, 0.022895904541015626, 0.021436256408691408, 0.0215031681060791, 0.02138083267211914, 0.021462944030761717, 0.0218789119720459, 0.021342496871948242, 0.021495231628417967, 0.021202688217163087, 0.021759647369384766, 0.021487871170043946, 0.021495168685913085, 0.022068191528320312, 0.021354496002197267, 0.021526239395141603, 0.021440799713134766, 0.02154195213317871, 0.021497119903564454, 0.021533632278442384, 0.02234822463989258, 0.021639455795288087, 0.02178691291809082, 0.02157334327697754, 0.021510143280029297, 0.021716991424560548, 0.021518239974975584, 0.021790271759033204, 0.02147724723815918, 0.021378944396972657, 0.02156982421875, 0.02136729621887207, 0.021319583892822267, 0.021343360900878905, 0.02132476806640625, 0.021348352432250976, 0.02162713623046875, 0.02153011131286621, 0.02192745590209961, 0.022114368438720704, 0.02157814407348633, 0.021609920501708985, 0.021959327697753907, 0.02147164726257324, 0.021321216583251954, 0.021495071411132813, 0.021558528900146486, 0.021425888061523436, 0.02142348861694336, 0.02158451271057129, 0.021415775299072265, 0.021557407379150392, 0.0214052791595459, 0.021579296112060546, 0.021452959060668946, 0.02134294319152832, 0.02145894432067871, 0.02146918487548828, 0.02140166473388672, 0.02139743995666504, 0.02135206413269043, 0.021328256607055663, 0.02135990333557129, 0.021315296173095702, 0.021390335083007812, 0.02136649513244629, 0.021463264465332033, 0.021280096054077147, 0.02136899185180664, 0.021541439056396484, 0.021438144683837892, 0.021502016067504882, 0.021125503540039062, 0.021542911529541017, 0.02150716781616211, 0.021465856552124022, 0.021705984115600586, 0.02132467269897461, 0.021297536849975585, 0.021431615829467773, 0.021381471633911135, 0.021415327072143556, 0.021660255432128905, 0.021360639572143555, 0.023858240127563476, 0.02167683219909668, 0.021663904190063477, 0.021458623886108398, 0.021592639923095704, 0.021266176223754884, 0.021278976440429687, 0.021657344818115234, 0.02128691291809082, 0.021370880126953123, 0.0214932804107666, 0.021445087432861328, 0.02157382392883301, 0.02152364730834961, 0.021480064392089843, 0.021593791961669922, 0.021950784683227538, 0.021729280471801758, 0.021604352951049805, 0.021302911758422853, 0.021516063690185546, 0.02138332748413086, 0.021313472747802733, 0.021348543167114258, 0.021307712554931642, 0.021313472747802733, 0.021487327575683595, 0.02147158432006836, 0.021497856140136717, 0.021367040634155274, 0.0216428165435791, 0.021883327484130858, 0.02157360076904297, 0.021518112182617188, 0.0214866886138916, 0.021397600173950194, 0.021535615921020507, 0.021375200271606446, 0.0216343994140625, 0.021422464370727538, 0.02157155227661133, 0.021391519546508787, 0.02129724884033203, 0.021313119888305664, 0.021440704345703124, 0.02131065559387207, 0.02140243148803711, 0.021535072326660156, 0.021449472427368162, 0.021588895797729494, 0.021469024658203124, 0.02101139259338379, 0.02142790412902832, 0.021323455810546874, 0.021323360443115235, 0.021256927490234376, 0.02135590362548828, 0.02130803108215332, 0.021661088943481444, 0.02154966354370117, 0.021672191619873046, 0.022133663177490236, 0.021733631134033204, 0.021709535598754885, 0.021573087692260743, 0.021472799301147462, 0.021500543594360353, 0.021590272903442384, 0.021389312744140625, 0.021393312454223632, 0.021434783935546875, 0.02144611167907715, 0.021376480102539064, 0.02150271987915039, 0.02147929573059082, 0.021456192016601563, 0.02157859230041504, 0.021972959518432617, 0.02150399971008301, 0.021497856140136717, 0.02151628875732422, 0.021491519927978514, 0.021552608489990233, 0.02160099220275879, 0.0216944637298584, 0.02154521560668945, 0.02156723213195801, 0.02408448028564453, 0.022454208374023437, 0.021556480407714844, 0.021659711837768554, 0.02144767951965332, 0.02155084800720215, 0.021359615325927735, 0.021895647048950195, 0.021415775299072265, 0.02160268783569336, 0.021319999694824218, 0.021606559753417968, 0.021476831436157227, 0.02144732856750488, 0.021390047073364258, 0.021418495178222655, 0.02194175910949707, 0.021502880096435546, 0.02160643196105957, 0.021497983932495118, 0.02175993537902832, 0.021633056640625, 0.021353471755981446, 0.022502368927001953, 0.021356544494628905, 0.021319679260253906, 0.02150297546386719, 0.020975616455078124, 0.021389312744140625, 0.021456895828247072, 0.02142646408081055, 0.021393375396728517, 0.021432096481323243, 0.02130940818786621, 0.021851871490478517, 0.021533088684082033, 0.021405088424682618, 0.021502111434936525, 0.021416255950927734, 0.021691936492919922, 0.021596160888671875, 0.02161097526550293, 0.021569440841674805, 0.021600351333618165, 0.021448703765869142, 0.021496095657348634, 0.02140105628967285, 0.021399808883666993, 0.021622783660888673, 0.02129532814025879, 0.02148534393310547, 0.021506240844726562, 0.021433759689331054, 0.021508512496948243, 0.021340063095092773, 0.02126857566833496, 0.02141900825500488, 0.02148044776916504, 0.021336063385009766, 0.021426368713378906, 0.02143008041381836, 0.021508031845092774, 0.021411455154418946, 0.021389759063720704, 0.021316736221313477, 0.02183772850036621, 0.02150499153137207, 0.02183286476135254, 0.021707136154174803, 0.02158665657043457, 0.021503744125366212, 0.021475008010864258, 0.021441919326782227, 0.021293760299682617, 0.021324031829833983, 0.021388736724853516, 0.02142880058288574, 0.021581024169921876, 0.02160310363769531, 0.021423360824584962, 0.021594175338745115, 0.021502784729003906, 0.021476703643798827, 0.021461536407470703, 0.021444480895996095, 0.021692768096923828, 0.02169219207763672, 0.021501056671142577, 0.02172198486328125, 0.02150320053100586, 0.0217126407623291, 0.021554624557495117, 0.02150662422180176, 0.02162124824523926, 0.02140310478210449, 0.021394880294799804, 0.02128700828552246, 0.02142220878601074, 0.021569856643676756, 0.021457216262817384, 0.021395807266235353, 0.02435158348083496, 0.02265769577026367, 0.02180009651184082, 0.021558368682861328, 0.02162063980102539, 0.02207539176940918, 0.02153696060180664, 0.021947391510009767, 0.021596128463745118, 0.021631103515625, 0.022167583465576172, 0.02152230453491211, 0.02148249626159668, 0.021597343444824217, 0.021512128829956054, 0.02139155197143555, 0.021371423721313478, 0.02148761558532715, 0.02141209602355957, 0.021384960174560548, 0.021474720001220703, 0.021643871307373046, 0.021642751693725586, 0.02240153694152832, 0.024633472442626952, 0.02183359909057617, 0.02170787239074707, 0.021553056716918945, 0.021473344802856446, 0.02142300796508789, 0.02148464012145996, 0.021558399200439452, 0.022250335693359376, 0.021557600021362304, 0.02152822494506836, 0.021601408004760743, 0.021382335662841798, 0.021621376037597655, 0.021519968032836914, 0.021360960006713867, 0.02138912010192871, 0.021373247146606444, 0.0214835205078125, 0.021461183547973633, 0.021361536026000976, 0.02125257682800293, 0.021729759216308594, 0.022515615463256835, 0.021492000579833984, 0.021348159790039064, 0.0212739200592041, 0.021522495269775392]",tokens/s,46.28487782270711,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3728.146432,4375.642112,0.0,3997.171712,3878.257152,s,1,10.0629853515625,10.0629853515625,0.0,10.0629853515625,10.0629853515625,10.0629853515625,10.0629853515625,[10.0629853515625],,kWh,9.067295107500967e-05,9.994629891378651e-06,2.7987522389999464e-05,0.00012865510335638777,,MB,1964.519424,4862.181376,0.0,4454.350848,4371.844096,s,10,6.671113952636719,0.6671113952636719,0.0009954266792010686,0.6670467224121094,0.6679490539550781,0.6684646697998047,0.6688771624755859,"[0.66518603515625, 0.6659949951171875, 0.66783447265625, 0.6668709716796875, 0.6672155151367187, 0.6689802856445313, 0.6677422485351563, 0.6668779296875, 0.666758056640625, 0.6676534423828125]",tokens/s,383.7440070991704,kWh,1.9423147584895633e-05,2.1412516791791457e-06,1.2930131871874938e-05,3.4494531135949714e-05,tokens/kWh,7421466.2895707665,MB,1959.440384,5063.507968,0.0,4655.67744,4530.328576,s,10,392.1630078125,39.21630078125,0.020344922816255443,39.211791015624996,39.23774375,39.25023125,39.26022125,"[39.19016015625, 39.1965625, 39.20012890625, 39.20765234375, 39.26271875, 39.23496875, 39.22264453125, 39.2159296875, 39.2257734375, 39.20646875]",tokens/s,1.606474826664972,kWh,0.0011421220202313548,0.00012598509379877328,0.0007595156805287254,0.0020276227945588534,tokens/kWh,31070.86789962174,,s,630,392.15904455566374,0.6224746738978795,0.0008655115987336269,0.6223991088867188,0.6236659790039062,0.6239581451416015,0.6245922937011719,"[0.6200103759765625, 0.6197701416015625, 0.6201177368164063, 0.6205819091796875, 0.6210646362304687, 0.6203760986328125, 0.6204375610351562, 0.6206837158203125, 0.6204436645507813, 0.6202265014648437, 0.6222623901367188, 0.621433837890625, 0.6215280151367187, 0.62188134765625, 0.62137060546875, 0.6221484985351563, 0.62211083984375, 0.621301513671875, 0.621649658203125, 0.6213512573242187, 0.62057861328125, 0.6210986328125, 0.6208408813476562, 0.6229445190429688, 0.6221722412109375, 0.6218251953125, 0.6227607421875, 0.623111572265625, 0.6230137939453125, 0.6239930419921875, 0.6230023193359375, 0.6225838012695313, 0.622202880859375, 0.6215720825195312, 0.6214387817382813, 0.6213839111328125, 0.6214364013671875, 0.6218626708984375, 0.622228271484375, 0.62367333984375, 0.6235811767578125, 0.6236504516601562, 0.6236121215820313, 0.6237943115234375, 0.6235645141601562, 0.623310791015625, 0.6226824340820313, 0.6235648193359375, 0.6227107543945313, 0.6225997924804687, 0.6235303955078125, 0.622992919921875, 0.622903564453125, 0.6229484252929688, 0.6223258056640625, 0.623763427734375, 0.6220636596679687, 0.6224998168945313, 0.6232493896484375, 0.6211295776367187, 0.6223375244140625, 0.621364990234375, 0.6211470336914062, 0.6223689575195313, 0.622508056640625, 0.6228316040039062, 0.6213529663085937, 0.6221004638671875, 0.6214983520507813, 0.6214381713867188, 0.6226903686523437, 0.6209523315429688, 0.6207808227539062, 0.6214124145507812, 0.620971923828125, 0.6218842163085937, 0.6220738525390626, 0.621828125, 0.621791259765625, 0.6213467407226563, 0.6219163818359374, 0.6220556030273438, 0.6224869384765624, 0.6239113159179688, 0.6213734130859375, 0.6217617797851562, 0.6224534912109375, 0.6221947021484375, 0.6215208740234375, 0.6229728393554688, 0.622939697265625, 0.6218276977539062, 0.6214949340820313, 0.6219102783203125, 0.6232936401367187, 0.6222221069335937, 0.6208645629882813, 0.6215435791015625, 0.6210117797851562, 0.6210989379882812, 0.6213345336914062, 0.6213837890625, 0.6225961303710937, 0.62291552734375, 0.6242017211914063, 0.6238248901367187, 0.6230337524414062, 0.6229817504882813, 0.6226165771484375, 0.62198291015625, 0.6223634643554687, 0.6218589477539063, 0.6218522338867187, 0.621098876953125, 0.622270263671875, 0.6222772216796875, 0.6219161376953125, 0.621995849609375, 0.621876953125, 0.6222908935546875, 0.6215070190429688, 0.623447265625, 0.6230023803710938, 0.6239747314453125, 0.6237037353515625, 0.6231859130859375, 0.6228176879882813, 0.6215496826171875, 0.6214759521484375, 0.6214410400390625, 0.6216576538085937, 0.6214496459960938, 0.6215905151367187, 0.6229995727539063, 0.6222479248046875, 0.621897705078125, 0.6223482666015625, 0.62142578125, 0.6226810302734375, 0.6223095092773437, 0.6218217163085937, 0.6223750610351563, 0.6216907958984375, 0.62226220703125, 0.6223396606445313, 0.6222217407226562, 0.6226906127929688, 0.6216229858398438, 0.6219797973632812, 0.622447998046875, 0.6220122680664063, 0.6219999389648437, 0.6224759521484375, 0.6215211181640625, 0.6214738159179688, 0.6216309204101562, 0.6225701293945313, 0.6222386474609375, 0.6228568115234375, 0.6218812866210938, 0.6217998657226562, 0.6232882080078125, 0.6228809204101563, 0.6232711181640626, 0.6232659301757812, 0.6227479248046875, 0.6222993774414063, 0.6229536743164062, 0.622607666015625, 0.6231890869140625, 0.623139404296875, 0.6220667114257813, 0.6217567749023437, 0.6218615112304687, 0.6213767700195313, 0.6219066162109375, 0.621654052734375, 0.6217686767578126, 0.6228472900390625, 0.62200439453125, 0.6217765502929687, 0.6235244750976563, 0.622743896484375, 0.621717529296875, 0.62225, 0.6226636962890625, 0.6220015258789062, 0.6222670288085937, 0.62209228515625, 0.62174755859375, 0.621290283203125, 0.6210610961914063, 0.6216672973632813, 0.6211151123046875, 0.62069580078125, 0.6213017578125, 0.6216365966796875, 0.6210303955078125, 0.6210828247070312, 0.6210349731445313, 0.6217708129882813, 0.6215928955078125, 0.62160693359375, 0.6215065307617188, 0.621294921875, 0.6211319580078125, 0.6208429565429687, 0.6212675170898437, 0.62142626953125, 0.6217486572265625, 0.6214430541992187, 0.6210413818359375, 0.6219266967773438, 0.622487548828125, 0.6214102783203125, 0.6214717407226562, 0.622182373046875, 0.6214000854492188, 0.6219857788085937, 0.6214390258789062, 0.6237880249023438, 0.6231531372070312, 0.6232815551757812, 0.6228436279296875, 0.62311083984375, 0.6232412719726562, 0.6218281860351562, 0.62165576171875, 0.62274609375, 0.6230274658203125, 0.6233749389648438, 0.6227387084960937, 0.62357373046875, 0.6229483642578125, 0.6236651611328125, 0.6231387939453125, 0.6232576293945312, 0.6238064575195312, 0.6240092163085937, 0.623517822265625, 0.6245886840820313, 0.6245232543945313, 0.6244086303710937, 0.6249613647460938, 0.623146484375, 0.6227442626953125, 0.6224465942382813, 0.6225262451171875, 0.6226920776367187, 0.6234403686523438, 0.6223196411132812, 0.62211279296875, 0.621302978515625, 0.6227747802734375, 0.6231701049804688, 0.6235216064453125, 0.6242981567382813, 0.6236590576171875, 0.6236607055664063, 0.624884033203125, 0.6239848022460938, 0.62408642578125, 0.6232537841796875, 0.6225061645507812, 0.6219195556640625, 0.6220023803710938, 0.622193115234375, 0.6218832397460937, 0.622002197265625, 0.6220484619140625, 0.621796630859375, 0.6219608154296875, 0.6227579345703125, 0.6230382690429688, 0.6230971069335938, 0.6237848510742188, 0.6233681640625, 0.6225735473632813, 0.6229154052734375, 0.6248265380859375, 0.6229381103515625, 0.6229155883789063, 0.622581787109375, 0.6224097290039062, 0.6226590576171875, 0.6229775390625, 0.6237630004882813, 0.6239482421875, 0.6238617553710938, 0.6235765991210938, 0.6235120849609375, 0.623795654296875, 0.6234913330078125, 0.622713134765625, 0.6221495971679688, 0.6220308227539062, 0.6224120483398438, 0.6234224853515625, 0.6228380126953125, 0.6244541625976563, 0.6237429809570313, 0.6242688598632813, 0.6238717651367187, 0.623831787109375, 0.6240173950195312, 0.6237614135742188, 0.6245928955078125, 0.6245908203125, 0.62287255859375, 0.6223831176757812, 0.6224219970703125, 0.6238592529296875, 0.623743408203125, 0.624645263671875, 0.6239662475585938, 0.622827392578125, 0.6229811401367188, 0.6220188598632812, 0.6238758544921875, 0.6241565551757813, 0.6236318969726562, 0.6231119995117187, 0.6219984741210938, 0.622020751953125, 0.6231390991210938, 0.6225299682617188, 0.6230388793945313, 0.6222376708984375, 0.6226309204101562, 0.6222622680664063, 0.6220226440429687, 0.6226022338867188, 0.6219960327148437, 0.6217298583984375, 0.6219807739257812, 0.6221729736328125, 0.6236580200195313, 0.6226025390625, 0.6238562622070313, 0.6229373779296875, 0.6232030639648437, 0.6226739501953125, 0.6230437622070313, 0.6224904174804687, 0.621959228515625, 0.6215430908203124, 0.6218031005859375, 0.62206005859375, 0.6217870483398438, 0.6218916015625, 0.6230121459960938, 0.6222722778320312, 0.6226165161132813, 0.6225267944335937, 0.6229401245117188, 0.6235381469726563, 0.623805908203125, 0.6235285034179687, 0.6229237060546875, 0.6232515258789062, 0.623276123046875, 0.6229988403320312, 0.6240543212890625, 0.6237988891601562, 0.6229699096679687, 0.622371826171875, 0.62280908203125, 0.6232158203125, 0.6228017578125, 0.6229827270507813, 0.62249560546875, 0.6228301391601563, 0.6217666625976562, 0.6224403076171875, 0.6227353515625, 0.6230809326171876, 0.6235040893554687, 0.623515625, 0.623261962890625, 0.6221266479492188, 0.6223284912109375, 0.6214202880859375, 0.6217576904296875, 0.6218575439453125, 0.6223890991210937, 0.6238516235351562, 0.623969482421875, 0.6214234008789062, 0.6214876098632812, 0.621227783203125, 0.6215134887695313, 0.6225276489257813, 0.6228345336914063, 0.6229075317382813, 0.6235851440429687, 0.6217216186523438, 0.6213507080078124, 0.6221498413085937, 0.6238248901367187, 0.623427734375, 0.6234868774414063, 0.6225546264648437, 0.6222705688476563, 0.6223138427734375, 0.6221107177734375, 0.623091796875, 0.62264111328125, 0.6221414184570313, 0.6228643798828125, 0.6230693969726563, 0.6235441284179688, 0.622635009765625, 0.6219710083007812, 0.62380078125, 0.62267626953125, 0.6227508544921875, 0.6230059814453125, 0.621990234375, 0.624089111328125, 0.6222274780273438, 0.6224034423828125, 0.6229784545898438, 0.6222505493164062, 0.622751953125, 0.62209228515625, 0.6220062866210937, 0.6222725219726563, 0.6221803588867187, 0.6223031005859375, 0.6222578125, 0.6225883178710937, 0.6229033813476562, 0.6239375610351563, 0.6232567138671875, 0.6232687377929688, 0.6230304565429687, 0.62258154296875, 0.6221129760742188, 0.6221259765625, 0.6225110473632812, 0.6222695922851562, 0.6221068115234375, 0.6221582641601563, 0.6215231323242187, 0.6219796752929687, 0.62226025390625, 0.62123828125, 0.6218137817382813, 0.6220238037109375, 0.622521240234375, 0.623515625, 0.6222418212890625, 0.6231427001953125, 0.622386474609375, 0.6224884643554688, 0.6225634765625, 0.6221185913085937, 0.6217791137695312, 0.621676513671875, 0.6228825073242188, 0.6224960327148438, 0.6222042846679687, 0.6219224853515625, 0.622136962890625, 0.6224452514648438, 0.6224302368164063, 0.622475341796875, 0.6222970581054688, 0.6220874633789063, 0.6237088623046875, 0.6230947875976562, 0.62299462890625, 0.622970703125, 0.6222347412109375, 0.6225335083007812, 0.62200830078125, 0.6229933471679687, 0.6223155517578125, 0.6216693725585938, 0.6226721801757813, 0.6223756713867188, 0.622839599609375, 0.6227332763671874, 0.6231636962890625, 0.623339111328125, 0.6221480102539062, 0.6229912719726562, 0.6224384765625, 0.6230159301757813, 0.622149658203125, 0.6223973999023438, 0.6233170776367187, 0.6224008178710938, 0.6225232543945313, 0.623578857421875, 0.6218077392578125, 0.6247218627929687, 0.6235191650390625, 0.6220989990234375, 0.6221145629882813, 0.6218303833007812, 0.6222553100585938, 0.622135498046875, 0.6215460815429688, 0.6213087158203126, 0.622620849609375, 0.6242772827148437, 0.6232037963867187, 0.6247526245117188, 0.6224877319335937, 0.6222564697265625, 0.6226760864257812, 0.6223031616210938, 0.6220322265625, 0.6223919067382813, 0.6222521362304687, 0.6217685546875, 0.6215347900390625, 0.6217870483398438, 0.6225313720703125, 0.621974853515625, 0.6225928344726562, 0.6223268432617187, 0.6222604370117187, 0.6231044921875, 0.6236356201171875, 0.6232913208007812, 0.6224424438476562, 0.622376953125, 0.6224302368164063, 0.6221639404296875, 0.622761962890625, 0.6221732788085937, 0.6236161499023437, 0.6223853759765625, 0.6218573608398438, 0.62199169921875, 0.6220431518554688, 0.621332763671875, 0.622243896484375, 0.62230322265625, 0.6227742919921875, 0.6223658447265625, 0.6220337524414062, 0.6244816284179687, 0.6226843872070312, 0.6229847412109375, 0.6227628784179687, 0.62247900390625, 0.6219923095703125, 0.6221475830078125, 0.6218950805664063, 0.622811279296875, 0.6216702880859375, 0.6225107421875, 0.6226431274414063, 0.6224752807617188, 0.6241111450195312, 0.6234976806640625, 0.6229844970703124, 0.6231921997070312, 0.6222235107421875, 0.6225997924804687, 0.623913818359375, 0.62384912109375, 0.6238252563476563, 0.6229421997070312, 0.621756591796875, 0.6219512939453125, 0.6219854736328125, 0.6218219604492188, 0.622545166015625, 0.621743896484375, 0.6217643432617187, 0.6226516723632812, 0.622095947265625, 0.622987060546875, 0.6225020141601563, 0.622263916015625, 0.6228427734375, 0.6223524169921875, 0.6226841430664063, 0.623431884765625, 0.6231898193359375, 0.622972900390625, 0.62239111328125, 0.621619384765625, 0.6229232788085938, 0.6225082397460937, 0.6230407104492187, 0.6244061889648438, 0.622408447265625, 0.6222244873046875, 0.6240897216796875, 0.6229627075195312, 0.6230916748046875, 0.6225797119140625, 0.6231428833007813, 0.6217769165039062, 0.6236446533203125, 0.6240706787109375, 0.6222821044921875, 0.6225885009765625, 0.6225654296875, 0.6230643920898438, 0.62136767578125, 0.62153369140625, 0.6229584350585937, 0.6218322143554688, 0.6215249633789063, 0.6218395385742187, 0.6217871704101563, 0.6217344970703125, 0.6213716430664062, 0.621669677734375, 0.6217459716796875, 0.621306640625, 0.6215516357421875, 0.6213387451171875, 0.6225891723632813, 0.6224488525390625, 0.6220723876953125, 0.6219570922851563, 0.6220472412109375, 0.6218035278320313, 0.6217536010742187, 0.6216425170898437, 0.6220791625976563, 0.6216027221679687, 0.6216016845703125]",tokens/s,1.6064910620991075,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,7436.88192,8041.463808,0.0,7646.216192,7627.584,s,1,13.0828779296875,13.0828779296875,0.0,13.0828779296875,13.0828779296875,13.0828779296875,13.0828779296875,[13.0828779296875],,kWh,0.00017310213232083242,1.908722760301612e-05,5.2883375640000105e-05,0.00024507273556384864,,MB,1765.060608,8687.386624,0.0,8277.458944,8199.8592,s,10,3.5461555175781245,0.35461555175781245,0.0007464210454196315,0.35487646484375,0.3554279327392578,0.35550009918212894,0.3555578323364258,"[0.35337371826171876, 0.35448025512695314, 0.3538238525390625, 0.3535220336914062, 0.354822509765625, 0.35504058837890623, 0.354930419921875, 0.35541189575195314, 0.355572265625, 0.355177978515625]",tokens/s,721.9085534489961,kWh,1.0389587062930928e-05,1.145673224278213e-06,6.860972921724143e-06,1.8396233208933282e-05,tokens/kWh,13915892.296673289,MB,1777.09056,9001.959424,0.0,8592.031744,8476.849152,s,10,29.368402099609373,2.9368402099609376,0.003935139654403692,2.9374609375,2.9412039794921876,2.9414275512695314,2.941606408691406,"[2.931014892578125, 2.928758544921875, 2.937771240234375, 2.941154296875, 2.937150634765625, 2.939466796875, 2.941651123046875, 2.935904541015625, 2.9364609375, 2.939069091796875]",tokens/s,21.451626747114698,kWh,8.633575688248555e-05,9.523114343253929e-06,5.7382856251075835e-05,0.00015324172747681528,tokens/kWh,411115.1775519601,,s,630,29.361263904571537,0.0466051808009072,0.0003901684382636195,0.04659067153930664,0.04708167533874512,0.04720060176849365,0.04764319000244141,"[0.04670352172851563, 0.046142688751220705, 0.045762462615966795, 0.046123905181884764, 0.045878944396972654, 0.04604118347167969, 0.04607001495361328, 0.04605324935913086, 0.04619046401977539, 0.045961471557617185, 0.04616191864013672, 0.04620470428466797, 0.04629718399047852, 0.04616220855712891, 0.046212959289550784, 0.046102527618408204, 0.04604288101196289, 0.04619651031494141, 0.04616649627685547, 0.04619878387451172, 0.04636262512207031, 0.046534656524658206, 0.04632912063598633, 0.04638496017456055, 0.046219966888427735, 0.047315166473388674, 0.0464496955871582, 0.04650902557373047, 0.04641321563720703, 0.046432865142822265, 0.046189697265625, 0.04632665634155273, 0.046351390838623045, 0.046349281311035155, 0.04656332778930664, 0.04650188827514649, 0.04632275390625, 0.04637382507324219, 0.046581153869628904, 0.046578559875488285, 0.04644015884399414, 0.046499839782714845, 0.04759500885009765, 0.048302593231201174, 0.046728511810302735, 0.046682815551757816, 0.04698316955566406, 0.04741308975219727, 0.04673961639404297, 0.04672512054443359, 0.04695964813232422, 0.0466728630065918, 0.046604286193847655, 0.046581760406494144, 0.04689420700073242, 0.04684275054931641, 0.04688076782226563, 0.04661043167114258, 0.04679270553588867, 0.04677632141113281, 0.04688803100585937, 0.04679315185546875, 0.04718384170532226, 0.046684318542480466, 0.04623353576660156, 0.04602719879150391, 0.04585382461547852, 0.04574835205078125, 0.045943294525146484, 0.045917312622070314, 0.045853569030761716, 0.04598905563354492, 0.04589241409301758, 0.04598988723754883, 0.046040321350097654, 0.046279422760009764, 0.04622489547729492, 0.04590233612060547, 0.04646236801147461, 0.046211681365966796, 0.046137054443359374, 0.046270751953125, 0.04633804702758789, 0.04623686218261719, 0.04655724716186523, 0.046365440368652346, 0.046366367340087894, 0.04605987167358398, 0.046137344360351565, 0.046252033233642575, 0.046206878662109374, 0.046205024719238284, 0.04629913711547851, 0.046325759887695314, 0.04627241516113281, 0.04654499053955078, 0.04651193618774414, 0.04622518539428711, 0.04654655838012695, 0.04654569625854492, 0.04642611312866211, 0.046647296905517575, 0.04667747116088867, 0.04664579010009766, 0.04665139389038086, 0.04680681610107422, 0.04761008071899414, 0.04676198577880859, 0.046688255310058595, 0.04669164657592773, 0.04697875213623047, 0.046898174285888675, 0.046626399993896485, 0.04686064147949219, 0.04705900955200195, 0.04677427291870117, 0.04670259094238281, 0.04694015884399414, 0.047081024169921874, 0.04706963348388672, 0.04686000061035156, 0.046784801483154295, 0.04682547378540039, 0.0470200309753418, 0.04716080093383789, 0.047163681030273436, 0.04653670501708984, 0.04603481674194336, 0.04583817672729492, 0.04612739181518555, 0.045813758850097655, 0.04611072158813476, 0.04614144134521484, 0.04603289413452148, 0.0459521598815918, 0.046104896545410154, 0.04619318389892578, 0.04609843063354492, 0.04641177749633789, 0.04627190399169922, 0.046228065490722656, 0.04637286376953125, 0.04649369430541992, 0.04648527908325195, 0.04642627334594727, 0.046610496520996095, 0.04683699035644531, 0.04659027099609375, 0.046559680938720704, 0.04628844833374023, 0.04628688049316406, 0.0462459831237793, 0.04642438507080078, 0.04650982284545899, 0.046340351104736326, 0.0466143684387207, 0.046773536682128906, 0.046521278381347654, 0.04657497787475586, 0.04668454360961914, 0.048195137023925784, 0.04675443267822266, 0.04644454574584961, 0.046505630493164064, 0.046757568359375, 0.04736886215209961, 0.04674969482421875, 0.04678041458129883, 0.04675788879394531, 0.046886913299560545, 0.046718784332275394, 0.04657785415649414, 0.04682870483398437, 0.046926559448242186, 0.046752960205078124, 0.04687558364868164, 0.047249408721923826, 0.04696854400634766, 0.04701827239990235, 0.04686643218994141, 0.047010814666748044, 0.047010879516601566, 0.04689503860473633, 0.04681907272338867, 0.047368446350097654, 0.04724531173706055, 0.04713881683349609, 0.04701113510131836, 0.0470552978515625, 0.04673491287231445, 0.04633951950073242, 0.04594099044799805, 0.046297855377197265, 0.046011489868164064, 0.046110847473144534, 0.04614377593994141, 0.04618844985961914, 0.04608265686035156, 0.046083263397216793, 0.046218048095703124, 0.046478687286376955, 0.04647769546508789, 0.04623593521118164, 0.04634444808959961, 0.04639254379272461, 0.04627510452270508, 0.046292991638183595, 0.046342144012451174, 0.04647731018066406, 0.046696449279785154, 0.046712833404541014, 0.04652860641479492, 0.04643756866455078, 0.04649801635742187, 0.04648191833496094, 0.04670873641967774, 0.046804126739501954, 0.04661033630371094, 0.04668307113647461, 0.04679679870605469, 0.04669440078735351, 0.046671871185302735, 0.04676607894897461, 0.046650753021240235, 0.04669279861450195, 0.046561729431152346, 0.04669385528564453, 0.046874912261962894, 0.046854145050048826, 0.04686431884765625, 0.046771358489990235, 0.04682640075683594, 0.04687865447998047, 0.04676409530639648, 0.047027488708496094, 0.047182464599609376, 0.047081409454345705, 0.046918846130371096, 0.04722787094116211, 0.04708051300048828, 0.04694931030273437, 0.04684799957275391, 0.046876129150390626, 0.04708377456665039, 0.04707731246948242, 0.0474579849243164, 0.046921470642089846, 0.04716432189941406, 0.04712038421630859, 0.0471615982055664, 0.047110942840576174, 0.04716003036499023, 0.04696604919433594, 0.04639104080200195, 0.04597414398193359, 0.046145313262939455, 0.04610924911499024, 0.046203937530517575, 0.04604412841796875, 0.04612668609619141, 0.046067615509033204, 0.045894142150878905, 0.046247390747070315, 0.04627920150756836, 0.04634009552001953, 0.04620646286010742, 0.04614809417724609, 0.04632748794555664, 0.046209152221679685, 0.04643420791625977, 0.0464117431640625, 0.046456897735595706, 0.04651375961303711, 0.04687094497680664, 0.04665164947509766, 0.04641791915893555, 0.04648531341552734, 0.046372928619384766, 0.04642214584350586, 0.04648294448852539, 0.04637270355224609, 0.046451038360595706, 0.04638956832885742, 0.04656060791015625, 0.04664591979980469, 0.04680729675292969, 0.04646271896362305, 0.04661372756958008, 0.04671551895141601, 0.04679030227661133, 0.04680755233764648, 0.0466778564453125, 0.04668771362304688, 0.04683436965942383, 0.04743167877197266, 0.04676607894897461, 0.04682710266113281, 0.04674959945678711, 0.047294975280761715, 0.04686617660522461, 0.04671641540527344, 0.046848766326904295, 0.046878719329833986, 0.04689894485473633, 0.046833919525146483, 0.046728382110595705, 0.047084095001220704, 0.0469854736328125, 0.046948158264160156, 0.04703251266479492, 0.0473105583190918, 0.047032608032226565, 0.047026176452636716, 0.04706304168701172, 0.04709894561767578, 0.046640640258789064, 0.04622079849243164, 0.046023681640625, 0.046086143493652344, 0.04595663833618164, 0.046072288513183596, 0.04617324829101563, 0.04613216018676758, 0.046033088684082034, 0.04609724807739258, 0.046373855590820315, 0.046225406646728515, 0.04653263854980469, 0.046393310546875, 0.04636876678466797, 0.04642201614379883, 0.04653875350952148, 0.04657561492919922, 0.046202880859375, 0.046440448760986325, 0.046451744079589845, 0.04651721572875977, 0.047470592498779295, 0.04656470489501953, 0.04640835189819336, 0.04631961441040039, 0.046392864227294925, 0.04652080154418945, 0.04652767944335937, 0.04652729415893555, 0.046481311798095705, 0.04655523300170898, 0.04655718231201172, 0.046581760406494144, 0.046383102416992186, 0.046712833404541014, 0.047923198699951174, 0.047924606323242185, 0.046795455932617185, 0.0466759033203125, 0.04659807968139648, 0.04667308807373047, 0.04684684753417969, 0.04672284698486328, 0.04677030563354492, 0.046739425659179684, 0.04686656188964844, 0.04693753433227539, 0.046914112091064455, 0.04689433670043945, 0.046936416625976564, 0.04683407974243164, 0.046798336029052735, 0.04676409530639648, 0.047061439514160155, 0.04708467102050781, 0.04716838455200195, 0.04692582321166992, 0.04698316955566406, 0.04707942581176758, 0.04713676834106445, 0.04700748825073242, 0.04720256042480469, 0.046647296905517575, 0.046260223388671876, 0.04600774383544922, 0.046145889282226564, 0.046028705596923826, 0.04609260940551758, 0.046061569213867185, 0.04615292739868164, 0.046320415496826174, 0.04627046585083008, 0.04628684616088867, 0.046290145874023435, 0.04635113525390625, 0.04628070449829102, 0.046283935546875, 0.04647932815551758, 0.046535552978515624, 0.0463699836730957, 0.04630352020263672, 0.0464031982421875, 0.04647520065307617, 0.046695392608642576, 0.04640703964233398, 0.046391937255859376, 0.04637638473510742, 0.04637446212768555, 0.04663180923461914, 0.046623905181884764, 0.04644758224487305, 0.04659404754638672, 0.04646211242675781, 0.04658671951293945, 0.0468513298034668, 0.04685660934448242, 0.046559585571289065, 0.04684185409545898, 0.046630912780761716, 0.04664495849609375, 0.04692816162109375, 0.04699955368041992, 0.046845951080322266, 0.047099903106689454, 0.047265792846679686, 0.046951839447021484, 0.046840351104736326, 0.04687225723266602, 0.04700198364257813, 0.047175422668457034, 0.047728256225585936, 0.04702422332763672, 0.04697520065307617, 0.04754582214355469, 0.04709257507324219, 0.047032257080078126, 0.04721670532226562, 0.046947456359863284, 0.047030464172363284, 0.047104991912841794, 0.04699622344970703, 0.046926815032958986, 0.04720435333251953, 0.047034366607666016, 0.047083518981933595, 0.04696752166748047, 0.04640124893188476, 0.04600400161743164, 0.045973217010498044, 0.04587916946411133, 0.04609088134765625, 0.04597964859008789, 0.046053375244140625, 0.046061569213867185, 0.046002174377441404, 0.04613529586791992, 0.04616550445556641, 0.04633232116699219, 0.046137439727783204, 0.046142784118652344, 0.046416576385498044, 0.04632166290283203, 0.04624588775634766, 0.04617180633544922, 0.04643875122070312, 0.04659107208251953, 0.04672195053100586, 0.046374561309814454, 0.046317920684814454, 0.04638236618041992, 0.04622771072387695, 0.046631393432617185, 0.04638019180297852, 0.0463012466430664, 0.04651036834716797, 0.04645939254760742, 0.04668182373046875, 0.046771934509277344, 0.046633537292480466, 0.04657731246948242, 0.046784862518310544, 0.04666572952270508, 0.04679065704345703, 0.04689715194702149, 0.04702412796020508, 0.04693392181396484, 0.04694153594970703, 0.04687334442138672, 0.04679420852661133, 0.0467006721496582, 0.04686275100708008, 0.046920734405517577, 0.04684489440917969, 0.046884735107421874, 0.0480808334350586, 0.04663315200805664, 0.04676796722412109, 0.04676214218139649, 0.04666764831542969, 0.04681075286865234, 0.04692428970336914, 0.04685619354248047, 0.046746654510498045, 0.04680393600463867, 0.04716918563842774, 0.04715555191040039, 0.04708147048950195, 0.04725964736938477, 0.046662017822265624, 0.046229248046875, 0.04592051315307617, 0.04608943939208984, 0.046008735656738284, 0.046163551330566405, 0.04627536010742188, 0.04617340850830078, 0.045957920074462894, 0.04617580795288086, 0.04643260955810547, 0.04636476898193359, 0.046309024810791015, 0.046411136627197265, 0.04638614273071289, 0.04638719940185547, 0.046247905731201175, 0.04640163040161133, 0.04622438430786133, 0.046541152954101564, 0.04643900680541992, 0.04657513427734375, 0.046372638702392575, 0.04650259017944336, 0.04654079818725586, 0.04674969482421875, 0.046430206298828124, 0.04656332778930664, 0.04640553665161133, 0.04646255874633789, 0.04644009780883789, 0.04651430511474609, 0.0466091194152832, 0.04666572952270508, 0.0464793586730957, 0.046757823944091795, 0.04653472137451172, 0.04657503890991211, 0.046757984161376956, 0.04764854431152344, 0.046868961334228514, 0.046739681243896485, 0.046941665649414065, 0.04683622360229492, 0.046790496826171875, 0.04684000015258789, 0.046835712432861325, 0.04681836700439453, 0.04667692947387695, 0.046710945129394534, 0.04672700881958008, 0.04673126220703125, 0.046667007446289065, 0.04677228927612305, 0.046873153686523436, 0.047042911529541015, 0.04688873672485352, 0.046922046661376955, 0.047122112274169924, 0.04707660675048828, 0.0471162223815918, 0.04718675231933594, 0.047158912658691404, 0.04683161544799805, 0.046196449279785154, 0.04594633483886719, 0.04615996932983398, 0.04591830444335938, 0.04616767883300781, 0.046099361419677735, 0.04613711929321289, 0.04616995239257812, 0.04611455917358399, 0.0462825927734375, 0.046340991973876956, 0.046330974578857424, 0.04618332672119141, 0.046159870147705076, 0.046368511199951175, 0.04638729476928711, 0.04652150344848633, 0.046410751342773435, 0.0466464958190918, 0.046478111267089846, 0.04660588836669922, 0.046452224731445314, 0.04651462554931641, 0.046421600341796876, 0.046303295135498045, 0.046357025146484376, 0.04622367858886719, 0.046467071533203126, 0.04689920043945312, 0.04649369430541992, 0.04648550415039063, 0.04674969482421875, 0.04659977722167969, 0.0464277114868164, 0.04715155029296875, 0.04659651184082031, 0.04755027389526367, 0.04680019378662109, 0.04687756729125977, 0.04674345779418945, 0.04670816040039062, 0.04681081771850586, 0.04692272186279297, 0.04688614273071289, 0.0468507194519043, 0.04671404647827149, 0.046701473236083986, 0.046675167083740234, 0.04666592025756836, 0.04733536148071289, 0.047630081176757814, 0.04695951843261719, 0.047007553100585936, 0.04720659255981445, 0.04687257766723633, 0.04715097427368164, 0.04707888031005859, 0.04702684783935547, 0.04708713531494141, 0.04719820785522461, 0.046985694885253906, 0.047286113739013674]",tokens/s,21.45684198226594,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4192.362496,4878.958592,0.0,4483.710976,4465.672704,s,1,10.4747197265625,10.4747197265625,0.0,10.4747197265625,10.4747197265625,10.4747197265625,10.4747197265625,[10.4747197265625],,kWh,0.00010290706125000497,1.1344051261301709e-05,3.134030284999284e-05,0.0001455914153612995,,MB,2009.448448,5302.583296,0.0,4892.655616,4841.339904,s,10,1.9589540557861327,0.19589540557861326,0.000730593187748986,0.1959886245727539,0.19668135223388672,0.19678909378051757,0.19687528701782225,"[0.19454258728027343, 0.1952676544189453, 0.1957604522705078, 0.19513203430175782, 0.19553926086425782, 0.1963337860107422, 0.19689683532714844, 0.19665740966796874, 0.19660723876953126, 0.196216796875]",tokens/s,1306.8198268553401,kWh,5.72639562581696e-06,6.315141935190448e-07,3.7844801517646213e-06,1.0142389971100627e-05,tokens/kWh,25240599.181202605,MB,2013.175808,5470.355456,0.0,5060.427776,5012.931584,s,10,18.542546630859377,1.8542546630859378,0.0027287882253230152,1.8539893188476562,1.8574702392578124,1.8578740966796876,1.8581971826171877,"[1.8564677734375, 1.8568209228515624, 1.8552591552734374, 1.851202392578125, 1.8520284423828124, 1.8582779541015626, 1.852719482421875, 1.8573804931640625, 1.850620361328125, 1.8517696533203125]",tokens/s,33.97591563564006,kWh,5.4722095011683493e-05,6.035683385533565e-06,3.645494092863534e-05,9.72127193258524e-05,tokens/kWh,648063.3443533968,,s,630,18.539297084808336,0.029427455690171984,0.00034974845589844236,0.02939247989654541,0.029673522758483888,0.0298257905960083,0.030526356506347663,"[0.029909503936767577, 0.029638656616210936, 0.02937411117553711, 0.02945574378967285, 0.029524160385131837, 0.029345855712890626, 0.029495616912841797, 0.029454751968383788, 0.029765151977539064, 0.029397472381591797, 0.02957107162475586, 0.029327360153198243, 0.029491199493408202, 0.029284191131591798, 0.02931884765625, 0.029153120040893554, 0.029159135818481445, 0.029221151351928713, 0.029237119674682618, 0.029270368576049803, 0.029288063049316405, 0.029253631591796874, 0.029272096633911133, 0.02945305633544922, 0.029200096130371094, 0.029105855941772462, 0.029194431304931642, 0.02931065559387207, 0.02925049591064453, 0.029285503387451173, 0.02926825523376465, 0.02973734474182129, 0.029673471450805664, 0.029378559112548826, 0.029515264511108398, 0.02967398452758789, 0.0293621768951416, 0.02944236755371094, 0.029636287689208986, 0.02928816032409668, 0.029359615325927735, 0.029237951278686523, 0.029365983963012696, 0.029413087844848633, 0.02949964714050293, 0.02945712089538574, 0.029346656799316407, 0.029310911178588868, 0.029416351318359374, 0.029439552307128906, 0.029510208129882812, 0.029767328262329102, 0.029622495651245116, 0.029453407287597655, 0.029606559753417968, 0.02973311996459961, 0.029749248504638674, 0.029574304580688476, 0.02967638397216797, 0.02955628776550293, 0.029507423400878908, 0.029516384124755858, 0.031001888275146484, 0.029954143524169922, 0.029574752807617188, 0.029323904037475586, 0.029220800399780273, 0.02999692726135254, 0.03162860870361328, 0.029438655853271486, 0.02944819259643555, 0.029464544296264647, 0.02954185676574707, 0.030299808502197264, 0.029459360122680665, 0.029310592651367186, 0.02936832046508789, 0.03026959991455078, 0.02949955177307129, 0.029281536102294923, 0.029370655059814454, 0.02941168022155762, 0.029419967651367188, 0.02921436882019043, 0.029162687301635744, 0.02950422477722168, 0.029546207427978515, 0.02944630432128906, 0.02931724739074707, 0.029560192108154297, 0.029442943572998048, 0.029304191589355467, 0.029278495788574218, 0.029324640274047853, 0.029187007904052733, 0.029247488021850586, 0.029232767105102538, 0.0294465274810791, 0.029461503982543946, 0.029527040481567384, 0.029529951095581056, 0.02947603225708008, 0.02949734306335449, 0.029506528854370117, 0.029345344543457032, 0.02918649673461914, 0.029361631393432615, 0.029876319885253907, 0.029235328674316406, 0.02920444869995117, 0.029301088333129884, 0.029220256805419922, 0.029301599502563478, 0.029248447418212892, 0.029299520492553712, 0.029245664596557617, 0.029251359939575197, 0.0292044792175293, 0.029278207778930664, 0.029365503311157226, 0.02936284828186035, 0.0295402889251709, 0.029642208099365235, 0.029563583374023438, 0.02944755172729492, 0.02956755256652832, 0.030022655487060547, 0.029667455673217772, 0.029375328063964843, 0.02900752067565918, 0.029028736114501952, 0.028999679565429686, 0.02918396759033203, 0.029216800689697266, 0.02949862480163574, 0.02939571189880371, 0.029153408050537108, 0.029073280334472658, 0.02902016067504883, 0.02914454460144043, 0.029032991409301757, 0.029065439224243164, 0.029169439315795898, 0.02944144058227539, 0.029257535934448242, 0.029057472229003907, 0.029147359848022462, 0.029644031524658204, 0.029641408920288086, 0.029490976333618163, 0.029284767150878906, 0.029294496536254884, 0.02913699150085449, 0.02909388732910156, 0.02928428840637207, 0.02946361541748047, 0.02939187240600586, 0.0336176643371582, 0.02991119956970215, 0.029376895904541015, 0.029505247116088866, 0.02959526443481445, 0.029585792541503907, 0.029623359680175782, 0.029445152282714843, 0.029308832168579102, 0.029360288619995116, 0.0293703670501709, 0.030125280380249024, 0.02945270347595215, 0.029357631683349608, 0.029270687103271485, 0.029290496826171877, 0.029256704330444337, 0.02927462387084961, 0.029406848907470702, 0.029352096557617186, 0.02949193572998047, 0.029442079544067384, 0.029292512893676757, 0.029324928283691407, 0.029614463806152343, 0.02952342414855957, 0.029528608322143556, 0.029421567916870117, 0.029503488540649415, 0.02954863929748535, 0.0294289608001709, 0.029684415817260744, 0.0297523193359375, 0.029770175933837892, 0.02915385627746582, 0.029159423828125, 0.029099807739257813, 0.029118688583374023, 0.029166784286499024, 0.029563104629516602, 0.028977760314941405, 0.029261503219604492, 0.029386911392211914, 0.02908380889892578, 0.029038591384887694, 0.029088991165161133, 0.029020063400268553, 0.028937088012695313, 0.029073055267333985, 0.02918147277832031, 0.029166303634643554, 0.029329504013061523, 0.029071359634399413, 0.029085920333862304, 0.029038368225097658, 0.02931657600402832, 0.029262367248535155, 0.029195552825927736, 0.029118335723876954, 0.029426048278808594, 0.029277791976928712, 0.02915622329711914, 0.029306400299072267, 0.029336000442504884, 0.029235231399536134, 0.029220863342285155, 0.029423551559448244, 0.029370304107666015, 0.029495168685913085, 0.029702655792236327, 0.029483999252319336, 0.02942051124572754, 0.02956883239746094, 0.029426816940307618, 0.029334400177001955, 0.029464128494262696, 0.029690303802490235, 0.029503231048583985, 0.029387008666992186, 0.02944112014770508, 0.029430335998535156, 0.0292926082611084, 0.0293798713684082, 0.029733312606811522, 0.02996895980834961, 0.031061183929443358, 0.029795135498046875, 0.0295546875, 0.029417184829711913, 0.029473056793212892, 0.029652992248535157, 0.029476255416870118, 0.02950819206237793, 0.02946406364440918, 0.029464448928833008, 0.029804447174072265, 0.029510431289672852, 0.029244863510131835, 0.028961343765258787, 0.02896895980834961, 0.029816831588745117, 0.02998454475402832, 0.02921084785461426, 0.029366207122802735, 0.02922310447692871, 0.029061151504516602, 0.029484895706176757, 0.029042144775390626, 0.029190656661987304, 0.029189727783203126, 0.029192352294921876, 0.029225248336791992, 0.029355648040771485, 0.029477247238159178, 0.029057024002075195, 0.029138944625854493, 0.029259584426879884, 0.029411231994628906, 0.02944643211364746, 0.029259136199951172, 0.029411008834838867, 0.029475008010864258, 0.029392831802368163, 0.029491327285766603, 0.02947747230529785, 0.0295251522064209, 0.029635520935058595, 0.029597183227539063, 0.02963817596435547, 0.029453279495239258, 0.029292640686035157, 0.02945167922973633, 0.029831680297851562, 0.029818592071533204, 0.02948534393310547, 0.02932326316833496, 0.029322719573974608, 0.029368032455444337, 0.029411264419555664, 0.029404256820678713, 0.02927788734436035, 0.02917180824279785, 0.02922700881958008, 0.029245311737060548, 0.02931622314453125, 0.02930521583557129, 0.02944063949584961, 0.029624319076538085, 0.029490367889404297, 0.029416095733642577, 0.029392127990722657, 0.02951046371459961, 0.029485151290893553, 0.029445600509643555, 0.029475360870361327, 0.029458080291748047, 0.029382848739624025, 0.02936627197265625, 0.029882623672485353, 0.029355968475341797, 0.029192256927490234, 0.02931711959838867, 0.029816640853881835, 0.029061311721801757, 0.028929279327392577, 0.029051647186279297, 0.029187616348266603, 0.029433887481689455, 0.02958790397644043, 0.0293951358795166, 0.029167104721069335, 0.029065536499023437, 0.029046432495117187, 0.029187744140625, 0.029477567672729493, 0.02921452713012695, 0.029044927597045897, 0.029197919845581056, 0.029217536926269532, 0.029451488494873047, 0.029360832214355467, 0.029515167236328126, 0.02936604881286621, 0.029381023406982423, 0.029409311294555665, 0.029412895202636718, 0.029237247467041014, 0.029327680587768554, 0.029423904418945313, 0.029560831069946288, 0.0295546875, 0.029480960845947264, 0.029542400360107423, 0.029582687377929687, 0.02946099281311035, 0.029913248062133788, 0.029570079803466796, 0.029487552642822264, 0.03219878387451172, 0.029562591552734375, 0.02949600028991699, 0.02947088050842285, 0.02940707206726074, 0.029658336639404297, 0.02957391929626465, 0.029539871215820312, 0.029364704132080078, 0.029391040802001955, 0.02971628761291504, 0.02975062370300293, 0.02956559944152832, 0.030261247634887696, 0.02964406394958496, 0.029465311050415038, 0.029503488540649415, 0.029550048828125, 0.029575647354125975, 0.029562463760375978, 0.029472896575927734, 0.02958176040649414, 0.029796255111694335, 0.030254016876220702, 0.030231359481811524, 0.029406816482543945, 0.029314464569091796, 0.02925811195373535, 0.02926019287109375, 0.029103967666625978, 0.029227392196655273, 0.02911836814880371, 0.029110015869140624, 0.029147232055664062, 0.02934796714782715, 0.02911039924621582, 0.029204320907592774, 0.029208127975463866, 0.029505823135375978, 0.029337440490722656, 0.029181791305541993, 0.029131391525268554, 0.029216768264770508, 0.029294591903686523, 0.029347679138183595, 0.02925827217102051, 0.02935308837890625, 0.029478687286376953, 0.02923593521118164, 0.02925574493408203, 0.029232704162597656, 0.029306976318359376, 0.02943824005126953, 0.02947804832458496, 0.029408096313476562, 0.029459775924682616, 0.029377216339111327, 0.029669376373291017, 0.029638240814208985, 0.029526432037353514, 0.029834367752075194, 0.02954489517211914, 0.029353952407836913, 0.02929916763305664, 0.029177215576171874, 0.029147071838378905, 0.029189920425415038, 0.029250463485717772, 0.02930678367614746, 0.029253503799438477, 0.02937059211730957, 0.02940928077697754, 0.02977689552307129, 0.02944691276550293, 0.02974131202697754, 0.029578527450561522, 0.029375200271606446, 0.029525632858276366, 0.02943833541870117, 0.02935398483276367, 0.02931692886352539, 0.029595327377319337, 0.02960742378234863, 0.029578367233276368, 0.029712064743041992, 0.029792448043823243, 0.03041539192199707, 0.029513696670532226, 0.029206527709960937, 0.029146495819091796, 0.029067903518676757, 0.028960031509399416, 0.029075775146484375, 0.029071775436401368, 0.02916147232055664, 0.029495296478271486, 0.029437952041625977, 0.029400672912597656, 0.029184415817260743, 0.0295280647277832, 0.02902016067504883, 0.029052831649780272, 0.02913699150085449, 0.029251615524291993, 0.029282272338867186, 0.02923091125488281, 0.029300352096557618, 0.02954911994934082, 0.029376096725463867, 0.029476320266723633, 0.032368896484375, 0.029327392578125, 0.029391519546508788, 0.029566656112670897, 0.029581151962280273, 0.029303264617919923, 0.02929654312133789, 0.029492992401123047, 0.029550592422485353, 0.029417119979858398, 0.029340351104736328, 0.02944553565979004, 0.029550687789916992, 0.029647104263305663, 0.02958892822265625, 0.02938479995727539, 0.02926665687561035, 0.029251583099365236, 0.029176959991455077, 0.029232320785522462, 0.02932703971862793, 0.029315071105957033, 0.029339487075805665, 0.029685184478759764, 0.029428287506103514, 0.029359359741210938, 0.029597951889038087, 0.029844127655029296, 0.02974220848083496, 0.02961292839050293, 0.030263296127319338, 0.029531360626220703, 0.02958415985107422, 0.029485055923461914, 0.029638656616210936, 0.02959974479675293, 0.029732704162597656, 0.029634592056274413, 0.029853279113769532, 0.029878559112548827, 0.029492895126342775, 0.029895328521728517, 0.0290119686126709, 0.029081087112426757, 0.02926643180847168, 0.029258752822875978, 0.029293567657470702, 0.029197696685791016, 0.02942425537109375, 0.02954444885253906, 0.02915043258666992, 0.029033248901367187, 0.02915123176574707, 0.029173696517944336, 0.02922502326965332, 0.02914508819580078, 0.029165567398071288, 0.029062976837158205, 0.029172992706298827, 0.028998336791992187, 0.029112287521362305, 0.029335840225219727, 0.02954444885253906, 0.029403135299682616, 0.02924736022949219, 0.029265375137329103, 0.02913961601257324, 0.02915328025817871, 0.02918809509277344, 0.02920243263244629, 0.029421567916870117, 0.02934988784790039, 0.02921388816833496, 0.02927712059020996, 0.029277503967285155, 0.029311424255371095, 0.02932748794555664, 0.029460639953613282, 0.02948899269104004, 0.02934988784790039, 0.029482080459594728, 0.029376480102539064, 0.029567935943603515, 0.030571680068969726, 0.029667167663574218, 0.029440128326416015, 0.029438848495483397, 0.02949734306335449, 0.02936841583251953, 0.029333568572998046, 0.029539520263671876, 0.02949734306335449, 0.029475488662719727, 0.02935807991027832, 0.02929254341125488, 0.029460479736328125, 0.02961756706237793, 0.029600351333618165, 0.02950886344909668, 0.0294849910736084, 0.029383487701416015, 0.029529407501220704, 0.029946079254150392, 0.029463008880615236, 0.02920243263244629, 0.029011648178100587, 0.028928319931030275, 0.02901798439025879, 0.028972320556640625, 0.02903536033630371, 0.029104127883911132, 0.02922652816772461, 0.029562623977661132, 0.029198463439941407, 0.029184415817260743, 0.029349855422973633, 0.029239519119262695, 0.029216768264770508, 0.029222272872924806, 0.029462623596191406, 0.029169792175292968, 0.02924790382385254, 0.02952191925048828, 0.029404352188110352, 0.029258207321166994, 0.029364160537719727, 0.029266336441040038, 0.02921881675720215, 0.029247104644775392, 0.02968409538269043, 0.029187328338623048, 0.029157760620117188, 0.029445663452148437, 0.029276159286499022, 0.02922172737121582, 0.029253568649291992, 0.029312480926513673, 0.02932566452026367, 0.029384223937988282, 0.029728607177734376, 0.02951628875732422, 0.029397375106811525, 0.029503488540649415, 0.02938265609741211, 0.02964860725402832, 0.029525503158569336, 0.029593503952026368, 0.029334016799926758, 0.0295548152923584, 0.029509632110595704, 0.02950320053100586, 0.029516319274902343, 0.02954572868347168, 0.029511615753173827, 0.02954323196411133, 0.029497152328491212, 0.02940889549255371, 0.0295350399017334, 0.029660703659057618, 0.02965116882324219, 0.029755392074584962, 0.02963862419128418, 0.029620256423950195, 0.02954841613769531, 0.029589632034301757]",tokens/s,33.98187089392082,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,1474.31424,1326.383104,0.0,947.912704,945.250304,s,1,8.1235908203125,8.1235908203125,0.0,8.1235908203125,8.1235908203125,8.1235908203125,8.1235908203125,[8.1235908203125],,kWh,3.681505969166968e-05,4.053782199671776e-06,1.08444531200097e-05,5.1713295011351154e-05,,MB,1517.285376,1519.321088,0.0,1111.49056,1098.82368,s,10,1.6054995269775392,0.1605499526977539,0.000562217233122397,0.16068774414062498,0.16113861389160156,0.1612920928955078,0.1614148760986328,"[0.15935037231445312, 0.16074298095703124, 0.16031491088867186, 0.16026255798339845, 0.16086659240722656, 0.16110450744628907, 0.16076307678222657, 0.16063250732421874, 0.16001644897460937, 0.16144557189941405]",tokens/s,1594.5193112696659,kWh,4.704023410647971e-06,5.185785808379412e-07,3.1308005646033637e-06,8.353402556089277e-06,tokens/kWh,30646194.563362308,MB,1527.250944,1653.538816,0.0,1245.708288,1164.242432,s,10,88.924287109375,8.8924287109375,0.01463182725578284,8.894529296875,8.90892509765625,8.910288720703125,8.911379619140625,"[8.863833984375, 8.874208984375, 8.8817548828125, 8.88940234375, 8.8925712890625, 8.8964873046875, 8.901982421875, 8.903771484375, 8.9086220703125, 8.91165234375]",tokens/s,7.084678668552195,kWh,0.00026004556043518647,2.8684570792508123e-05,0.00017283075687119642,0.00046156088809889105,tokens/kWh,136493.36766702388,,s,630,88.92091477966304,0.1411443091740684,0.0003321701887789103,0.14115912628173827,0.14155792083740235,0.1416606658935547,0.14184947067260742,"[0.14091314697265625, 0.1400463409423828, 0.14019378662109375, 0.1403412780761719, 0.14071157836914064, 0.14059756469726561, 0.140287841796875, 0.1404704284667969, 0.14042112731933593, 0.14061305236816407, 0.14044627380371094, 0.14091673278808595, 0.14092445373535156, 0.14058134460449218, 0.14066204833984375, 0.140548828125, 0.14014402770996093, 0.14071049499511717, 0.14068080139160155, 0.14068368530273437, 0.14069728088378905, 0.14054237365722655, 0.14061270141601562, 0.14057350158691406, 0.14058090209960938, 0.1405625, 0.1407724151611328, 0.1408070068359375, 0.14080995178222655, 0.14059344482421876, 0.14050918579101562, 0.1408125762939453, 0.14064405822753906, 0.14094857788085938, 0.1414276123046875, 0.14073036193847657, 0.14074406433105469, 0.14078016662597656, 0.14097613525390626, 0.14056646728515626, 0.14067132568359375, 0.14057647705078125, 0.140930908203125, 0.1405853729248047, 0.14074649047851562, 0.14074266052246093, 0.1403574981689453, 0.14065061950683594, 0.14066259765625, 0.1412671356201172, 0.14080819702148437, 0.1402882537841797, 0.14103030395507812, 0.1404550018310547, 0.1405806121826172, 0.1409269714355469, 0.14149609375, 0.14093927001953124, 0.14108905029296875, 0.14070346069335937, 0.14065397644042968, 0.14053817749023437, 0.14121200561523437, 0.14041920471191408, 0.14058505249023437, 0.14048573303222656, 0.14045890808105468, 0.1407631378173828, 0.14065078735351563, 0.14117654418945313, 0.1406402587890625, 0.1406543731689453, 0.14084451293945313, 0.14039251708984374, 0.14085804748535155, 0.14065565490722656, 0.1406164093017578, 0.14096954345703125, 0.14056108093261718, 0.14060304260253906, 0.14066943359375, 0.14078140258789062, 0.14096771240234374, 0.14086781311035157, 0.14094950866699218, 0.14097613525390626, 0.14097613525390626, 0.14083065795898436, 0.14094090270996093, 0.14127740478515624, 0.14087564086914062, 0.14126527404785155, 0.14073849487304688, 0.1407611541748047, 0.1407836151123047, 0.14070950317382813, 0.14091065979003906, 0.1409438018798828, 0.14117808532714843, 0.14086611938476562, 0.14110723876953124, 0.14052120971679688, 0.14061395263671875, 0.14123526000976563, 0.14069036865234374, 0.14108262634277344, 0.1409551696777344, 0.14087590026855468, 0.140957275390625, 0.14098713684082032, 0.14085673522949219, 0.140778076171875, 0.14141439819335938, 0.14121369934082031, 0.14089631652832033, 0.14098220825195312, 0.1410248565673828, 0.1407983703613281, 0.14067916870117186, 0.141046875, 0.14133529663085936, 0.14077967834472657, 0.1410885772705078, 0.14058709716796874, 0.1410274200439453, 0.14074879455566405, 0.1414819793701172, 0.1406320343017578, 0.14080975341796875, 0.1405788116455078, 0.14077548217773436, 0.140767578125, 0.14120150756835936, 0.14111439514160157, 0.14093606567382813, 0.14092707824707032, 0.14038761901855468, 0.14095750427246093, 0.1405572204589844, 0.14129151916503907, 0.14103321838378907, 0.14111318969726563, 0.1406754913330078, 0.14069325256347656, 0.1408350067138672, 0.1406519317626953, 0.14105410766601562, 0.14085699462890625, 0.14122685241699218, 0.14077337646484375, 0.14075820922851562, 0.14098915100097656, 0.1408527069091797, 0.14077719116210938, 0.14111036682128905, 0.14086038208007812, 0.14077772521972656, 0.14123190307617187, 0.1409031982421875, 0.1410068817138672, 0.14092643737792968, 0.14090847778320312, 0.14137834167480468, 0.14119949340820312, 0.14095872497558593, 0.14095021057128906, 0.1410662384033203, 0.14060748291015626, 0.14102857971191407, 0.14121244812011718, 0.14095578002929687, 0.14115213012695313, 0.14081622314453124, 0.14129078674316406, 0.1409135284423828, 0.14096298217773437, 0.1407189483642578, 0.14160211181640625, 0.1412403564453125, 0.14106655883789063, 0.14107887268066407, 0.14084095764160157, 0.14129766845703126, 0.14104098510742188, 0.1412626953125, 0.14095616149902343, 0.14118739318847656, 0.14098588562011719, 0.1411047668457031, 0.14146517944335937, 0.140505126953125, 0.14051954650878906, 0.1408916473388672, 0.14044364929199218, 0.14086749267578125, 0.14098722839355468, 0.14116181945800782, 0.14096646118164063, 0.14073251342773438, 0.1410846710205078, 0.14103453063964844, 0.14096015930175781, 0.14124691772460937, 0.14110508728027343, 0.14089360046386717, 0.1405447998046875, 0.1410396728515625, 0.14141229248046874, 0.14115225219726563, 0.141127685546875, 0.14089010620117187, 0.1409697570800781, 0.14090229797363282, 0.14100691223144532, 0.14112384033203124, 0.140943359375, 0.14119081115722656, 0.14099020385742186, 0.1411037139892578, 0.14079994201660156, 0.14107449340820313, 0.14137962341308594, 0.14098835754394531, 0.14149020385742186, 0.14116455078125, 0.14111485290527342, 0.1410089569091797, 0.141339111328125, 0.14120755004882812, 0.14123622131347657, 0.14131132507324218, 0.141191650390625, 0.14100679016113282, 0.14122575378417968, 0.1411846466064453, 0.14110092163085938, 0.1412843780517578, 0.14137338256835938, 0.14112127685546874, 0.14088943481445312, 0.14117100524902343, 0.14134538269042968, 0.14094744873046874, 0.14173388671875, 0.1417090606689453, 0.1409927978515625, 0.14111946105957032, 0.14147584533691407, 0.14122950744628907, 0.1409974060058594, 0.14135621643066407, 0.14124911499023438, 0.14080812072753907, 0.14106434631347656, 0.14090316772460937, 0.14094137573242188, 0.14078764343261718, 0.14124447631835937, 0.14094540405273437, 0.14107192993164064, 0.14081272888183594, 0.14098629760742187, 0.14104786682128906, 0.14087948608398437, 0.1411075897216797, 0.14107752990722655, 0.14116117858886718, 0.14137779235839842, 0.14069480895996095, 0.14110794067382812, 0.1410867156982422, 0.14105746459960938, 0.1413347473144531, 0.14127040100097657, 0.1412352294921875, 0.14103955078125, 0.14105142211914062, 0.14108694458007812, 0.14104156494140624, 0.1414041290283203, 0.14131033325195314, 0.14109660339355468, 0.14108026123046874, 0.14129379272460937, 0.14114370727539063, 0.14088800048828126, 0.14112380981445313, 0.1410167999267578, 0.14114044189453126, 0.14090614318847655, 0.14132540893554688, 0.14110432434082032, 0.1412960968017578, 0.14134803771972657, 0.14135177612304686, 0.14112477111816407, 0.14128215026855467, 0.14144102478027343, 0.1413396759033203, 0.1413314208984375, 0.14117231750488282, 0.1411895294189453, 0.1410109405517578, 0.1414615020751953, 0.1413253479003906, 0.14125106811523438, 0.1414619903564453, 0.1411438446044922, 0.14117683410644533, 0.14145968627929686, 0.14107606506347656, 0.14098602294921875, 0.14136595153808593, 0.14145738220214843, 0.141125732421875, 0.14125836181640625, 0.14098045349121094, 0.1406304931640625, 0.141155517578125, 0.14097430419921875, 0.1408042297363281, 0.1411931915283203, 0.14117324829101563, 0.14086326599121093, 0.140996826171875, 0.1409129638671875, 0.14099130249023437, 0.14105186462402344, 0.1415013427734375, 0.14101539611816405, 0.14118159484863282, 0.14115927124023436, 0.1410498504638672, 0.14098591613769532, 0.1414351043701172, 0.14136767578125, 0.14105401611328125, 0.14114297485351562, 0.14099737548828126, 0.14109504699707032, 0.14125637817382813, 0.14104386901855467, 0.14164405822753906, 0.1409231719970703, 0.14128099060058594, 0.14119731140136718, 0.1410287628173828, 0.14150083923339843, 0.14118896484375, 0.14140623474121095, 0.1410780487060547, 0.14124520874023438, 0.140906494140625, 0.14107034301757812, 0.14149337768554687, 0.14125555419921876, 0.141459716796875, 0.14138064575195314, 0.14129020690917968, 0.14112358093261718, 0.1411494140625, 0.14130050659179688, 0.14126838684082033, 0.1414068145751953, 0.14136642456054688, 0.141455810546875, 0.1411219482421875, 0.14143618774414063, 0.14122000122070313, 0.14144940185546875, 0.1413504638671875, 0.14166099548339844, 0.14205746459960938, 0.14088552856445313, 0.14123802185058593, 0.14116732788085937, 0.14148809814453125, 0.14142057800292968, 0.14111001586914063, 0.14105331420898437, 0.14058790588378905, 0.14132199096679687, 0.14124986267089842, 0.1409297637939453, 0.14166026306152343, 0.1415801544189453, 0.1410846710205078, 0.14109933471679686, 0.14105158996582032, 0.14124850463867186, 0.1412460174560547, 0.14157868957519532, 0.1410190734863281, 0.14139808654785158, 0.14098136901855468, 0.1408275146484375, 0.14113154602050781, 0.1414126434326172, 0.14120498657226563, 0.14177325439453126, 0.1409249267578125, 0.1407422332763672, 0.141103515625, 0.14103753662109375, 0.14172163391113282, 0.14125465393066405, 0.1415202178955078, 0.14110992431640626, 0.14101475524902343, 0.14113821411132813, 0.14140406799316407, 0.14150869750976564, 0.14212300109863282, 0.14134259033203125, 0.1410952911376953, 0.1411822052001953, 0.1411012725830078, 0.14132048034667968, 0.14128128051757813, 0.141540771484375, 0.1415870361328125, 0.1413233642578125, 0.14125289916992187, 0.14118115234375, 0.1415970916748047, 0.14127513122558594, 0.1414757080078125, 0.14155789184570314, 0.14129971313476564, 0.1411746520996094, 0.1413448944091797, 0.14137753295898436, 0.14144511413574218, 0.14146560668945313, 0.1413017578125, 0.141461181640625, 0.14157037353515625, 0.14140316772460937, 0.14147273254394532, 0.14152499389648437, 0.1415355224609375, 0.14115440368652343, 0.14105430603027344, 0.1410768585205078, 0.14114201354980468, 0.14118911743164062, 0.14103330993652344, 0.14093959045410157, 0.14133859252929687, 0.14137242126464844, 0.1411961669921875, 0.14122125244140624, 0.14143869018554686, 0.1410592041015625, 0.14174595642089843, 0.14114714050292967, 0.1411287078857422, 0.14108038330078124, 0.14141629028320313, 0.14125823974609375, 0.1409291229248047, 0.14135760498046876, 0.1410474853515625, 0.14117123413085939, 0.14119436645507813, 0.14120640563964842, 0.14140165710449218, 0.1414405059814453, 0.14144607543945312, 0.14124832153320313, 0.14134471130371093, 0.14116685485839844, 0.14116864013671876, 0.14139974975585937, 0.14128477478027343, 0.14142477416992189, 0.14146409606933594, 0.14134707641601563, 0.14145542907714845, 0.14159353637695313, 0.14130476379394533, 0.14162358093261718, 0.14142031860351562, 0.14124237060546874, 0.1410867156982422, 0.1413605499267578, 0.14173654174804687, 0.14172808837890624, 0.14161404418945311, 0.14129740905761717, 0.1413477783203125, 0.1413305206298828, 0.14149746704101562, 0.14171420288085937, 0.14129270935058594, 0.1413824920654297, 0.1411788787841797, 0.14122189331054688, 0.14151065063476562, 0.1415146942138672, 0.14180972290039062, 0.14133485412597657, 0.14142022705078125, 0.14140211486816406, 0.14115020751953125, 0.14143775939941405, 0.14173721313476562, 0.14108937072753908, 0.14117056274414064, 0.1409701690673828, 0.14117269897460938, 0.14116358947753907, 0.14133544921875, 0.14150253295898438, 0.14108262634277344, 0.1408184356689453, 0.14107852172851562, 0.14129971313476564, 0.14138674926757813, 0.14119778442382813, 0.14169346618652343, 0.14154339599609375, 0.14124797058105468, 0.1411589813232422, 0.14185664367675782, 0.1412752685546875, 0.14132633972167968, 0.1414607391357422, 0.14117964172363281, 0.141127685546875, 0.14095542907714845, 0.14141658020019532, 0.14147596740722657, 0.14144610595703125, 0.14137855529785157, 0.14123519897460937, 0.14108924865722655, 0.14104835510253907, 0.14133436584472656, 0.1416848907470703, 0.14157005310058593, 0.1415720977783203, 0.1416171569824219, 0.14143043518066406, 0.1413410186767578, 0.14120355224609374, 0.14171720886230468, 0.14160914611816405, 0.1415068817138672, 0.14204444885253906, 0.1414127655029297, 0.1418275146484375, 0.14153298950195312, 0.14173846435546875, 0.14175830078125, 0.14171180725097657, 0.14144447326660156, 0.141304443359375, 0.1413570556640625, 0.14150656127929687, 0.14165196228027344, 0.14159461975097656, 0.14157618713378906, 0.1415265350341797, 0.14148483276367188, 0.14153494262695313, 0.1411744384765625, 0.1412696990966797, 0.14068531799316406, 0.14130989074707032, 0.14100486755371094, 0.14111669921875, 0.14115708923339843, 0.14146931457519532, 0.14154118347167968, 0.14108285522460937, 0.14133436584472656, 0.14112409973144532, 0.14095974731445313, 0.14117263793945312, 0.14198179626464844, 0.14138983154296875, 0.14141007995605467, 0.14138316345214844, 0.14127381896972657, 0.14123008728027345, 0.14127740478515624, 0.14158416748046876, 0.14147789001464844, 0.14150825500488282, 0.14162281799316406, 0.14142886352539064, 0.14126559448242187, 0.14148812866210939, 0.14190751647949218, 0.1417527618408203, 0.14164787292480469, 0.14117225646972656, 0.1413586883544922, 0.14116543579101562, 0.14146488952636718, 0.14179420471191406, 0.14158210754394532, 0.1416592254638672, 0.14134701538085936, 0.14158717346191407, 0.14171340942382812, 0.1413324737548828, 0.14132415771484375, 0.14199411010742188, 0.14161509704589845, 0.14164492797851563, 0.1412657928466797, 0.1414632568359375, 0.1413104705810547, 0.14140599060058595, 0.14164178466796876, 0.14155564880371094, 0.14166639709472656, 0.141671875, 0.1415581817626953, 0.14161517333984375, 0.14151609802246093, 0.14178134155273436, 0.14151641845703125, 0.1415933074951172, 0.1413324737548828, 0.1413324737548828, 0.14165536499023437, 0.1418319091796875]",tokens/s,7.084947355310901,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1039.089664,904.855552,0.0,509.607936,491.434496,s,1,7.7753291015625,7.7753291015625,0.0,7.7753291015625,7.7753291015625,7.7753291015625,7.7753291015625,[7.7753291015625],,kWh,2.3769561345824284e-05,2.613634343838651e-06,8.089450916001772e-06,3.447264660566471e-05,,MB,1393.004544,1039.07328,0.0,629.1456,592.24832,s,10,0.2588756771087647,0.025887567710876462,0.00012938341568561115,0.025884959220886232,0.026041721725463866,0.026084604454040528,0.026118910636901856,"[0.026127487182617187, 0.025942752838134766, 0.02589206314086914, 0.02603219223022461, 0.02582262420654297, 0.02577039909362793, 0.025944799423217774, 0.025641632080078126, 0.02587785530090332, 0.02582387161254883]",tokens/s,9888.916674564354,kWh,7.569353342724582e-07,8.347716594352991e-08,4.6696856586011393e-07,1.307381066076102e-06,tokens/kWh,195811310.59848037,MB,1433.088,1053.753344,0.0,643.825664,605.085696,s,10,13.554338012695311,1.355433801269531,0.008772509112208286,1.3541259765625,1.3627170166015623,1.3704699584960938,1.3766723120117188,"[1.378222900390625, 1.355204833984375, 1.34927197265625, 1.356851318359375, 1.354110107421875, 1.354141845703125, 1.3519068603515625, 1.360994140625, 1.34954833984375, 1.344085693359375]",tokens/s,46.479584573582805,kWh,3.870019445531075e-05,4.268203905542278e-06,1.4181515375140097e-05,5.714991373599313e-05,tokens/kWh,1102363.8686670926,,s,630,13.548963447570797,0.021506291186620317,0.0005965968022652301,0.021377023696899415,0.02176020202636719,0.022067100620269776,0.024917819614410433,"[0.021605600357055665, 0.021792800903320312, 0.021680896759033202, 0.021649280548095704, 0.022975807189941407, 0.021523263931274413, 0.021261823654174804, 0.02147177505493164, 0.021694303512573242, 0.022093952178955076, 0.02187900733947754, 0.021880640029907226, 0.02219004821777344, 0.022295583724975587, 0.022047712326049806, 0.02183590316772461, 0.02166156768798828, 0.021579967498779298, 0.0215897274017334, 0.022064319610595705, 0.021475839614868163, 0.02144483184814453, 0.021657440185546876, 0.022732288360595702, 0.02273161506652832, 0.021560991287231445, 0.02210771179199219, 0.021524415969848634, 0.021602367401123045, 0.021600255966186522, 0.022296831130981444, 0.022540128707885743, 0.022129344940185546, 0.021938528060913086, 0.022011552810668945, 0.021779680252075197, 0.021781280517578126, 0.02230681610107422, 0.02163711929321289, 0.021552928924560545, 0.021431615829467773, 0.02162371253967285, 0.021443872451782225, 0.021514976501464844, 0.021552831649780273, 0.021574047088623045, 0.021441728591918945, 0.02137571144104004, 0.021816864013671874, 0.026312959671020507, 0.022155744552612305, 0.021871871948242187, 0.02197747230529785, 0.02200998306274414, 0.021794815063476563, 0.021606399536132814, 0.02148761558532715, 0.021831167221069335, 0.021527040481567384, 0.021514144897460938, 0.0215, 0.021485567092895508, 0.021611616134643553, 0.020992416381835938, 0.021509727478027343, 0.02124595260620117, 0.02125209617614746, 0.02175814437866211, 0.021278528213500975, 0.02127667236328125, 0.021362688064575194, 0.021270719528198243, 0.021317087173461913, 0.021282432556152343, 0.021279455184936524, 0.021603904724121093, 0.021422527313232423, 0.02117046356201172, 0.02134601593017578, 0.02123161506652832, 0.021356864929199217, 0.021398975372314454, 0.021328128814697266, 0.021354303359985352, 0.021288288116455077, 0.021238624572753908, 0.021284128189086916, 0.021654144287109375, 0.02170889663696289, 0.02143395233154297, 0.021449119567871093, 0.02128691291809082, 0.021299039840698242, 0.021321887969970702, 0.02126233673095703, 0.023619264602661134, 0.023195968627929688, 0.02149488067626953, 0.021391519546508787, 0.02424083137512207, 0.02174086380004883, 0.021441280364990236, 0.0214835205078125, 0.021497856140136717, 0.021260480880737304, 0.02150102424621582, 0.021502368927001952, 0.021519968032836914, 0.02140438461303711, 0.021376256942749024, 0.021631744384765624, 0.02128281593322754, 0.021331968307495116, 0.02154924774169922, 0.021354272842407228, 0.021288991928100586, 0.021342111587524415, 0.021262432098388673, 0.02150409507751465, 0.021641120910644532, 0.02143756866455078, 0.02126969528198242, 0.02166524887084961, 0.02130556869506836, 0.02138422393798828, 0.021494752883911134, 0.020882368087768555, 0.021180383682250975, 0.021178400039672852, 0.02126755142211914, 0.02129158401489258, 0.021375423431396486, 0.021245248794555666, 0.021242431640625, 0.021190687179565428, 0.021315872192382814, 0.021313247680664064, 0.0212992000579834, 0.02124595260620117, 0.02121238327026367, 0.02147225570678711, 0.021624191284179688, 0.02530950355529785, 0.021676416397094726, 0.021705951690673828, 0.021457408905029295, 0.021397247314453124, 0.02128211212158203, 0.021379903793334962, 0.02166387176513672, 0.021587968826293946, 0.021583871841430666, 0.021295103073120117, 0.02134809684753418, 0.021139711380004884, 0.021501951217651367, 0.021531999588012694, 0.02132649612426758, 0.021348320007324218, 0.021368671417236328, 0.021274816513061522, 0.021432319641113282, 0.02144816017150879, 0.021560895919799806, 0.021347232818603516, 0.021299264907836915, 0.021551103591918946, 0.021518335342407227, 0.02125619125366211, 0.021331968307495116, 0.02122956848144531, 0.02122480010986328, 0.02142064094543457, 0.021229631423950197, 0.02124569511413574, 0.02132953643798828, 0.021461631774902342, 0.021179647445678712, 0.021197568893432616, 0.021178367614746094, 0.021180320739746093, 0.021125215530395508, 0.0214466552734375, 0.021338144302368165, 0.021380735397338868, 0.021356063842773436, 0.021359424591064453, 0.02122137641906738, 0.021368831634521485, 0.0251943359375, 0.021628095626831056, 0.021242847442626955, 0.021303295135498047, 0.02133718490600586, 0.02122230339050293, 0.021299072265625, 0.02125632095336914, 0.021159423828125, 0.02126825523376465, 0.021248735427856446, 0.02126848030090332, 0.021622783660888673, 0.021434207916259766, 0.021233823776245116, 0.021264352798461915, 0.021231647491455077, 0.021300991058349608, 0.021405088424682618, 0.02131030464172363, 0.02126646423339844, 0.02140771293640137, 0.02134022331237793, 0.02125721549987793, 0.02172163200378418, 0.021404064178466797, 0.021243904113769533, 0.021431968688964843, 0.021358943939208983, 0.021323776245117186, 0.021370847702026366, 0.02231839942932129, 0.021557056427001953, 0.021398048400878906, 0.021262720108032228, 0.021308799743652344, 0.02149407958984375, 0.02175382423400879, 0.02163484764099121, 0.021381696701049804, 0.021356351852416994, 0.021370912551879884, 0.0214466552734375, 0.021483295440673827, 0.021275007247924804, 0.02123776054382324, 0.021448703765869142, 0.021542783737182616, 0.025877983093261718, 0.021785247802734376, 0.021552160263061525, 0.021607744216918946, 0.021421728134155275, 0.021355520248413085, 0.021430784225463868, 0.021395103454589844, 0.02133078384399414, 0.021299264907836915, 0.0213370246887207, 0.02130636787414551, 0.02127462387084961, 0.02131059265136719, 0.021405599594116212, 0.020952192306518555, 0.02130624008178711, 0.021290912628173828, 0.021399648666381835, 0.021413888931274414, 0.02151356887817383, 0.02130169677734375, 0.02143254470825195, 0.02122547149658203, 0.021215232849121093, 0.021376096725463867, 0.021252960205078126, 0.021239871978759765, 0.021413440704345702, 0.02124435234069824, 0.02112512016296387, 0.021212160110473634, 0.021206016540527343, 0.021235071182250976, 0.021238399505615235, 0.021321727752685548, 0.02134121513366699, 0.02202524757385254, 0.02237843132019043, 0.021837472915649414, 0.021713247299194337, 0.021507551193237304, 0.02140332794189453, 0.021338111877441408, 0.0215797119140625, 0.021490591049194336, 0.02143177604675293, 0.025245824813842774, 0.02139792060852051, 0.021419551849365233, 0.02140208053588867, 0.021377023696899415, 0.02124595260620117, 0.02127872085571289, 0.021243904113769533, 0.021208576202392578, 0.02150169563293457, 0.02126006317138672, 0.021238752365112305, 0.021665599822998045, 0.02137660789489746, 0.021264991760253905, 0.021379072189331053, 0.021213184356689452, 0.021204992294311522, 0.02124595260620117, 0.021178304672241213, 0.021965919494628908, 0.02206937599182129, 0.022513952255249024, 0.02148204803466797, 0.021298879623413085, 0.021582143783569336, 0.021303295135498047, 0.021302976608276368, 0.02194384002685547, 0.021410591125488283, 0.021354496002197267, 0.02090598487854004, 0.021147647857666017, 0.021131263732910157, 0.021311296463012695, 0.021257408142089845, 0.02118966484069824, 0.021187616348266602, 0.021095359802246094, 0.021296735763549804, 0.021409791946411134, 0.021262144088745116, 0.021362815856933594, 0.02134614372253418, 0.021114879608154297, 0.021236352920532227, 0.021571584701538086, 0.026343360900878906, 0.02183788871765137, 0.021646751403808593, 0.021422592163085938, 0.021389408111572264, 0.021722335815429688, 0.02177872085571289, 0.021418495178222655, 0.021377023696899415, 0.02129100799560547, 0.021243904113769533, 0.021339744567871095, 0.021247520446777343, 0.021220224380493164, 0.021319679260253906, 0.021243743896484375, 0.02117238426208496, 0.021356544494628905, 0.0225218563079834, 0.021720895767211913, 0.021468416213989257, 0.02156025505065918, 0.0213723201751709, 0.021313663482666015, 0.021328351974487306, 0.021699871063232422, 0.021481472015380858, 0.021301984786987305, 0.021317632675170898, 0.02130496025085449, 0.02161712074279785, 0.021510047912597655, 0.021297088623046877, 0.021435455322265626, 0.02135321617126465, 0.021383424758911133, 0.02144256019592285, 0.021313343048095703, 0.021229759216308593, 0.021493696212768556, 0.021548255920410157, 0.021646175384521484, 0.021510015487670897, 0.021411968231201173, 0.021720287322998046, 0.02158252716064453, 0.02148182487487793, 0.02103091239929199, 0.02153654479980469, 0.021522655487060546, 0.021663808822631837, 0.021450687408447265, 0.02155708885192871, 0.021665952682495118, 0.021436416625976562, 0.021952384948730468, 0.02170857620239258, 0.021691936492919922, 0.021551296234130858, 0.021505727767944335, 0.021633695602416993, 0.02150831985473633, 0.021268543243408204, 0.02205683135986328, 0.02187788772583008, 0.02141900825500488, 0.021336063385009766, 0.021448415756225588, 0.021436704635620116, 0.02132374382019043, 0.02122979164123535, 0.021370687484741212, 0.021608448028564452, 0.02186057662963867, 0.021749088287353516, 0.021592512130737304, 0.021597312927246093, 0.021597055435180663, 0.021651456832885742, 0.02145280075073242, 0.021195968627929686, 0.021359424591064453, 0.02122956848144531, 0.02122547149658203, 0.021208351135253906, 0.021267168045043944, 0.02124185562133789, 0.02143596839904785, 0.021629695892333985, 0.02132054328918457, 0.02133087921142578, 0.021356000900268554, 0.021438623428344728, 0.021339584350585937, 0.021453216552734376, 0.021377471923828124, 0.021698144912719725, 0.021485984802246092, 0.021315584182739256, 0.021380416870117186, 0.021342912673950196, 0.021306400299072267, 0.021269472122192382, 0.02127020835876465, 0.021225183486938477, 0.02124220848083496, 0.02125644874572754, 0.021321727752685548, 0.021312704086303712, 0.021277376174926758, 0.02118492889404297, 0.021561344146728514, 0.021549055099487305, 0.021307743072509766, 0.021263872146606445, 0.02130668830871582, 0.021815967559814454, 0.02876025581359863, 0.02145039939880371, 0.021473535537719725, 0.021507328033447265, 0.021248863220214843, 0.02122889518737793, 0.02126892852783203, 0.021532896041870118, 0.02151628875732422, 0.021327871322631836, 0.021396991729736328, 0.021278528213500975, 0.022399551391601564, 0.021446399688720703, 0.021229759216308593, 0.021256128311157228, 0.02143257522583008, 0.02136515235900879, 0.02139299201965332, 0.021372928619384765, 0.02126028823852539, 0.02136636734008789, 0.021350816726684572, 0.021327871322631836, 0.021336063385009766, 0.021410911560058594, 0.02144534492492676, 0.021442176818847657, 0.02145337677001953, 0.02133795166015625, 0.021279232025146484, 0.022124191284179688, 0.02256924819946289, 0.02160611152648926, 0.021407743453979493, 0.021309440612792968, 0.021204992294311522, 0.021528543472290038, 0.021796607971191408, 0.022412832260131837, 0.021838623046875, 0.021879871368408202, 0.021707679748535155, 0.02140771293640137, 0.021536800384521486, 0.02149616050720215, 0.021366432189941408, 0.021336063385009766, 0.021193727493286133, 0.02129622459411621, 0.021338016510009765, 0.02147327995300293, 0.021661056518554687, 0.021492351531982423, 0.02130732727050781, 0.021278783798217772, 0.02151219177246094, 0.021647232055664063, 0.021543039321899413, 0.02147942352294922, 0.021395456314086913, 0.021596160888671875, 0.021420032501220702, 0.021321727752685548, 0.021310815811157225, 0.02123638343811035, 0.021198848724365234, 0.021168127059936523, 0.021462432861328123, 0.02162508773803711, 0.021428575515747072, 0.02161769676208496, 0.021523199081420898, 0.021730623245239257, 0.021402399063110353, 0.021304864883422852, 0.02126860809326172, 0.02131769561767578, 0.021249631881713867, 0.02128339195251465, 0.021258432388305663, 0.02125212860107422, 0.021361888885498045, 0.021441696166992187, 0.02145449638366699, 0.021415807723999022, 0.02125222396850586, 0.02117750358581543, 0.02134841537475586, 0.02145359992980957, 0.02122547149658203, 0.021327199935913085, 0.021357215881347657, 0.021188959121704102, 0.021443296432495117, 0.02119980812072754, 0.021230720520019532, 0.021437311172485353, 0.021334016799926758, 0.021301248550415038, 0.021204992294311522, 0.021347360610961916, 0.021293695449829102, 0.02139904022216797, 0.0213656005859375, 0.021335391998291015, 0.0213592643737793, 0.021369951248168945, 0.02143734359741211, 0.021372928619384765, 0.02390425682067871, 0.02165760040283203, 0.02142207908630371, 0.021411008834838867, 0.02127881622314453, 0.02142076873779297, 0.02136003112792969, 0.02129680061340332, 0.02125715255737305, 0.021032960891723632, 0.021559328079223634, 0.02142633628845215, 0.0211777286529541, 0.02126892852783203, 0.0212541446685791, 0.021552255630493164, 0.02146329689025879, 0.021227359771728516, 0.02118934440612793, 0.02126582336425781, 0.021340160369873046, 0.021207712173461915, 0.021180416107177736, 0.021187583923339845, 0.021139936447143556, 0.021217567443847656, 0.021160192489624023, 0.021229248046875, 0.021233983993530273, 0.021309440612792968, 0.02123481559753418, 0.021245920181274414, 0.02121334457397461, 0.021309856414794923, 0.021303647994995116, 0.021565376281738283, 0.021469247817993163, 0.02142207908630371, 0.02134966468811035, 0.021412448883056642, 0.021150848388671876, 0.021238784790039062, 0.021182464599609374, 0.021202272415161132, 0.021325855255126952, 0.021299840927124024, 0.021219327926635743, 0.021472383499145507, 0.02142838478088379, 0.021471935272216795, 0.021546144485473633, 0.021367679595947264, 0.021387264251708983, 0.021481472015380858, 0.021450143814086914, 0.021316192626953126, 0.021307392120361326, 0.021729183197021485, 0.02168022346496582, 0.021317632675170898, 0.02138697624206543, 0.021297439575195313, 0.02121891212463379, 0.021203359603881835, 0.02125209617614746, 0.021301248550415038, 0.021526496887207033, 0.021347551345825194, 0.021371711730957033, 0.021265472412109375, 0.02141484832763672, 0.02129715156555176]",tokens/s,46.49802196587614,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,4972.916736,7338.917888,0.0,6943.670272,6539.1744,s,1,11.5805625,11.5805625,0.0,11.5805625,11.5805625,11.5805625,11.5805625,[11.5805625],,kWh,0.00012860236552916527,1.4178698316460877e-05,3.937392038799725e-05,0.00018215498423362339,,MB,4882.82112,7634.61632,0.0,7224.68864,6917.39904,s,10,2.0647067413330076,0.20647067413330075,0.000531730646215658,0.20658805084228515,0.20704199523925781,0.20706782684326172,0.20708849212646485,"[0.20546876525878907, 0.20618710327148437, 0.2056812744140625, 0.20671177673339844, 0.2066510772705078, 0.20633375549316407, 0.2065250244140625, 0.20709365844726563, 0.2070362548828125, 0.20701805114746094]",tokens/s,1239.8855240561782,kWh,6.064707978571061e-06,6.688289937004971e-07,4.0114261116328494e-06,1.0744963083904409e-05,tokens/kWh,23825116.754796427,MB,4887.052288,7636.713472,0.0,7226.785792,6917.4016,s,10,21.867404052734372,2.1867404052734374,0.012244226575833619,2.1830804443359373,2.2044777587890625,2.2071846801757813,2.2093502172851562,"[2.192820556640625, 2.176710205078125, 2.203876220703125, 2.170734130859375, 2.184782470703125, 2.18137841796875, 2.2098916015625, 2.192957763671875, 2.1802666015625, 2.173986083984375]",tokens/s,28.810004080992993,kWh,6.411299401559425e-05,7.070647166017867e-06,4.264413899056652e-05,0.00011382778017217864,tokens/kWh,553467.7027409713,,s,630,21.86504935073855,0.034706427540854796,0.0005855559582517047,0.03455833435058594,0.035169828033447266,0.035670738410949705,0.03758546409606934,"[0.035383296966552735, 0.03546527862548828, 0.034865119934082034, 0.034340545654296874, 0.0344681282043457, 0.03508019256591797, 0.03487744140625, 0.03448604965209961, 0.034574558258056644, 0.03421184158325195, 0.034609153747558595, 0.034402305603027344, 0.0343900146484375, 0.03457206344604492, 0.03493500900268555, 0.03437564849853516, 0.03462047958374023, 0.03440534210205078, 0.03441401672363281, 0.03501523208618164, 0.03827711868286133, 0.03582566452026367, 0.03512115097045899, 0.03474163055419922, 0.034491008758544925, 0.03439759826660156, 0.03435708618164063, 0.03478598403930664, 0.03515558242797852, 0.035756481170654296, 0.03479347229003906, 0.03462870407104492, 0.03438431930541992, 0.03434134292602539, 0.034705406188964845, 0.03537052917480469, 0.03477689743041992, 0.03476505661010742, 0.034521503448486326, 0.037220352172851565, 0.03622873687744141, 0.03523827362060547, 0.035151264190673825, 0.034589279174804685, 0.034840576171875, 0.03438796615600586, 0.034369537353515625, 0.03425404739379883, 0.0344359359741211, 0.03440428924560547, 0.0343521614074707, 0.03429475021362305, 0.03449446487426758, 0.034680831909179685, 0.034566368103027344, 0.0342606086730957, 0.03461955261230469, 0.03428707122802734, 0.03444380950927734, 0.034484222412109376, 0.03466854476928711, 0.03540486526489258, 0.03423235321044922, 0.03514518356323242, 0.034751007080078125, 0.034376895904541016, 0.034328895568847655, 0.034202110290527346, 0.03420159912109375, 0.034181121826171876, 0.03435724639892578, 0.03453952026367187, 0.034252799987792966, 0.03416985702514649, 0.03419558334350586, 0.0340975341796875, 0.03408127975463867, 0.03436646270751953, 0.034349086761474606, 0.034210784912109375, 0.03429296112060547, 0.034315040588378906, 0.0341130256652832, 0.034143936157226565, 0.03417782211303711, 0.0341341438293457, 0.03432172775268555, 0.034269790649414066, 0.03410259246826172, 0.03460156631469727, 0.034645824432373046, 0.03487772750854492, 0.034444480895996096, 0.034327136993408204, 0.035087711334228514, 0.034548095703125, 0.03440867233276367, 0.03445993423461914, 0.034351104736328124, 0.03418521499633789, 0.034289600372314454, 0.034439231872558596, 0.034326526641845705, 0.034327968597412106, 0.03429548645019531, 0.03474905776977539, 0.03491459274291992, 0.034969600677490234, 0.034523136138916014, 0.03429580688476563, 0.03424665451049805, 0.034178943634033204, 0.0342795524597168, 0.03480083084106445, 0.03489436721801758, 0.034826526641845705, 0.034590721130371094, 0.034614368438720705, 0.0349002571105957, 0.03524774551391602, 0.03514265441894531, 0.034912254333496096, 0.03476844787597656, 0.03858598327636719, 0.03489056015014649, 0.03483395385742188, 0.035860481262207033, 0.034970783233642576, 0.03497865676879883, 0.034830337524414064, 0.034852863311767575, 0.034842464447021486, 0.03505372619628906, 0.034774654388427736, 0.034885089874267576, 0.03499030303955078, 0.036324031829833986, 0.03523539352416992, 0.03790665435791016, 0.034979934692382815, 0.03522496032714844, 0.03500262451171875, 0.03609446334838867, 0.03530137634277344, 0.035108863830566404, 0.03628441619873047, 0.034846145629882815, 0.034873920440673827, 0.03482009506225586, 0.034590721130371094, 0.03460300827026367, 0.03469903945922852, 0.03451087951660156, 0.034609344482421874, 0.03575603103637695, 0.0371234245300293, 0.03498604965209961, 0.03466819381713867, 0.03481011199951172, 0.03500921630859375, 0.03504489517211914, 0.03557833480834961, 0.035133438110351564, 0.034857185363769534, 0.03485878372192383, 0.034977790832519534, 0.03533148956298828, 0.03495792007446289, 0.034971649169921876, 0.03507814407348633, 0.03519833755493164, 0.034982528686523434, 0.03481510543823242, 0.03504729461669922, 0.03437875366210937, 0.034307262420654294, 0.03418195343017578, 0.03435059356689453, 0.03434288024902344, 0.03417961502075195, 0.03421734237670898, 0.03421043014526367, 0.03466239929199219, 0.03456819152832031, 0.03448953628540039, 0.03433555221557617, 0.034309791564941405, 0.03424812698364258, 0.03462851333618164, 0.03585871887207031, 0.03474198532104492, 0.03442512130737305, 0.03425689697265625, 0.03439334487915039, 0.034706016540527344, 0.034422977447509766, 0.03537267303466797, 0.03451555252075195, 0.034283199310302735, 0.03457855987548828, 0.034547134399414064, 0.03437318420410156, 0.034390399932861325, 0.03418310546875, 0.03422681427001953, 0.034487648010253905, 0.03431046295166015, 0.03424895858764648, 0.03416796875, 0.034243518829345704, 0.03425075149536133, 0.03499008178710938, 0.035166206359863283, 0.03484844970703125, 0.034462017059326173, 0.034342910766601564, 0.0343633918762207, 0.03454489517211914, 0.034530048370361326, 0.03426508712768555, 0.03424460983276367, 0.03423436737060547, 0.03437158584594727, 0.03433062362670898, 0.03426496124267578, 0.034307872772216794, 0.03436576080322266, 0.034359329223632815, 0.03426303863525391, 0.034275230407714845, 0.03422627258300781, 0.03446499252319336, 0.03455875015258789, 0.034264225006103516, 0.03445817565917969, 0.034414878845214845, 0.03435443115234375, 0.03443584060668945, 0.03439311981201172, 0.03420665740966797, 0.034514976501464845, 0.03445673751831055, 0.03426089477539063, 0.03437593460083008, 0.034673118591308595, 0.03444758224487305, 0.03443273544311523, 0.03468521499633789, 0.03430604934692383, 0.03439411163330078, 0.03429929733276367, 0.03437424087524414, 0.03569558334350586, 0.03451644897460938, 0.03454127883911133, 0.03460185623168945, 0.034391841888427734, 0.03443059158325195, 0.034431358337402344, 0.03421184158325195, 0.03422822570800781, 0.03460710525512695, 0.034369537353515625, 0.03435273742675781, 0.03429417419433594, 0.034536705017089844, 0.03442764663696289, 0.034770942687988284, 0.0347852783203125, 0.03446755218505859, 0.03488796615600586, 0.03423231887817383, 0.034557918548583984, 0.03499193572998047, 0.034810142517089845, 0.03436076736450195, 0.0343741455078125, 0.034293758392333985, 0.034525184631347655, 0.03470745468139649, 0.034668254852294925, 0.03450806427001953, 0.034411518096923825, 0.034631679534912106, 0.03495657730102539, 0.03825328063964844, 0.03508838272094727, 0.035054656982421876, 0.03502166366577148, 0.03472127914428711, 0.03472035217285156, 0.034772991180419925, 0.03480166244506836, 0.03455292892456055, 0.03433564758300781, 0.03418102264404297, 0.034428417205810545, 0.034474273681640626, 0.03449055862426758, 0.03452121734619141, 0.03449046325683594, 0.034385887145996094, 0.03457222366333008, 0.03500783920288086, 0.03731737518310547, 0.03470121765136719, 0.03450182342529297, 0.03433292770385742, 0.03451347351074219, 0.03483238220214844, 0.03473628616333008, 0.034369281768798825, 0.03430307388305664, 0.03420876693725586, 0.03427139282226563, 0.03526095962524414, 0.034813438415527344, 0.03427148818969727, 0.034119937896728514, 0.037425151824951174, 0.03510015869140625, 0.034859073638916015, 0.03441196823120117, 0.0342210578918457, 0.03433657455444336, 0.03422841644287109, 0.0346126708984375, 0.034230144500732425, 0.034143070220947265, 0.034312030792236325, 0.034179073333740234, 0.03425475311279297, 0.03425654220581055, 0.03444710540771485, 0.03420230484008789, 0.03418511962890625, 0.034993473052978515, 0.03419331359863281, 0.034382495880126956, 0.03446185684204101, 0.0343573112487793, 0.03478483200073242, 0.03506227111816406, 0.03484988784790039, 0.035019615173339846, 0.03506089782714844, 0.03451737594604492, 0.03441872024536133, 0.034319072723388674, 0.03426444625854492, 0.03526092910766602, 0.034631233215332034, 0.03420332717895508, 0.03447663879394531, 0.03438713455200195, 0.034433502197265625, 0.03515119934082031, 0.03472803115844727, 0.034501537322998044, 0.03450201416015625, 0.03431897735595703, 0.034576385498046876, 0.0354463996887207, 0.03474060821533203, 0.034516990661621096, 0.03443119812011719, 0.034244384765625, 0.03504127883911133, 0.0344535026550293, 0.03428966522216797, 0.03451903915405274, 0.03449174499511719, 0.03457011032104492, 0.03472054290771484, 0.034715648651123046, 0.034631679534912106, 0.03510067367553711, 0.035460670471191405, 0.03617792129516602, 0.03544588851928711, 0.035445632934570315, 0.03527651214599609, 0.03516854476928711, 0.03502454376220703, 0.03522800064086914, 0.035053569793701174, 0.0350904312133789, 0.03529852676391602, 0.035643775939941405, 0.03508060836791992, 0.03479462432861328, 0.03515071868896484, 0.03520512008666992, 0.03471887969970703, 0.0346673583984375, 0.03489177703857422, 0.034767967224121094, 0.03474319839477539, 0.034988033294677735, 0.03450611114501953, 0.035928638458251956, 0.034592830657958984, 0.03826073455810547, 0.035218814849853515, 0.03497395324707031, 0.0348834228515625, 0.03549443054199219, 0.03580867385864258, 0.035465217590332034, 0.035076095581054685, 0.03491219329833985, 0.03510953521728516, 0.03474764633178711, 0.034599391937255856, 0.03511548614501953, 0.03511865615844727, 0.03622886276245117, 0.03478486251831055, 0.03472025680541992, 0.034793407440185546, 0.036690399169921874, 0.034783233642578126, 0.035119102478027346, 0.034598911285400394, 0.03458047866821289, 0.034729984283447264, 0.03481923294067383, 0.03510099029541015, 0.0346794548034668, 0.03464944076538086, 0.03460051345825195, 0.0350579833984375, 0.03479420852661133, 0.034616737365722655, 0.03467932891845703, 0.03500611114501953, 0.03433232116699219, 0.03457913589477539, 0.034662208557128905, 0.0347421760559082, 0.03463372802734375, 0.03555049514770508, 0.0348436164855957, 0.034705310821533206, 0.03475667190551758, 0.034533409118652346, 0.03448831939697266, 0.03509455871582031, 0.0346333122253418, 0.03463161468505859, 0.03461103820800781, 0.034553886413574215, 0.034652225494384764, 0.03765094375610351, 0.03582361602783203, 0.035243297576904295, 0.034902751922607424, 0.03481190490722656, 0.03511705780029297, 0.034598911285400394, 0.03457024002075195, 0.03466239929199219, 0.0345272331237793, 0.03461939239501953, 0.03454742431640625, 0.03454611206054688, 0.03457443237304687, 0.03480678558349609, 0.03468767929077148, 0.034695232391357425, 0.035844097137451174, 0.034871295928955076, 0.034732032775878906, 0.034789215087890624, 0.03477231979370117, 0.03518137741088867, 0.035127296447753906, 0.03534963226318359, 0.03474956893920898, 0.03492633438110351, 0.03499327850341797, 0.03481484985351563, 0.035098785400390624, 0.03511689758300781, 0.035091552734375, 0.034753406524658206, 0.03512527847290039, 0.034523136138916014, 0.034484222412109376, 0.03450265502929688, 0.034340801239013674, 0.03436345672607422, 0.0342724494934082, 0.03434364700317383, 0.03437577438354492, 0.03443283081054688, 0.03461344146728516, 0.034514846801757815, 0.0344351692199707, 0.03446988677978516, 0.03461478424072266, 0.034531455993652344, 0.034523521423339844, 0.03461686325073242, 0.035692798614501954, 0.03473372650146484, 0.034605087280273436, 0.03464681625366211, 0.034457599639892575, 0.03476684951782227, 0.034952865600585935, 0.03733462524414063, 0.03452620697021484, 0.03428326416015625, 0.034223583221435545, 0.03419395065307617, 0.03425791931152344, 0.0342083511352539, 0.034216190338134764, 0.03414236831665039, 0.03446579360961914, 0.03442486572265625, 0.034203262329101564, 0.03424905776977539, 0.034917377471923826, 0.03472710418701172, 0.03467977523803711, 0.03486403274536133, 0.03462044906616211, 0.03430249786376953, 0.0341712646484375, 0.034260990142822266, 0.034723838806152346, 0.034602718353271486, 0.034471424102783206, 0.034377761840820316, 0.034406558990478515, 0.03420537567138672, 0.034331390380859375, 0.034216094970703125, 0.03435724639892578, 0.03419443130493164, 0.03419647979736328, 0.03409100723266602, 0.034541568756103515, 0.03470876693725586, 0.03433567810058594, 0.03512092971801758, 0.035901439666748046, 0.03781017684936523, 0.03492643356323242, 0.034694366455078125, 0.03455481719970703, 0.034385921478271485, 0.03443241500854492, 0.03452959823608399, 0.034936481475830075, 0.034527870178222654, 0.034293758392333985, 0.03423027038574219, 0.03423385620117188, 0.034386238098144534, 0.03443471908569336, 0.03435996627807617, 0.03460287857055664, 0.034431262969970705, 0.034362529754638674, 0.035893310546875, 0.034924831390380856, 0.03462732696533203, 0.03475900650024414, 0.03450028610229492, 0.034411903381347655, 0.0344073600769043, 0.03512704086303711, 0.03439231872558594, 0.03427315139770508, 0.03467891311645508, 0.03491420745849609, 0.03474147033691406, 0.03458038330078125, 0.03452387237548828, 0.034383262634277344, 0.03433087921142578, 0.03433942413330078, 0.03460095977783203, 0.034582527160644534, 0.03457228851318359, 0.034617439270019534, 0.03452099227905273, 0.03501049423217773, 0.0344532470703125, 0.03424310302734375, 0.034367488861083983, 0.03439139175415039, 0.03419180679321289, 0.034362846374511716, 0.03429840087890625, 0.03424870300292969, 0.03447795104980469, 0.034479969024658205, 0.034483486175537106, 0.03453440093994141, 0.03418684768676758, 0.034191776275634765, 0.03423846435546875, 0.03419955062866211, 0.03426444625854492, 0.03470195388793945, 0.03451023864746094, 0.034802112579345706, 0.034436927795410154, 0.03456195068359375, 0.03440806579589844, 0.034502494812011716, 0.0343087043762207, 0.03430822372436523, 0.034234622955322265, 0.03435520172119141, 0.0347852783203125, 0.034290687561035156, 0.03451916885375977, 0.03442777633666992, 0.034385921478271485, 0.034371200561523436, 0.034649856567382814, 0.03453152084350586, 0.03454572677612305, 0.034378047943115234, 0.034401599884033206]",tokens/s,28.8131067025797,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,11138.854912,12227.3792,0.0,11848.9088,11814.752256,s,1,16.331890625,16.331890625,0.0,16.331890625,16.331890625,16.331890625,16.331890625,[16.331890625],,kWh,0.000269950213837501,2.977020798288645e-05,8.404562279201722e-05,0.0003837660446124047,,MB,2093.58848,14033.027072,0.0,13625.196544,13298.00192,s,10,23.36663818359375,2.336663818359375,0.0021511089569970668,2.337625244140625,2.338669384765625,2.3388350585937503,2.33896759765625,"[2.338632568359375, 2.338152099609375, 2.339000732421875, 2.338243408203125, 2.337871337890625, 2.33632177734375, 2.337379150390625, 2.3351865234375, 2.33296484375, 2.3328857421875]",tokens/s,109.55790815460284,kWh,6.795378911708592e-05,7.494725000763435e-06,4.506350827299943e-05,0.00012051202239084878,tokens/kWh,2124269.387578045,MB,2099.965952,14184.022016,0.0,13776.191488,13689.859584,s,10,1365.8407656250001,136.5840765625,0.14099416845937957,136.63813281249998,136.729778125,136.73538906250002,136.73987781250003,"[136.741, 136.71475, 136.72853125, 136.681078125, 136.67503125, 136.601234375, 136.51703125, 136.45, 136.38490625, 136.347203125]",tokens/s,0.46125435398885317,kWh,0.0039742203255445805,0.00043838653352902454,0.0026434413647514004,0.007056048223825005,tokens/kWh,8928.510407182053,,s,630,1365.835356933595,2.167992630053323,0.00245803797327439,2.168363525390625,2.170982055664062,2.1715647216796876,2.172534157714844,"[2.169362548828125, 2.169524169921875, 2.169290283203125, 2.169293212890625, 2.17150390625, 2.17208203125, 2.170980224609375, 2.17135791015625, 2.16968408203125, 2.171004150390625, 2.171822998046875, 2.1700087890625, 2.169798583984375, 2.170569580078125, 2.1727841796875, 2.170962158203125, 2.171938720703125, 2.170955810546875, 2.1710234375, 2.17062109375, 2.170538818359375, 2.170964111328125, 2.17099853515625, 2.170173828125, 2.16871630859375, 2.170280517578125, 2.170905029296875, 2.170300537109375, 2.169556884765625, 2.1686904296875, 2.17009716796875, 2.168494873046875, 2.171104736328125, 2.1698603515625, 2.170408447265625, 2.169908203125, 2.169794677734375, 2.17245068359375, 2.171545654296875, 2.17277783203125, 2.17004931640625, 2.170314697265625, 2.170281494140625, 2.1694814453125, 2.170204345703125, 2.16982763671875, 2.17168896484375, 2.169891845703125, 2.171984375, 2.170481201171875, 2.170078857421875, 2.17049658203125, 2.17175439453125, 2.170583984375, 2.17089013671875, 2.168748046875, 2.1698232421875, 2.170303955078125, 2.170503662109375, 2.170760498046875, 2.169337646484375, 2.17056982421875, 2.170290283203125, 2.16931982421875, 2.1692529296875, 2.1683291015625, 2.17041455078125, 2.1696865234375, 2.16855517578125, 2.169948486328125, 2.168610107421875, 2.167562255859375, 2.168133544921875, 2.1682509765625, 2.170392333984375, 2.169739501953125, 2.167556396484375, 2.168411865234375, 2.168475341796875, 2.168783447265625, 2.16992578125, 2.170560546875, 2.169288818359375, 2.16925390625, 2.167908203125, 2.17023095703125, 2.16987451171875, 2.1698251953125, 2.1699169921875, 2.17007080078125, 2.168732421875, 2.17103369140625, 2.170037841796875, 2.1694931640625, 2.1693408203125, 2.16977001953125, 2.16997216796875, 2.171922607421875, 2.16950390625, 2.169200439453125, 2.170351806640625, 2.170050537109375, 2.17153125, 2.17074072265625, 2.169933349609375, 2.1697294921875, 2.16966552734375, 2.17122216796875, 2.170271484375, 2.171137939453125, 2.170353515625, 2.1701796875, 2.17076318359375, 2.172542724609375, 2.16906591796875, 2.170171142578125, 2.17135302734375, 2.17271728515625, 2.17183642578125, 2.171159912109375, 2.17287255859375, 2.17251318359375, 2.171107421875, 2.17227880859375, 2.172880615234375, 2.170507080078125, 2.17068896484375, 2.17104150390625, 2.17034228515625, 2.171580322265625, 2.171598876953125, 2.1708017578125, 2.17172216796875, 2.1705146484375, 2.16976220703125, 2.168747802734375, 2.168450927734375, 2.1688330078125, 2.1695283203125, 2.16977197265625, 2.169739013671875, 2.170224853515625, 2.170828857421875, 2.169964599609375, 2.17046435546875, 2.16966552734375, 2.171493896484375, 2.1710830078125, 2.1718798828125, 2.169415771484375, 2.16923876953125, 2.169569580078125, 2.169186767578125, 2.169117919921875, 2.170444580078125, 2.170138671875, 2.171592529296875, 2.1686962890625, 2.169596435546875, 2.168596435546875, 2.168890625, 2.17133349609375, 2.169258056640625, 2.169445556640625, 2.17002001953125, 2.169176513671875, 2.171047607421875, 2.1707880859375, 2.16980419921875, 2.17070458984375, 2.171602294921875, 2.171460205078125, 2.171439208984375, 2.171408447265625, 2.1716806640625, 2.17069482421875, 2.170970947265625, 2.1697451171875, 2.1705810546875, 2.168915283203125, 2.169745849609375, 2.16980859375, 2.17103662109375, 2.1712587890625, 2.171217041015625, 2.16958056640625, 2.1689609375, 2.17033935546875, 2.172760009765625, 2.16794189453125, 2.168345947265625, 2.168537109375, 2.169506103515625, 2.16912109375, 2.16852880859375, 2.169100341796875, 2.16913037109375, 2.1684619140625, 2.168895263671875, 2.169536865234375, 2.16985400390625, 2.170060791015625, 2.16954248046875, 2.170759521484375, 2.169196533203125, 2.1683466796875, 2.1684892578125, 2.1680517578125, 2.169093017578125, 2.16945263671875, 2.16905859375, 2.170333984375, 2.168133544921875, 2.168465087890625, 2.1704296875, 2.170662841796875, 2.169109619140625, 2.169588623046875, 2.167689208984375, 2.168756103515625, 2.169784423828125, 2.16871533203125, 2.169174072265625, 2.169288818359375, 2.169388427734375, 2.171112060546875, 2.1708349609375, 2.16998095703125, 2.169499755859375, 2.170353759765625, 2.17191015625, 2.1708798828125, 2.171993896484375, 2.17151513671875, 2.17060546875, 2.168620849609375, 2.169801025390625, 2.170787841796875, 2.169780029296875, 2.16985986328125, 2.169104736328125, 2.1704267578125, 2.169712890625, 2.170366455078125, 2.16974951171875, 2.16888330078125, 2.169206787109375, 2.170090576171875, 2.168535888671875, 2.169146484375, 2.169555908203125, 2.169720947265625, 2.168891357421875, 2.16675927734375, 2.16760546875, 2.16756640625, 2.168850341796875, 2.168493408203125, 2.168814208984375, 2.168524658203125, 2.168668212890625, 2.167869140625, 2.169588134765625, 2.167732177734375, 2.167242431640625, 2.168169921875, 2.16750537109375, 2.167734619140625, 2.169392333984375, 2.1687666015625, 2.16872802734375, 2.167601318359375, 2.16911669921875, 2.1690546875, 2.16907958984375, 2.16874853515625, 2.167593017578125, 2.169420166015625, 2.16717626953125, 2.168871337890625, 2.16750537109375, 2.168604736328125, 2.16865966796875, 2.1699580078125, 2.169855712890625, 2.17080419921875, 2.16951708984375, 2.169409423828125, 2.169374755859375, 2.17058935546875, 2.1702998046875, 2.17072021484375, 2.1687197265625, 2.170218505859375, 2.168195068359375, 2.170111572265625, 2.170776123046875, 2.170766845703125, 2.170847900390625, 2.171146240234375, 2.170884033203125, 2.17183544921875, 2.171052978515625, 2.168711181640625, 2.17054833984375, 2.169819091796875, 2.170898193359375, 2.1709560546875, 2.17090869140625, 2.17165576171875, 2.17193115234375, 2.170635498046875, 2.17216796875, 2.171198486328125, 2.171590576171875, 2.166392822265625, 2.1678125, 2.167912353515625, 2.16743115234375, 2.167509033203125, 2.16749072265625, 2.168342529296875, 2.167932373046875, 2.167357666015625, 2.16689013671875, 2.166894775390625, 2.1672587890625, 2.16954345703125, 2.168363037109375, 2.166921142578125, 2.167406005859375, 2.167665283203125, 2.16841015625, 2.168255859375, 2.16693408203125, 2.16949755859375, 2.167058349609375, 2.1681904296875, 2.16927294921875, 2.168059814453125, 2.167815673828125, 2.168355224609375, 2.168860595703125, 2.1682236328125, 2.169315185546875, 2.16764208984375, 2.167444580078125, 2.168672119140625, 2.1676962890625, 2.171187255859375, 2.1680087890625, 2.1676337890625, 2.167380126953125, 2.1674638671875, 2.168512451171875, 2.167825927734375, 2.16818115234375, 2.167401611328125, 2.1679296875, 2.168057373046875, 2.169559326171875, 2.16978173828125, 2.168203857421875, 2.168690673828125, 2.167989501953125, 2.170017578125, 2.16817041015625, 2.168364013671875, 2.168296875, 2.16830615234375, 2.16907568359375, 2.169552978515625, 2.168143798828125, 2.169496826171875, 2.168421142578125, 2.169944091796875, 2.170005615234375, 2.170220458984375, 2.170427490234375, 2.16810498046875, 2.16730615234375, 2.167529541015625, 2.16633349609375, 2.16644921875, 2.166615966796875, 2.16589404296875, 2.16842626953125, 2.166503173828125, 2.165834228515625, 2.166220703125, 2.16660986328125, 2.16643994140625, 2.168268798828125, 2.1664296875, 2.16646240234375, 2.166199951171875, 2.167081298828125, 2.167373779296875, 2.165665771484375, 2.16609375, 2.1672197265625, 2.16670458984375, 2.16618798828125, 2.166564208984375, 2.1669462890625, 2.16717919921875, 2.167109619140625, 2.165676025390625, 2.16823291015625, 2.166917724609375, 2.16533154296875, 2.165361572265625, 2.16673486328125, 2.167796875, 2.167021728515625, 2.16681884765625, 2.16614794921875, 2.167887939453125, 2.1662373046875, 2.168397216796875, 2.16859716796875, 2.166555908203125, 2.167212646484375, 2.168458251953125, 2.167673828125, 2.166921142578125, 2.16628759765625, 2.166884765625, 2.167589111328125, 2.166208740234375, 2.16766796875, 2.16665185546875, 2.166697021484375, 2.1662607421875, 2.16687548828125, 2.16793505859375, 2.16679248046875, 2.1663173828125, 2.1664091796875, 2.166824951171875, 2.166919189453125, 2.165501953125, 2.1651494140625, 2.16407666015625, 2.164482177734375, 2.167457763671875, 2.165520263671875, 2.166302734375, 2.165307373046875, 2.165833740234375, 2.166099609375, 2.166630859375, 2.1645966796875, 2.16576416015625, 2.16566796875, 2.165785888671875, 2.1655, 2.165670654296875, 2.165544921875, 2.1652744140625, 2.16552783203125, 2.16616552734375, 2.16677685546875, 2.166128662109375, 2.165551025390625, 2.16499609375, 2.16361083984375, 2.167022216796875, 2.1652890625, 2.165182373046875, 2.165781494140625, 2.164755126953125, 2.1667412109375, 2.165505615234375, 2.166676025390625, 2.1669765625, 2.16542626953125, 2.166435791015625, 2.16665087890625, 2.16688037109375, 2.166635986328125, 2.165787109375, 2.166326904296875, 2.167841064453125, 2.16712109375, 2.165900146484375, 2.166140869140625, 2.165682373046875, 2.16465771484375, 2.165961181640625, 2.16589306640625, 2.167142333984375, 2.1649755859375, 2.16568212890625, 2.16656884765625, 2.167205810546875, 2.165231689453125, 2.166363525390625, 2.16429736328125, 2.16599853515625, 2.16683251953125, 2.16555908203125, 2.1658466796875, 2.16557763671875, 2.164621337890625, 2.164137451171875, 2.164543212890625, 2.164142333984375, 2.16470361328125, 2.165547119140625, 2.16657275390625, 2.1632021484375, 2.16575390625, 2.16450244140625, 2.163293212890625, 2.16456298828125, 2.164375244140625, 2.163614013671875, 2.163464111328125, 2.164674560546875, 2.164279296875, 2.16469287109375, 2.16445947265625, 2.164264892578125, 2.1646865234375, 2.16453759765625, 2.166032470703125, 2.163771240234375, 2.16451806640625, 2.163108642578125, 2.1642138671875, 2.1642236328125, 2.16492626953125, 2.165387451171875, 2.163768798828125, 2.164283203125, 2.164267822265625, 2.166134765625, 2.165104736328125, 2.1657763671875, 2.16464990234375, 2.165478515625, 2.16481005859375, 2.16541455078125, 2.165032470703125, 2.165539306640625, 2.164387939453125, 2.164507568359375, 2.166477783203125, 2.1652705078125, 2.16556298828125, 2.165947998046875, 2.165300048828125, 2.16605224609375, 2.165786865234375, 2.16467822265625, 2.16627490234375, 2.164760498046875, 2.16550927734375, 2.16473388671875, 2.164972412109375, 2.1643857421875, 2.164823486328125, 2.16431396484375, 2.165788818359375, 2.165119873046875, 2.16464794921875, 2.164505126953125, 2.163439208984375, 2.16489013671875, 2.16233544921875, 2.16322314453125, 2.16285791015625, 2.163093505859375, 2.16430126953125, 2.163749267578125, 2.164066162109375, 2.162819091796875, 2.163954833984375, 2.163837890625, 2.165333984375, 2.16505712890625, 2.162974365234375, 2.165384033203125, 2.163882080078125, 2.164766357421875, 2.16448193359375, 2.163464599609375, 2.163142578125, 2.163967041015625, 2.16417578125, 2.165642333984375, 2.163696533203125, 2.162642822265625, 2.162888671875, 2.16344580078125, 2.165002197265625, 2.164923828125, 2.16365234375, 2.16443359375, 2.163681396484375, 2.1636767578125, 2.1659365234375, 2.1631240234375, 2.1641806640625, 2.165008544921875, 2.16462744140625, 2.165252197265625, 2.165598388671875, 2.1647626953125, 2.164516845703125, 2.16500439453125, 2.164822021484375, 2.166564208984375, 2.165697021484375, 2.163859375, 2.163810302734375, 2.16506494140625, 2.164789794921875, 2.16618408203125, 2.16356201171875, 2.163326416015625, 2.16323486328125, 2.164265869140625, 2.164746337890625, 2.16414208984375, 2.163759033203125, 2.162353515625, 2.165184814453125, 2.1658955078125]",tokens/s,0.4612561805504866,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,6768.16896,7762.542592,0.0,7367.294976,7351.94368,s,1,12.6473876953125,12.6473876953125,0.0,12.6473876953125,12.6473876953125,12.6473876953125,12.6473876953125,[12.6473876953125],,kWh,0.0001608182069083417,1.773204727626298e-05,4.962337303200323e-05,0.0002281736272166079,,MB,1658.08128,8372.813824,0.0,7962.886144,7872.44544,s,10,3.208184783935547,0.3208184783935547,0.0015482526784383604,0.3211701965332031,0.32249743347167964,0.322578581237793,0.3226434994506836,"[0.31727294921875, 0.3193846435546875, 0.3202622375488281, 0.3202374572753906, 0.32068597412109373, 0.3224794006347656, 0.3218287658691406, 0.3216544189453125, 0.32171920776367186, 0.32265972900390627]",tokens/s,797.9590243114346,kWh,9.335483573828066e-06,1.0295335762255684e-06,6.214831360749928e-06,1.6579848510803562e-05,tokens/kWh,15440430.582534475,MB,1666.674688,8624.472064,0.0,8214.544384,8118.577152,s,10,27.089406494140626,2.7089406494140627,0.004729172827181731,2.7089176025390627,2.7149712158203125,2.7152866333007815,2.7155389672851564,"[2.704410888671875, 2.714901123046875, 2.711612060546875, 2.701280029296875, 2.707578369140625, 2.70420947265625, 2.71560205078125, 2.7102568359375, 2.713653076171875, 2.705902587890625]",tokens/s,23.25632346859528,kWh,7.935913866033882e-05,8.753395499857032e-06,5.275871581805027e-05,0.00014087124997824615,tokens/kWh,447216.8736326872,,s,630,27.0860598335266,0.04299374576750256,0.0003475571523909005,0.042998958587646484,0.04339941749572754,0.04347417964935303,0.043852793464660644,"[0.043175136566162106, 0.04260927963256836, 0.042326175689697265, 0.042278911590576174, 0.04229935836791992, 0.04226233673095703, 0.04241388702392578, 0.04229721450805664, 0.04244534301757812, 0.04283391952514649, 0.04293603134155274, 0.04262704086303711, 0.04262508773803711, 0.042666240692138674, 0.04270489501953125, 0.042513664245605466, 0.04242918395996094, 0.042425472259521486, 0.04255424118041992, 0.04276627349853516, 0.043072895050048826, 0.04264400100708008, 0.04272947311401367, 0.04285164642333984, 0.042676544189453124, 0.042777118682861326, 0.04273299026489258, 0.042717758178710936, 0.0426673583984375, 0.04304553604125977, 0.04272127914428711, 0.04272281646728516, 0.04283030319213867, 0.04328656005859375, 0.04295091247558594, 0.04286233520507812, 0.042995712280273435, 0.04302627182006836, 0.04289539337158203, 0.04282102584838867, 0.04287561416625976, 0.042931617736816405, 0.043772350311279296, 0.04319452667236328, 0.04307891082763672, 0.043223583221435546, 0.04314470291137695, 0.043184864044189454, 0.04308582305908203, 0.04333884811401367, 0.04351084899902344, 0.04338876724243164, 0.04333878326416016, 0.04329776000976562, 0.043237377166748046, 0.043345375061035155, 0.04350620651245117, 0.04333977508544922, 0.04346060943603516, 0.043302913665771485, 0.0434952621459961, 0.043472705841064455, 0.043336032867431644, 0.043364864349365234, 0.042727294921875, 0.042464958190917966, 0.042301822662353515, 0.04230569458007812, 0.042411678314208986, 0.04323148727416992, 0.042772289276123046, 0.042735809326171874, 0.04303811264038086, 0.04293443298339844, 0.04286240005493164, 0.04269680023193359, 0.04265014266967773, 0.0425533447265625, 0.042906688690185546, 0.04272019195556641, 0.042668033599853515, 0.04272947311401367, 0.04288716888427734, 0.04304608154296875, 0.04324560165405274, 0.043031326293945314, 0.0432042236328125, 0.04300611114501953, 0.04313520050048828, 0.04304217529296875, 0.04284409713745117, 0.044810943603515625, 0.042923648834228514, 0.042874591827392575, 0.04308972930908203, 0.04332015991210938, 0.04316364669799805, 0.04313907241821289, 0.043199806213378905, 0.042832576751708984, 0.04298342514038086, 0.04301801681518555, 0.043191520690917966, 0.04295100784301758, 0.042984096527099606, 0.0432803840637207, 0.04321459197998047, 0.043235584259033205, 0.04326326370239258, 0.043324127197265624, 0.043549728393554685, 0.04349216079711914, 0.04337606430053711, 0.043301601409912106, 0.04330873489379883, 0.04346502304077148, 0.04342572784423828, 0.04344015884399414, 0.04330918502807617, 0.04337615966796875, 0.04341142272949219, 0.04343392181396484, 0.04336064147949219, 0.04335113525390625, 0.04332835388183594, 0.043323551177978516, 0.04378412628173828, 0.04307769775390625, 0.04273385620117188, 0.04267740631103516, 0.04379296112060547, 0.04258611297607422, 0.042510337829589843, 0.04253696060180664, 0.04282777786254883, 0.042802783966064455, 0.042844703674316406, 0.04269452667236328, 0.04265286254882812, 0.04262790298461914, 0.042447872161865234, 0.04236185455322266, 0.042792095184326175, 0.04294332885742187, 0.042979358673095706, 0.04304598236083984, 0.04305516815185547, 0.04295148849487305, 0.0432042236328125, 0.043106590270996094, 0.043219039916992184, 0.0431267204284668, 0.04299987030029297, 0.04300182342529297, 0.04302214431762695, 0.04272297668457031, 0.04273849487304687, 0.04298521423339844, 0.04286054229736328, 0.042727294921875, 0.04290070343017578, 0.04313910293579101, 0.04299660873413086, 0.042823680877685545, 0.042790912628173826, 0.04308377456665039, 0.04322742462158203, 0.04312998580932617, 0.0431129264831543, 0.043554943084716795, 0.04348435211181641, 0.043399295806884765, 0.043442878723144535, 0.04337254333496094, 0.04320665740966797, 0.043200511932373044, 0.04338278579711914, 0.04298076629638672, 0.04298179244995117, 0.04310444641113281, 0.043286720275878904, 0.043224895477294925, 0.04326358413696289, 0.0430838737487793, 0.04315343856811524, 0.04418588638305664, 0.04316774368286133, 0.043069438934326174, 0.04311859130859375, 0.04332729721069336, 0.0427760009765625, 0.042334720611572264, 0.04224227142333985, 0.04214505767822266, 0.04234400177001953, 0.042380287170410154, 0.04238131332397461, 0.042256385803222656, 0.04229529571533203, 0.04232585525512695, 0.042410144805908205, 0.04254265594482422, 0.042756542205810544, 0.04262911987304688, 0.04316998291015625, 0.04266374588012695, 0.042491233825683594, 0.04270662307739258, 0.04284515380859375, 0.04293001556396484, 0.04296720123291015, 0.04312678527832031, 0.043099838256835936, 0.04295507049560547, 0.043017822265625, 0.04270940780639648, 0.04268646240234375, 0.0426618881225586, 0.04274380874633789, 0.04292348861694336, 0.045267486572265626, 0.04263427352905273, 0.04264595031738281, 0.04264400100708008, 0.0425799674987793, 0.04271004867553711, 0.04305193710327149, 0.0428073616027832, 0.04279500961303711, 0.04286054229736328, 0.043222496032714844, 0.04295529556274414, 0.04301433563232422, 0.043036449432373045, 0.043216926574707035, 0.04325510406494141, 0.04335599899291992, 0.043103073120117186, 0.04330873489379883, 0.04307366561889649, 0.043159679412841795, 0.04308486557006836, 0.04294547271728515, 0.04293228912353515, 0.04294569778442383, 0.04314339065551758, 0.04308569717407226, 0.04297999954223633, 0.042998046875, 0.04310201644897461, 0.04306275177001953, 0.04313296127319336, 0.04342041778564453, 0.042923072814941406, 0.04268304061889648, 0.04245695877075195, 0.042523040771484374, 0.042502143859863284, 0.04253081512451172, 0.04278681564331055, 0.042659839630126956, 0.042567550659179686, 0.04259648132324219, 0.04259804916381836, 0.04273958587646484, 0.042856929779052734, 0.042649600982666014, 0.042641407012939454, 0.0430797119140625, 0.04279497528076172, 0.0428721923828125, 0.04324940872192383, 0.04305395126342773, 0.04312063980102539, 0.0432474250793457, 0.04321913528442383, 0.043122337341308596, 0.04296739196777344, 0.04294655990600586, 0.04298886489868164, 0.04289401626586914, 0.043014144897460936, 0.04270284652709961, 0.04286054229736328, 0.0427845458984375, 0.04271491241455078, 0.04285673522949219, 0.042626911163330075, 0.04286291122436523, 0.04267212677001953, 0.042883071899414066, 0.04324262237548828, 0.04294569778442383, 0.04293913650512695, 0.04305372619628906, 0.04340768051147461, 0.04332134246826172, 0.04333939361572266, 0.043321758270263674, 0.043337696075439455, 0.04309196853637695, 0.04382668685913086, 0.04306585693359375, 0.04290764617919922, 0.04312441635131836, 0.043477310180664065, 0.043245567321777346, 0.04310220718383789, 0.04324966430664062, 0.04322009658813476, 0.04309439849853516, 0.04290729522705078, 0.04290224075317383, 0.0431426887512207, 0.04330131149291992, 0.043869632720947266, 0.043270721435546874, 0.042651649475097655, 0.04259635162353516, 0.04260051345825195, 0.0426044807434082, 0.04250787353515625, 0.04245340728759766, 0.0425920639038086, 0.04257574462890625, 0.04250860977172852, 0.042684417724609375, 0.0425984001159668, 0.04245884704589844, 0.042473758697509766, 0.04240588760375977, 0.04229324722290039, 0.04250447845458984, 0.04273347091674805, 0.04280096054077148, 0.04284524917602539, 0.04294547271728515, 0.04292812728881836, 0.042928382873535155, 0.043020030975341794, 0.042979488372802736, 0.04280073547363281, 0.04271129608154297, 0.04288857650756836, 0.042961536407470705, 0.042638561248779294, 0.042549312591552736, 0.04258233642578125, 0.04249436950683594, 0.04265369415283203, 0.042676223754882815, 0.04270451354980469, 0.04268207931518555, 0.04268304061889648, 0.042706367492675784, 0.04297580718994141, 0.04300799942016602, 0.043044864654541014, 0.043243518829345705, 0.04332921600341797, 0.04344579315185547, 0.04337334442138672, 0.04329676818847656, 0.04333772659301758, 0.04314908981323242, 0.043308704376220704, 0.04311507034301758, 0.04339859390258789, 0.0432213134765625, 0.043151649475097656, 0.04324476623535156, 0.04338137435913086, 0.04332284927368164, 0.043380577087402346, 0.0433111686706543, 0.043299583435058596, 0.04343603134155274, 0.04347420883178711, 0.04339913558959961, 0.04303260803222656, 0.04261068725585938, 0.042665985107421874, 0.042510112762451174, 0.042610912322998046, 0.04250009536743164, 0.04269430541992188, 0.042690910339355466, 0.0426794548034668, 0.042686431884765626, 0.04272422409057617, 0.042659103393554686, 0.04273353576660156, 0.04263616180419922, 0.04261452865600586, 0.04288703918457031, 0.04281983947753906, 0.04295465469360352, 0.04302963256835937, 0.04312092971801758, 0.043067935943603516, 0.04314457702636719, 0.04344911956787109, 0.0433889274597168, 0.04321062469482422, 0.04319004821777344, 0.04307145690917969, 0.04307622528076172, 0.042833663940429687, 0.04305100631713867, 0.04298342514038086, 0.0429317741394043, 0.04286028671264648, 0.04282233428955078, 0.04310131072998047, 0.04322739028930664, 0.04371212768554687, 0.04313008117675781, 0.04309328079223633, 0.04327679824829102, 0.04336844635009766, 0.04324966430664062, 0.043227134704589845, 0.0434628791809082, 0.04340918350219727, 0.04336460876464844, 0.04359302520751953, 0.04339471817016602, 0.04343452835083008, 0.04332284927368164, 0.043485729217529294, 0.043612415313720704, 0.04323328018188476, 0.043361854553222653, 0.043153854370117185, 0.04337254333496094, 0.04334796905517578, 0.04329471969604492, 0.04329676818847656, 0.043466751098632815, 0.0434741439819336, 0.04342454528808594, 0.044015777587890624, 0.043071327209472654, 0.04274176025390625, 0.04261273574829102, 0.042592254638671875, 0.04266569519042969, 0.042514720916748044, 0.04254316711425781, 0.04259564971923828, 0.0426943359375, 0.04262499237060547, 0.042585247039794924, 0.04269622421264648, 0.04262659072875977, 0.042509056091308596, 0.043292671203613284, 0.04283596801757812, 0.04307558441162109, 0.042925216674804687, 0.04285116958618164, 0.04293632125854492, 0.04298150253295899, 0.04311846542358398, 0.04318767929077148, 0.04304540634155273, 0.04296499252319336, 0.0429439697265625, 0.04309657669067383, 0.0428787841796875, 0.04274812698364258, 0.04267827224731445, 0.04266921615600586, 0.04284288024902344, 0.042853759765625, 0.0429288330078125, 0.04280732727050781, 0.042731201171875, 0.042799488067626956, 0.04263724899291992, 0.042774528503417966, 0.043022335052490236, 0.04317388916015625, 0.04325580978393555, 0.04331433486938477, 0.04313993453979492, 0.04331699371337891, 0.04341785430908203, 0.043493377685546876, 0.04351795196533203, 0.043425792694091796, 0.043380062103271486, 0.043374591827392575, 0.044028575897216794, 0.043262046813964845, 0.04314720153808594, 0.04341574478149414, 0.04328015899658203, 0.04346265411376953, 0.04312998580932617, 0.0431396484375, 0.04314963150024414, 0.04316159820556641, 0.04323667144775391, 0.04386345672607422, 0.04311513519287109, 0.04253692626953125, 0.04272332763671875, 0.042768222808837894, 0.0427848014831543, 0.042829376220703125, 0.04252102279663086, 0.04254937744140625, 0.04265475082397461, 0.04252156829833984, 0.04261999893188476, 0.04249078369140625, 0.0427047348022461, 0.04272483062744141, 0.04268716812133789, 0.04311203384399414, 0.043108158111572266, 0.042885921478271485, 0.04316140747070313, 0.04310812759399414, 0.04309833526611328, 0.04340675354003906, 0.04357590484619141, 0.04315468978881836, 0.04315350341796875, 0.0431025276184082, 0.042889217376708984, 0.04286294555664062, 0.04276428985595703, 0.042773696899414064, 0.04284627151489258, 0.042910465240478514, 0.042882591247558596, 0.042931968688964844, 0.04295753479003906, 0.04287078475952148, 0.04290124893188477, 0.043014400482177736, 0.04313638305664062, 0.04307567977905274, 0.04341420745849609, 0.043764896392822265, 0.04334457778930664, 0.043402400970458985, 0.04345328140258789, 0.043361568450927736, 0.04321254348754883, 0.04325680160522461, 0.04315468978881836, 0.04310940933227539, 0.043173599243164065, 0.043200096130371096, 0.04331875228881836, 0.043138080596923825, 0.04319753646850586, 0.04346559906005859, 0.0434005126953125, 0.04327088165283203, 0.04349737548828125, 0.04348096084594726, 0.043432064056396484, 0.043490623474121096, 0.04354662322998047, 0.04286159896850586, 0.04266902542114258, 0.04239321517944336, 0.042377376556396486, 0.0426539192199707, 0.042573471069335934, 0.04252447891235352, 0.04252726364135742, 0.04244406509399414, 0.04257839965820313, 0.042493438720703124, 0.042558208465576175, 0.042543102264404296, 0.04253081512451172, 0.04278499221801758, 0.04280889511108398, 0.04281708908081055, 0.0427977294921875, 0.04288943862915039, 0.04315881729125977, 0.04314742279052734, 0.04312303924560547, 0.043089759826660155, 0.04301635360717773, 0.04305676651000977, 0.043032958984375, 0.04296089553833008, 0.04294620895385742, 0.04287932968139648, 0.04281327819824219, 0.042948257446289065, 0.04295731353759766, 0.04287078475952148, 0.042831871032714845, 0.0428361930847168, 0.04291766357421875, 0.04284633636474609, 0.0431962890625, 0.04320367813110351, 0.043170719146728515, 0.04303987121582031, 0.04301433563232422, 0.0432803840637207, 0.04325446319580078, 0.043128833770751954, 0.043096065521240234, 0.043093345642089845, 0.04324121475219726, 0.04332646560668945, 0.04329564666748047, 0.04312326431274414, 0.042932193756103514, 0.042936798095703124, 0.04297836685180664, 0.043021247863769534, 0.04305660629272461, 0.043409950256347654, 0.04320460891723633, 0.04338614273071289, 0.04315119934082031, 0.04305395126342773, 0.043186176300048826]",tokens/s,23.25919694012482,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,876.408832,655.294464,0.0,260.046848,258.555392,s,1,7.42957080078125,7.42957080078125,0.0,7.42957080078125,7.42957080078125,7.42957080078125,7.42957080078125,[7.42957080078125],,kWh,1.47450138791631e-05,1.617255663913867e-06,4.5072258280029476e-06,2.0869495371079913e-05,,MB,1354.1376,751.763456,0.0,341.835776,317.950464,s,14,0.18944127941131592,0.013531519957951137,0.00010986742841942603,0.01349833583831787,0.013646256065368654,0.01368941445350647,0.013752180376052857,"[0.013313983917236328, 0.013539551734924316, 0.013508831977844239, 0.01347913646697998, 0.013476960182189942, 0.01360489559173584, 0.01364412784576416, 0.013487839698791504, 0.013767871856689453, 0.013647168159484864, 0.013454751968383789, 0.013474368095397949, 0.013429311752319336, 0.013612480163574218]",tokens/s,18918.791148039072,kWh,3.933527302672926e-07,4.33739737116998e-08,2.0916496218059023e-07,6.458916661595826e-07,tokens/kWh,396351297.6133512,MB,1394.151424,779.026432,0.0,369.098752,317.953024,s,14,9.84946746826172,0.7035333905901229,0.003768367487343936,0.7027530212402344,0.7062368774414063,0.7098903015136719,0.7145298669433594,"[0.703157470703125, 0.7049987182617188, 0.7024894409179687, 0.7156897583007813, 0.7067675170898438, 0.7030166015625, 0.703255859375, 0.7013170166015625, 0.7020364990234375, 0.7000364379882813, 0.7017915649414063, 0.7006768188476562, 0.7031799926757812, 0.7010537719726563]",tokens/s,89.54798854274092,kWh,2.0345932114177316e-05,2.243730290200346e-06,7.366507765019225e-06,2.9956170169396877e-05,tokens/kWh,2103072.5771601,,s,882,9.842919075965877,0.011159772194972654,0.00023924831474364988,0.01113099193572998,0.01124176025390625,0.01131808614730835,0.01177602387428283,"[0.010941344261169434, 0.011363776206970214, 0.011177696228027344, 0.011175007820129394, 0.011122431755065918, 0.011148544311523437, 0.011139840126037597, 0.011110239982604981, 0.011110560417175293, 0.011093024253845216, 0.011267040252685547, 0.011154656410217284, 0.01115011215209961, 0.011115551948547363, 0.011127488136291504, 0.011277728080749512, 0.011207488059997559, 0.01118012809753418, 0.011095711708068848, 0.011179936408996583, 0.01119375991821289, 0.011166720390319825, 0.011177087783813476, 0.01110431957244873, 0.011184608459472656, 0.011194720268249511, 0.011208703994750976, 0.01113702392578125, 0.011073247909545898, 0.011125023841857911, 0.011114496231079102, 0.011100128173828125, 0.011062751770019532, 0.01110108757019043, 0.011156959533691406, 0.011157600402832032, 0.011135071754455566, 0.011164928436279297, 0.011156576156616211, 0.011145888328552246, 0.011122879981994628, 0.011342687606811524, 0.011103743553161622, 0.011163135528564454, 0.011170720100402832, 0.011165760040283202, 0.011130816459655761, 0.01114476776123047, 0.011173664093017578, 0.011193056106567383, 0.011124640464782716, 0.011087008476257324, 0.011164192199707032, 0.01119491195678711, 0.011165568351745606, 0.011206175804138184, 0.01113491153717041, 0.011127327919006348, 0.011151231765747071, 0.011148991584777833, 0.01112720012664795, 0.011130911827087402, 0.011213120460510253, 0.010954303741455078, 0.011210463523864745, 0.01124176025390625, 0.01118825626373291, 0.011138848304748535, 0.01108182430267334, 0.011115167617797852, 0.011206656455993653, 0.011228896141052247, 0.01124176025390625, 0.01117360019683838, 0.011184415817260741, 0.01120684814453125, 0.011245375633239746, 0.011136096000671386, 0.011216128349304199, 0.01130281639099121, 0.011754591941833497, 0.011418368339538574, 0.011681695938110352, 0.011278240203857422, 0.011237471580505372, 0.01115340805053711, 0.011183199882507324, 0.011211199760437012, 0.011125375747680664, 0.011070464134216309, 0.011231583595275879, 0.011270591735839844, 0.011148351669311524, 0.01110319995880127, 0.011022432327270508, 0.011134048461914063, 0.01113379192352295, 0.011118528366088867, 0.011077535629272462, 0.011219103813171387, 0.011156607627868652, 0.011118911743164062, 0.011112992286682128, 0.011052864074707031, 0.011137344360351563, 0.011151007652282715, 0.011179583549499512, 0.011157535552978515, 0.011227231979370117, 0.011225855827331543, 0.011244864463806152, 0.011121408462524414, 0.01120847988128662, 0.011055071830749512, 0.011143296241760255, 0.011314656257629395, 0.011210463523864745, 0.011153632164001465, 0.011084063529968262, 0.011165216445922851, 0.011153344154357911, 0.0111080961227417, 0.011110752105712891, 0.011097760200500488, 0.011101152420043945, 0.011098112106323242, 0.011083776473999024, 0.01118575954437256, 0.011216832160949706, 0.011106783866882325, 0.011353631973266602, 0.011212736129760743, 0.011196672439575195, 0.011125023841857911, 0.011074655532836914, 0.011131808280944825, 0.011109503746032715, 0.011152192115783692, 0.011098176002502442, 0.011136832237243653, 0.01120684814453125, 0.011119903564453125, 0.011059776306152343, 0.011032768249511719, 0.011138175964355469, 0.011160575866699218, 0.011132767677307129, 0.01115932846069336, 0.01107590389251709, 0.011148832321166991, 0.01115135955810547, 0.011134943962097167, 0.01102892780303955, 0.01109398365020752, 0.011085503578186036, 0.011180000305175781, 0.01107808017730713, 0.011048928260803222, 0.011134719848632813, 0.011190303802490234, 0.01112723159790039, 0.011104160308837891, 0.01115071964263916, 0.011108415603637695, 0.011082112312316894, 0.011053055763244628, 0.011026432037353515, 0.011161120414733886, 0.011169631958007813, 0.01121555233001709, 0.011244607925415038, 0.011281279563903809, 0.011198464393615723, 0.011200511932373047, 0.011091967582702637, 0.011086848258972168, 0.01109324836730957, 0.011120351791381836, 0.01112713623046875, 0.011166943550109863, 0.011259424209594726, 0.011164416313171386, 0.011220319747924805, 0.011131744384765625, 0.011110400199890137, 0.011106207847595214, 0.01116374397277832, 0.011292672157287598, 0.011222175598144531, 0.010917311668395996, 0.01114412784576416, 0.011158623695373536, 0.011120896339416503, 0.01117692756652832, 0.011144255638122559, 0.011136992454528809, 0.011213472366333008, 0.011282431602478027, 0.011269696235656738, 0.011231679916381836, 0.011124383926391602, 0.011125439643859864, 0.011226335525512695, 0.011428288459777832, 0.01146675205230713, 0.011367808341979981, 0.011214879989624024, 0.011143775939941406, 0.011190272331237794, 0.011162848472595214, 0.011170592308044434, 0.011122688293457032, 0.01109347152709961, 0.011268544197082519, 0.011224703788757324, 0.011176416397094727, 0.011530240058898926, 0.01113315200805664, 0.011179903984069824, 0.011193535804748534, 0.011199135780334473, 0.011156736373901367, 0.011137855529785157, 0.011186176300048829, 0.011183520317077637, 0.01116425609588623, 0.011165696144104004, 0.01173299217224121, 0.014544320106506348, 0.01618182373046875, 0.011280384063720703, 0.011198464393615723, 0.011116543769836425, 0.011068863868713379, 0.01122873592376709, 0.011391776084899902, 0.011184224128723145, 0.011110527992248535, 0.0110632963180542, 0.011188223838806152, 0.011187647819519043, 0.011209088325500488, 0.011177696228027344, 0.011166175842285157, 0.011193568229675294, 0.011149087905883788, 0.011174847602844238, 0.012023776054382325, 0.011214943885803222, 0.011070528030395509, 0.011652031898498534, 0.011185824394226074, 0.0108602876663208, 0.011147520065307618, 0.01116710376739502, 0.011112832069396972, 0.01118233585357666, 0.011255935668945312, 0.011179648399353027, 0.011198304176330566, 0.011126367568969727, 0.011052255630493163, 0.011148768424987793, 0.011163776397705077, 0.011129920005798339, 0.011135999679565429, 0.011160863876342773, 0.011546591758728027, 0.011295424461364747, 0.011179360389709472, 0.011199359893798827, 0.01105840015411377, 0.011227871894836426, 0.011154975891113281, 0.011258303642272949, 0.011161760330200195, 0.011081472396850586, 0.011168928146362304, 0.011164287567138671, 0.01113219165802002, 0.011135295867919922, 0.011189184188842773, 0.011196096420288086, 0.011202527999877929, 0.011180064201354981, 0.011032032012939454, 0.011132672309875488, 0.011184896469116211, 0.011122688293457032, 0.011323488235473633, 0.011308320045471191, 0.011419391632080078, 0.01197555160522461, 0.011309056282043458, 0.011228704452514648, 0.011330016136169433, 0.011111647605895995, 0.011074336051940917, 0.011108351707458495, 0.011108415603637695, 0.011100095748901367, 0.01107148838043213, 0.011192031860351562, 0.011247903823852538, 0.011620351791381836, 0.011659263610839844, 0.011290623664855956, 0.011243488311767578, 0.011213855743408203, 0.011274304389953613, 0.011286623954772949, 0.011286527633666991, 0.01120751953125, 0.01111843204498291, 0.011159711837768555, 0.010941344261169434, 0.01117407989501953, 0.011140224456787109, 0.01110700798034668, 0.011132927894592285, 0.011065343856811523, 0.01115340805053711, 0.011149312019348144, 0.011103520393371582, 0.011050880432128906, 0.011127072334289551, 0.011153984069824218, 0.011129920005798339, 0.011140031814575195, 0.01112451171875, 0.011139295578002929, 0.011143168449401856, 0.011104479789733886, 0.011104031562805176, 0.011103903770446778, 0.011126463890075683, 0.011117216110229491, 0.011110400199890137, 0.01110166358947754, 0.01118671989440918, 0.011131072044372558, 0.011116448402404786, 0.011068896293640136, 0.011125184059143067, 0.011189696311950683, 0.011315775871276855, 0.011141152381896972, 0.011334624290466309, 0.011891712188720703, 0.011173824310302734, 0.011238752365112304, 0.011229920387268066, 0.011102208137512207, 0.011038368225097656, 0.011263615608215332, 0.011154144287109376, 0.011144191741943359, 0.011089920043945312, 0.011070464134216309, 0.011159903526306152, 0.011126432418823242, 0.011186431884765625, 0.011048992156982422, 0.011149312019348144, 0.011097824096679688, 0.011166848182678223, 0.01110108757019043, 0.011067008018493652, 0.011212639808654785, 0.011179648399353027, 0.011158528327941895, 0.011100031852722169, 0.011157695770263671, 0.011138879776000976, 0.011160767555236817, 0.011203136444091797, 0.011086079597473144, 0.011300864219665528, 0.01085209560394287, 0.011110048294067382, 0.011188159942626954, 0.011169728279113769, 0.011150015830993652, 0.011061471939086914, 0.011114303588867187, 0.011476991653442382, 0.011181952476501465, 0.011524127960205079, 0.011185600280761718, 0.01116431999206543, 0.01186739158630371, 0.011273056030273438, 0.011318207740783692, 0.011138143539428711, 0.011102399826049804, 0.01105299186706543, 0.011117728233337402, 0.011106911659240723, 0.011102463722229004, 0.01154800033569336, 0.011113216400146484, 0.011158592224121093, 0.01113491153717041, 0.01111673641204834, 0.011033087730407716, 0.011097760200500488, 0.011194304466247558, 0.01108620834350586, 0.011058719635009765, 0.011040767669677735, 0.01112112045288086, 0.011242560386657715, 0.011100959777832032, 0.011059616088867187, 0.011164416313171386, 0.011144191741943359, 0.011106304168701172, 0.011068896293640136, 0.011023167610168458, 0.011128543853759765, 0.011149184226989746, 0.01115347194671631, 0.011100223541259766, 0.011143168449401856, 0.011169728279113769, 0.011177984237670899, 0.01112070369720459, 0.011041119575500488, 0.011107872009277344, 0.011077407836914063, 0.01109023952484131, 0.011016415596008302, 0.011112256050109863, 0.011370495796203613, 0.011130847930908204, 0.011155679702758789, 0.011083583831787109, 0.011202079772949219, 0.011153887748718262, 0.011153632164001465, 0.011073311805725098, 0.010983519554138184, 0.011087776184082031, 0.011039744377136231, 0.011114336013793946, 0.011288800239562989, 0.011171903610229492, 0.0110665283203125, 0.011108575820922851, 0.011151616096496581, 0.01116748809814453, 0.011157312393188477, 0.011087583541870118, 0.011172831535339356, 0.011235103607177735, 0.011172063827514648, 0.01112063980102539, 0.011113632202148437, 0.01115017604827881, 0.011139072418212891, 0.011148384094238281, 0.01109235191345215, 0.011116064071655274, 0.011148287773132324, 0.01147871971130371, 0.01111036777496338, 0.011050751686096191, 0.011104543685913086, 0.011149824142456055, 0.011140928268432618, 0.011120384216308593, 0.011069696426391601, 0.011169792175292969, 0.011143168449401856, 0.011140576362609863, 0.011098400115966797, 0.011114496231079102, 0.011147487640380859, 0.011125120162963867, 0.011101152420043945, 0.011135135650634766, 0.011196255683898926, 0.011119296073913574, 0.011065055847167968, 0.011036959648132325, 0.0110731840133667, 0.011099552154541016, 0.011201472282409667, 0.01113491153717041, 0.011075615882873535, 0.011122336387634277, 0.011143551826477052, 0.011057120323181152, 0.011052800178527831, 0.011088255882263184, 0.011153311729431152, 0.011129152297973633, 0.011118176460266114, 0.01103270435333252, 0.011129920005798339, 0.011178144454956055, 0.01110636806488037, 0.011047616004943847, 0.011058367729187012, 0.010780768394470215, 0.011065312385559082, 0.011125375747680664, 0.011120448112487793, 0.011062687873840332, 0.011113247871398925, 0.011122688293457032, 0.011100159645080567, 0.011126784324645997, 0.01109769630432129, 0.011084480285644531, 0.011134431838989258, 0.011124992370605468, 0.011141119956970215, 0.011108351707458495, 0.011134880065917969, 0.01115328025817871, 0.011472319602966309, 0.011174176216125488, 0.011065855979919433, 0.011192383766174317, 0.011132512092590332, 0.011147487640380859, 0.011114399909973144, 0.011091391563415527, 0.011176608085632323, 0.011175392150878906, 0.011188384056091308, 0.011311200141906739, 0.011192511558532715, 0.011206368446350097, 0.011184672355651855, 0.011143008232116699, 0.011181695938110352, 0.011068191528320313, 0.01114076805114746, 0.011122336387634277, 0.011076000213623047, 0.011078816413879394, 0.011148032188415527, 0.01115555191040039, 0.011147199630737304, 0.011223103523254395, 0.011112575531005859, 0.011203776359558106, 0.01115993595123291, 0.011137344360351563, 0.011116543769836425, 0.011128255844116211, 0.011247615814208984, 0.01117360019683838, 0.011164511680603027, 0.01103872013092041, 0.011104415893554688, 0.01111571216583252, 0.011096927642822265, 0.011063103675842284, 0.01112063980102539, 0.011143168449401856, 0.01112063980102539, 0.011144479751586915, 0.011129568099975586, 0.011147232055664062, 0.010875935554504395, 0.011146016120910644, 0.011135071754455566, 0.01112822437286377, 0.011112704277038574, 0.011060959815979004, 0.01110694408416748, 0.011091456413269044, 0.011142815589904785, 0.011023263931274414, 0.01111836814880371, 0.011116703987121583, 0.011122783660888673, 0.011101280212402344, 0.011078463554382325, 0.011095616340637207, 0.011108799934387207, 0.011075391769409179, 0.011032768249511719, 0.011097503662109374, 0.011090432167053223, 0.011096256256103516, 0.011050911903381347, 0.011053055763244628, 0.011085824012756347, 0.011154784202575683, 0.011037343978881837, 0.011053055763244628, 0.011124735832214355, 0.011106176376342774, 0.011104607582092285, 0.011034399986267089, 0.011155136108398437, 0.011104576110839844, 0.011065343856811523, 0.011054752349853515, 0.011069791793823242, 0.011179327964782715, 0.011141695976257325, 0.011108799934387207, 0.01104851245880127, 0.01109004783630371, 0.011122688293457032, 0.011383935928344727, 0.011096832275390624, 0.011093407630920411, 0.01112985610961914, 0.011126496315002442, 0.011110400199890137, 0.011102208137512207, 0.011108351707458495, 0.0111627836227417, 0.011139583587646485, 0.011086112022399902, 0.011061311721801758, 0.011130880355834961, 0.011193504333496094, 0.011162464141845702, 0.011124608039855956, 0.011068799972534179, 0.011145024299621583, 0.011116607666015625, 0.011118911743164062, 0.010893952369689942, 0.011158687591552734, 0.011143520355224609, 0.011192352294921874, 0.01118620777130127, 0.01112492847442627, 0.011116543769836425, 0.011062784194946289, 0.011164159774780273, 0.011168095588684082, 0.011359295845031737, 0.011165599822998046, 0.011120927810668946, 0.011157919883728027, 0.011146431922912597, 0.011131967544555664, 0.011105152130126953, 0.011119071960449218, 0.011147680282592774, 0.011108672142028809, 0.01107545566558838, 0.011011296272277833, 0.011091903686523437, 0.011102527618408202, 0.011107904434204102, 0.01114566421508789, 0.011201184272766113, 0.01152787208557129, 0.01115555191040039, 0.011142399787902832, 0.011077983856201172, 0.011073856353759766, 0.01113424015045166, 0.011128800392150879, 0.01109705638885498, 0.011064288139343261, 0.01110099220275879, 0.011134176254272462, 0.01113145637512207, 0.011017951965332031, 0.01108784008026123, 0.011156000137329102, 0.011167296409606934, 0.011186047554016114, 0.011082176208496095, 0.011183584213256836, 0.011114432334899902, 0.01113161563873291, 0.011051008224487305, 0.011079775810241698, 0.011113887786865234, 0.011139552116394042, 0.011268128395080566, 0.011103967666625976, 0.011116191864013672, 0.011129471778869629, 0.011186176300048829, 0.011184127807617187, 0.011046560287475585, 0.011173919677734375, 0.011143487930297851, 0.011087424278259277, 0.011038240432739257, 0.01078700828552246, 0.0110632963180542, 0.011118399620056152, 0.011126976013183593, 0.01125376033782959, 0.011085824012756347, 0.0110448637008667, 0.011282431602478027, 0.01118723201751709, 0.011090911865234376, 0.011081119537353516, 0.011073823928833007, 0.011167167663574219, 0.011213695526123047, 0.011106304168701172, 0.011085824012756347, 0.011071552276611328, 0.011092000007629395, 0.011117695808410644, 0.011154208183288574, 0.011398271560668945, 0.011228032112121582, 0.011223039627075194, 0.011195391654968261, 0.011092415809631348, 0.011085856437683105, 0.011086655616760253, 0.01111366367340088, 0.01108022403717041, 0.011011199951171875, 0.011122943878173829, 0.011145855903625488, 0.01109830379486084, 0.011044447898864745, 0.011092191696166992, 0.011116800308227539, 0.011321056365966796, 0.011131199836730957, 0.011031295776367188, 0.01110319995880127, 0.011089920043945312, 0.011059391975402831, 0.011020352363586425, 0.01109552001953125, 0.011090208053588867, 0.01111638355255127, 0.011085887908935547, 0.011051103591918946, 0.011122688293457032, 0.011141119956970215, 0.011161248207092285, 0.011260255813598633, 0.011106304168701172, 0.011166815757751464, 0.011076319694519042, 0.011063488006591796, 0.01105072021484375, 0.011149600028991699, 0.011097887992858886, 0.011094240188598633, 0.01103001594543457, 0.011089728355407715, 0.011077407836914063, 0.01087980842590332, 0.011154879570007324, 0.01110358428955078, 0.011074527740478516, 0.011075231552124023, 0.01111689567565918, 0.011067647933959961, 0.011042336463928222, 0.011151679992675781, 0.011315103530883788, 0.011077055931091309, 0.011061408042907716, 0.011084351539611816, 0.011010944366455078, 0.011112992286682128, 0.01108627223968506, 0.011069439888000488, 0.011048959732055665, 0.01162668800354004, 0.011478752136230468, 0.012269887924194336, 0.011263775825500488, 0.01119001579284668, 0.011268351554870605, 0.011083583831787109, 0.011171392440795899, 0.011149888038635253, 0.011400287628173827, 0.011195008277893066, 0.011087200164794923, 0.011322591781616211, 0.011118751525878906, 0.011222368240356445, 0.011125023841857911, 0.01122713565826416, 0.011135135650634766, 0.011127840042114258, 0.01108886432647705, 0.011122207641601562, 0.011157279968261718, 0.011148127555847168, 0.011218111991882324, 0.011096896171569825, 0.01106707191467285, 0.011073663711547851, 0.011097984313964844, 0.011128576278686523, 0.011086367607116699, 0.011052767753601074, 0.011158559799194336, 0.011148480415344239, 0.01110428810119629, 0.011009792327880859, 0.011145119667053222, 0.011122400283813477, 0.01107148838043213, 0.0110546236038208, 0.01108905601501465, 0.01108140754699707, 0.01107529640197754, 0.011081055641174316, 0.011011008262634278, 0.0112391357421875, 0.01091443157196045, 0.011130623817443848, 0.011122048377990723, 0.011098079681396485, 0.011203519821166992, 0.011013759613037109, 0.011123231887817383, 0.011066240310668945, 0.01099068832397461, 0.010989439964294434, 0.011079296112060547, 0.011090304374694824, 0.011075391769409179, 0.01202400016784668, 0.011206815719604492, 0.011120256423950195, 0.01212054443359375, 0.011155200004577637, 0.011122528076171876, 0.011075584411621094, 0.011036704063415528, 0.01120032024383545, 0.011189760208129883, 0.011067520141601563, 0.010996352195739746, 0.011004192352294922, 0.011168895721435547, 0.011096735954284669, 0.011144831657409668, 0.01099232006072998, 0.011218624114990234, 0.011103936195373535, 0.011016511917114257, 0.011026559829711914, 0.011050111770629882, 0.011076352119445802, 0.011061504364013671, 0.0110829439163208, 0.011075551986694337, 0.011119199752807616, 0.011152704238891602, 0.011086175918579102, 0.010969440460205078, 0.01120240020751953, 0.011106399536132813, 0.01124358367919922, 0.011048959732055665, 0.011015520095825196, 0.011176959991455078, 0.01108137607574463, 0.011034848213195801, 0.011040543556213379, 0.011073823928833007, 0.011076512336730958, 0.01101318359375, 0.010989312171936036, 0.011177248001098632, 0.011097087860107421, 0.011202272415161132, 0.011142592430114746, 0.011035039901733398, 0.011093888282775879, 0.011084416389465331]",tokens/s,89.60756389368666,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,8222.408704,11243.814912,0.0,10848.567296,10616.027648,s,1,14.2419736328125,14.2419736328125,0.0,14.2419736328125,14.2419736328125,14.2419736328125,14.2419736328125,[14.2419736328125],,kWh,0.00021355691618333593,2.35493461762268e-05,6.55511635520023e-05,0.00030265742591156504,,MB,4069.998592,11675.828224,0.0,11265.900544,11070.470656,s,10,3.8241392517089845,0.3824139251708984,0.0012889247604856932,0.3826279144287109,0.38372066345214845,0.38415348358154294,0.3844997396850586,"[0.38028997802734377, 0.38029132080078126, 0.3819477233886719, 0.38262469482421874, 0.3820273132324219, 0.38263113403320315, 0.3833066711425781, 0.3836244812011719, 0.3828096313476563, 0.3845863037109375]",tokens/s,669.4316894595174,kWh,1.1202163411574049e-05,1.2354040652425912e-06,7.444728177999863e-06,1.9882295654816503e-05,tokens/kWh,12875776.743516224,MB,4074.22976,11677.925376,0.0,11267.997696,11070.473216,s,10,29.081416992187503,2.90814169921875,0.007295716749810582,2.9061455078125,2.91719306640625,2.9194087890625,2.9211813671875,"[2.89908349609375, 2.898954833984375, 2.9021630859375, 2.904309814453125, 2.90538232421875, 2.90690869140625, 2.91390625, 2.91670068359375, 2.91238330078125, 2.92162451171875]",tokens/s,21.663318543564937,kWh,8.528220892301002e-05,9.406210770988544e-06,5.671276759239928e-05,0.00015140118728639785,tokens/kWh,416112.9851698331,,s,630,29.07887252426148,0.046156940514700755,0.0006409928978163092,0.04608177566528321,0.046541160202026366,0.04677731609344483,0.04871881748199463,"[0.048164958953857424, 0.04631155014038086, 0.045741825103759765, 0.04528819274902344, 0.04536524963378906, 0.045560958862304685, 0.04535491180419922, 0.045319137573242185, 0.04544307327270508, 0.04581785583496094, 0.045707263946533204, 0.04564377593994141, 0.045555519104003905, 0.0458856315612793, 0.04575027084350586, 0.04581894302368164, 0.0458240966796875, 0.045709312438964846, 0.04558921432495117, 0.04567772674560547, 0.04589209747314453, 0.046155967712402345, 0.045975841522216794, 0.04598169708251953, 0.04588339233398438, 0.04588457489013672, 0.045689697265625, 0.04586700820922852, 0.04571731185913086, 0.04568492889404297, 0.04603289413452148, 0.04934041595458984, 0.04544633483886719, 0.04575129699707031, 0.045991744995117184, 0.04591734313964844, 0.0456668815612793, 0.046156063079833984, 0.04584041595458985, 0.04580758285522461, 0.045764606475830076, 0.046639102935791016, 0.04634124755859375, 0.046091136932373045, 0.04625408172607422, 0.046419456481933595, 0.04605206298828125, 0.045895454406738284, 0.04620083236694336, 0.046066944122314456, 0.04586572647094726, 0.04624991989135742, 0.046303329467773435, 0.046088062286376956, 0.04606886291503906, 0.04619548797607422, 0.04612428665161133, 0.04603116989135742, 0.04631324768066406, 0.046482273101806644, 0.046430206298828124, 0.046235649108886716, 0.046524417877197265, 0.04808476638793945, 0.046153953552246094, 0.04573344039916992, 0.04545171356201172, 0.04529507064819336, 0.04539446258544922, 0.045725311279296875, 0.04552096176147461, 0.04553254318237305, 0.045460193634033204, 0.04581398391723633, 0.04593791961669922, 0.045542144775390626, 0.04563763046264648, 0.0458851203918457, 0.04563180923461914, 0.045676544189453126, 0.04588742446899414, 0.04588959884643555, 0.045729694366455076, 0.045846622467041014, 0.046132225036621094, 0.04610886383056641, 0.04602671813964844, 0.04599689483642578, 0.04591753768920898, 0.045761184692382814, 0.04547788619995117, 0.04575641632080078, 0.04597145462036133, 0.045916160583496096, 0.045768543243408205, 0.04661468887329102, 0.04588544082641602, 0.04621868896484375, 0.0459986572265625, 0.046034942626953124, 0.04585062408447266, 0.045860576629638675, 0.046068000793457034, 0.046314815521240234, 0.046171966552734374, 0.04618675231933594, 0.04638800048828125, 0.04631702423095703, 0.04626675033569336, 0.04692768096923828, 0.046050880432128904, 0.04583692932128906, 0.04597760009765625, 0.04613529586791992, 0.046120960235595705, 0.046301185607910154, 0.046456832885742184, 0.04632726287841797, 0.04596380615234375, 0.04633599853515625, 0.046107872009277344, 0.04594358444213867, 0.04606486511230469, 0.046518463134765625, 0.046434913635253906, 0.04636841583251953, 0.04864233779907227, 0.046163841247558596, 0.045297664642333986, 0.04524249649047852, 0.04565971374511719, 0.04552262496948242, 0.04529024124145508, 0.04550451278686524, 0.04563750457763672, 0.04560441589355469, 0.045402687072753904, 0.04558848190307617, 0.04574003219604492, 0.04577280044555664, 0.045927871704101564, 0.04580409622192383, 0.04604431915283203, 0.04602054214477539, 0.045833118438720705, 0.045830142974853515, 0.04624361419677735, 0.046055553436279296, 0.04616790390014648, 0.04598969650268555, 0.0458160629272461, 0.045811904907226565, 0.04601769638061524, 0.04584320068359375, 0.04563158416748047, 0.04605132675170898, 0.04582809448242187, 0.045838207244873044, 0.04569305419921875, 0.04625305557250976, 0.04619353485107422, 0.04616534423828125, 0.04596611022949219, 0.04619059371948242, 0.0458092155456543, 0.045900222778320315, 0.046442497253417966, 0.04638515090942383, 0.046274559020996094, 0.046276607513427735, 0.04642611312866211, 0.04627648162841797, 0.046176383972167966, 0.04599193572998047, 0.046369953155517576, 0.046209888458251955, 0.04618854522705078, 0.046258174896240234, 0.046300865173339846, 0.04631788635253906, 0.046102527618408204, 0.046319454193115235, 0.046000286102294924, 0.046316959381103515, 0.04773846435546875, 0.0459950065612793, 0.046382270812988284, 0.046532703399658204, 0.04658150482177734, 0.04873788833618164, 0.04627011108398438, 0.04568966293334961, 0.04546688079833985, 0.04542086410522461, 0.04538617706298828, 0.04570111846923828, 0.045649921417236325, 0.04565536117553711, 0.045596607208251955, 0.045574783325195316, 0.045582462310791015, 0.045747329711914066, 0.045706111907958986, 0.045690879821777344, 0.04585023880004883, 0.046246078491210936, 0.04601465606689453, 0.04595097732543945, 0.04582988739013672, 0.04611836624145508, 0.046297889709472656, 0.04645891189575195, 0.04633542251586914, 0.0460120964050293, 0.045988929748535155, 0.04579919815063477, 0.04601023864746094, 0.045631614685058594, 0.045791233062744144, 0.0461475830078125, 0.045830142974853515, 0.045661376953125, 0.046054206848144534, 0.04593670272827149, 0.04588947296142578, 0.045932544708251956, 0.046489601135253904, 0.04622463989257813, 0.045918270111083986, 0.04635833740234375, 0.04641471862792969, 0.046327808380126956, 0.046327808380126956, 0.046660606384277346, 0.046429183959960936, 0.046358047485351564, 0.04631804656982422, 0.04626383972167969, 0.046037471771240235, 0.04619651031494141, 0.04614115142822266, 0.0460880012512207, 0.04601721572875977, 0.046239070892333985, 0.04634022521972656, 0.04610915374755859, 0.04632787322998047, 0.046435806274414064, 0.04654671859741211, 0.046488319396972656, 0.046781822204589846, 0.04657187271118164, 0.04790537643432617, 0.045893791198730466, 0.045526912689208984, 0.045326366424560546, 0.04537472152709961, 0.04554991912841797, 0.045596511840820315, 0.045493919372558596, 0.045714305877685546, 0.045821502685546876, 0.04591177749633789, 0.0471448974609375, 0.045625919342041014, 0.04584368133544922, 0.04574720001220703, 0.04577231979370117, 0.04630486297607422, 0.046045089721679686, 0.04583932876586914, 0.04605747222900391, 0.04646297454833984, 0.046132926940917966, 0.04598188781738281, 0.04592038345336914, 0.04597145462036133, 0.04579878234863281, 0.046016670227050784, 0.04581795120239258, 0.04568307113647461, 0.045657470703125, 0.04600064086914062, 0.04617792129516601, 0.04601619338989258, 0.04600876617431641, 0.04591654586791992, 0.04675379180908203, 0.04589977645874024, 0.04614963150024414, 0.046282176971435544, 0.04606991958618164, 0.04646303939819336, 0.046604095458984376, 0.04626444625854492, 0.04631155014038086, 0.04632953643798828, 0.0463917121887207, 0.04593068695068359, 0.04619059371948242, 0.04610784149169922, 0.04691846466064453, 0.046004222869873046, 0.046491649627685545, 0.04612076950073242, 0.0461354866027832, 0.04622335815429687, 0.04640768051147461, 0.04603084945678711, 0.04639091110229492, 0.046381439208984375, 0.04655712127685547, 0.04635859298706055, 0.0466998405456543, 0.04660089492797852, 0.04867212677001953, 0.04618918228149414, 0.045563488006591796, 0.04525507354736328, 0.04563504028320312, 0.04556035232543945, 0.04551475143432617, 0.04540825653076172, 0.04581292724609375, 0.045947711944580076, 0.04576208114624023, 0.04677014541625977, 0.04558694458007812, 0.04596736145019531, 0.0459356803894043, 0.045884353637695316, 0.04599398422241211, 0.04596736145019531, 0.04580966567993164, 0.045752479553222654, 0.04623344039916992, 0.04632166290283203, 0.04632355117797852, 0.04611625671386719, 0.04594768142700195, 0.04576457595825195, 0.04604108810424805, 0.0458342399597168, 0.04581292724609375, 0.04592723083496094, 0.04601187133789063, 0.04588188934326172, 0.045811038970947265, 0.04600284957885742, 0.04631347274780274, 0.04600937652587891, 0.04603798294067383, 0.04625161743164063, 0.04624835205078125, 0.04603257751464844, 0.046128929138183596, 0.046602783203125, 0.04655923080444336, 0.04659404754638672, 0.04640915298461914, 0.04615948867797852, 0.04621964645385742, 0.04620316696166992, 0.04649398422241211, 0.04604470443725586, 0.046225887298583984, 0.0463927993774414, 0.046034847259521484, 0.04643699264526367, 0.04635238265991211, 0.04637392044067383, 0.04600252914428711, 0.04631001663208008, 0.04648099136352539, 0.04620636749267578, 0.046492385864257815, 0.047624481201171874, 0.04640358352661133, 0.04907440185546875, 0.04619059371948242, 0.0454093132019043, 0.04544947052001953, 0.045601505279541016, 0.045629150390625, 0.04539420700073242, 0.04563558578491211, 0.04596950531005859, 0.04584233474731445, 0.04561305618286133, 0.04579942321777344, 0.045795326232910154, 0.04585472106933594, 0.04577062225341797, 0.04592380905151367, 0.04595779037475586, 0.045864959716796876, 0.0461431999206543, 0.04607392120361328, 0.046080223083496095, 0.04616191864013672, 0.046481407165527344, 0.04616502380371094, 0.04610556793212891, 0.04600831985473633, 0.04604927825927734, 0.04584447860717773, 0.045674495697021485, 0.04597555160522461, 0.04612300872802735, 0.045932544708251956, 0.04595507049560547, 0.04632156753540039, 0.04603084945678711, 0.04580995178222656, 0.04600511932373047, 0.04632057571411133, 0.04620236968994141, 0.05368252944946289, 0.0453858871459961, 0.045788959503173826, 0.04608419036865234, 0.047185630798339845, 0.0467457275390625, 0.04661183929443359, 0.046349151611328125, 0.04642387390136719, 0.04591436767578125, 0.04627865600585938, 0.046182239532470706, 0.04614899063110352, 0.046277183532714844, 0.04658982467651367, 0.04651827239990235, 0.04622985458374024, 0.046491649627685545, 0.04641177749633789, 0.04621279907226562, 0.046808895111083985, 0.04669411087036133, 0.046246688842773435, 0.046145023345947264, 0.04850543975830078, 0.04600323104858398, 0.045709983825683594, 0.04560723114013672, 0.04550041580200195, 0.04542259216308594, 0.04567977523803711, 0.045953887939453125, 0.04592230224609375, 0.04589158248901367, 0.04575347137451172, 0.0456703987121582, 0.045797279357910156, 0.045747169494628905, 0.04624319839477539, 0.04597209548950195, 0.04610867309570312, 0.045872894287109375, 0.04603315353393555, 0.045956382751464846, 0.046508865356445314, 0.046892959594726565, 0.046358528137207033, 0.04583391952514648, 0.04598969650268555, 0.04617267227172851, 0.045879295349121094, 0.046083328247070315, 0.04652518463134766, 0.04623932647705078, 0.045975967407226564, 0.04597555160522461, 0.04612681579589844, 0.045959457397460934, 0.04617987060546875, 0.04641839981079102, 0.046399486541748046, 0.046230560302734376, 0.04623580932617188, 0.04614217758178711, 0.046336097717285155, 0.046567073822021486, 0.046614879608154296, 0.046431774139404296, 0.04627299118041992, 0.046419647216796874, 0.04644646453857422, 0.04598214340209961, 0.046516223907470705, 0.046499839782714845, 0.04628041458129883, 0.0463150405883789, 0.05188479995727539, 0.04571305465698242, 0.04636819076538086, 0.04635443115234375, 0.046519073486328125, 0.04638528060913086, 0.04653987121582031, 0.046615455627441404, 0.04645865631103516, 0.04684553527832031, 0.046613121032714845, 0.04818534469604492, 0.04624492645263672, 0.0456693115234375, 0.04551590347290039, 0.04536819076538086, 0.04576243209838867, 0.04550259017944336, 0.04558195114135742, 0.045682113647460935, 0.04582700729370117, 0.04604655838012695, 0.04581846237182617, 0.04579129409790039, 0.04571136093139649, 0.046004222869873046, 0.04582191848754883, 0.04615766525268555, 0.04613542556762695, 0.045959232330322265, 0.046239585876464845, 0.04652457427978516, 0.04637491226196289, 0.04633744049072266, 0.04647945785522461, 0.046184833526611326, 0.045987968444824216, 0.04603219223022461, 0.04607027053833008, 0.04582009506225586, 0.04614963150024414, 0.04621311950683594, 0.046276607513427735, 0.045866943359375, 0.046139488220214846, 0.04600393676757813, 0.04598313522338867, 0.045953887939453125, 0.046519905090332034, 0.046537120819091796, 0.04618585586547851, 0.04653731155395508, 0.04680502319335938, 0.04643840026855469, 0.0466756477355957, 0.04676025772094727, 0.04656742477416992, 0.04628396987915039, 0.047683582305908204, 0.04593747329711914, 0.04617599868774414, 0.04625958251953125, 0.04656729507446289, 0.046285118103027344, 0.04638175964355469, 0.04639852905273437, 0.04620956802368164, 0.04618406295776367, 0.04642076873779297, 0.04663881683349609, 0.0464664306640625, 0.0463733139038086, 0.04677180862426758, 0.04661747360229492, 0.04902617645263672, 0.04616486358642578, 0.045690494537353514, 0.04564982223510742, 0.04561967849731445, 0.04573183822631836, 0.04566150283813476, 0.045464256286621096, 0.04576233673095703, 0.045883617401123046, 0.04585062408447266, 0.04582809448242187, 0.0457625617980957, 0.046302974700927736, 0.0464447021484375, 0.04615996932983398, 0.04606060791015625, 0.047233985900878905, 0.046069759368896485, 0.04611686325073242, 0.04649369430541992, 0.046540542602539064, 0.04652671813964844, 0.046150657653808595, 0.04593900680541992, 0.04613190460205078, 0.046225406646728515, 0.04591206359863281, 0.045956863403320315, 0.04620518493652344, 0.04619059371948242, 0.045890720367431644, 0.046147903442382815, 0.04631363296508789, 0.046219230651855465, 0.04617436981201172, 0.04652671813964844, 0.04626227188110352, 0.046284801483154295, 0.049309696197509766, 0.04605542373657227, 0.046007423400878905, 0.047815521240234374, 0.04632783889770508, 0.046266368865966793, 0.046378719329833985, 0.04641952133178711, 0.04609302520751953, 0.04627251052856445, 0.04637615966796875, 0.04648969650268555, 0.0461739501953125, 0.04657977676391602, 0.04652889633178711, 0.04643686294555664, 0.04636188888549805, 0.04652515029907227, 0.04649897766113281, 0.04681609725952148, 0.04698448181152344, 0.04694489669799805, 0.0486440315246582, 0.0464796142578125]",tokens/s,21.665214133538704,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,1845.112832,2760.835072,0.0,2365.587456,2314.318336,s,1,8.816744140625,8.816744140625,0.0,8.816744140625,8.816744140625,8.816744140625,8.816744140625,[8.816744140625],,kWh,5.478485249999494e-05,6.034266840466255e-06,1.6985013588002862e-05,7.780413292846406e-05,,MB,1848.582144,3092.185088,0.0,2682.257408,2607.60832,s,10,0.5065773773193359,0.05065773773193359,0.00020496744571672432,0.050588720321655276,0.05074995651245117,0.05099966545104981,0.05119943260192871,"[0.05124937438964844, 0.05058329772949219, 0.05051811218261719, 0.05058911895751953, 0.05054745483398437, 0.05058832168579101, 0.05066713714599609, 0.05069446563720703, 0.05062723159790039, 0.05051286315917969]",tokens/s,5053.522155977031,kWh,1.5431936126095368e-06,1.701864793126454e-07,1.024990586073712e-06,2.738370677995894e-06,tokens/kWh,93486247.88348827,MB,1848.582144,3092.185088,0.0,2682.257408,2607.61088,s,10,15.920609619140626,1.5920609619140627,0.005971955870236001,1.5915422973632811,1.5992711547851561,1.5996481506347657,1.5999497473144533,"[1.5907589111328124, 1.58003759765625, 1.5858822021484376, 1.58977587890625, 1.5933565673828125, 1.5989788818359374, 1.5991873779296875, 1.5902813720703124, 1.59232568359375, 1.600025146484375]",tokens/s,39.57134902941026,kWh,4.6056754418223436e-05,5.079726248708899e-06,2.1663277564525806e-05,7.279975823145815e-05,tokens/kWh,865387.4893333988,,s,630,15.918542459487922,0.02526752771347288,0.0003416172748956932,0.025196640014648435,0.025569696426391602,0.02576088399887085,0.02677633987426758,"[0.025562816619873047, 0.02546329689025879, 0.025427711486816405, 0.025194496154785157, 0.02530076789855957, 0.025295072555541993, 0.025429439544677735, 0.025172544479370118, 0.02522889518737793, 0.025182207107543944, 0.025069984436035156, 0.025357664108276366, 0.025485984802246092, 0.02529484748840332, 0.025363679885864257, 0.02517411231994629, 0.02503353691101074, 0.024985471725463868, 0.025083904266357423, 0.025057279586791992, 0.02493440055847168, 0.02507776069641113, 0.02521887969970703, 0.025130559921264648, 0.024956832885742186, 0.024984224319458008, 0.02503481674194336, 0.024971263885498047, 0.024905344009399415, 0.026468671798706055, 0.025141311645507813, 0.025143295288085937, 0.024983135223388672, 0.025294496536254884, 0.02518502426147461, 0.025177248001098634, 0.0251539192199707, 0.025160160064697266, 0.025309183120727538, 0.025032703399658202, 0.025001344680786134, 0.02510233688354492, 0.025060224533081054, 0.02537388801574707, 0.025319135665893555, 0.02654819107055664, 0.027015615463256835, 0.025450944900512695, 0.025375776290893555, 0.02513814353942871, 0.02512895965576172, 0.025047136306762696, 0.025536415100097656, 0.02519183921813965, 0.02511926460266113, 0.025080095291137694, 0.025061151504516602, 0.025075168609619142, 0.02508140754699707, 0.025048032760620117, 0.025155359268188477, 0.02506332778930664, 0.02517228889465332, 0.02506342315673828, 0.025057279586791992, 0.024922111511230468, 0.025108480453491212, 0.025011520385742187, 0.025055744171142577, 0.02504489517211914, 0.024883487701416015, 0.02488319969177246, 0.02512838363647461, 0.02513727951049805, 0.02548601531982422, 0.025392480850219726, 0.02538332748413086, 0.025212127685546874, 0.02510108757019043, 0.02511052894592285, 0.02497331237792969, 0.025016511917114258, 0.025068544387817384, 0.02501046371459961, 0.025004064559936524, 0.024963584899902344, 0.024980735778808594, 0.024869632720947266, 0.024823392868041992, 0.02522972869873047, 0.02546441650390625, 0.025477535247802736, 0.02536390495300293, 0.02524575996398926, 0.025303552627563477, 0.024878656387329102, 0.024830400466918947, 0.025059328079223633, 0.025022464752197264, 0.024800928115844726, 0.024828256607055663, 0.025054431915283202, 0.025043743133544922, 0.025047040939331053, 0.02493440055847168, 0.025037887573242188, 0.025155712127685546, 0.025187135696411133, 0.02509993553161621, 0.025123008728027342, 0.025067680358886717, 0.024851551055908205, 0.024963327407836914, 0.025196512222290038, 0.025000640869140625, 0.025067520141601563, 0.02509775924682617, 0.0251048641204834, 0.025010175704956054, 0.025020288467407226, 0.0250097599029541, 0.025133600234985353, 0.025069568634033205, 0.025092096328735353, 0.02512886428833008, 0.02512406349182129, 0.02547999954223633, 0.025442047119140623, 0.026634111404418945, 0.025792896270751955, 0.025153535842895508, 0.025012287139892578, 0.025120704650878907, 0.024936447143554686, 0.024856576919555663, 0.02494054412841797, 0.024808639526367186, 0.02492089653015137, 0.025060928344726563, 0.025067968368530272, 0.02499577522277832, 0.025087520599365233, 0.02572496032714844, 0.02522982406616211, 0.02513462448120117, 0.025126976013183595, 0.02499398422241211, 0.02495417594909668, 0.02509712028503418, 0.0249487361907959, 0.024907039642333983, 0.024896352767944337, 0.025071487426757813, 0.024971263885498047, 0.025184255599975586, 0.025079328536987303, 0.025069311141967775, 0.024902368545532228, 0.02497439956665039, 0.024921024322509765, 0.02545452880859375, 0.025142719268798828, 0.024986240386962892, 0.024999935150146483, 0.025251840591430662, 0.024983327865600587, 0.024883424758911133, 0.025053184509277345, 0.025387008666992186, 0.024989696502685548, 0.02527846336364746, 0.02548121643066406, 0.025179391860961915, 0.02482275199890137, 0.025018144607543945, 0.025099872589111328, 0.025316959381103517, 0.02490451240539551, 0.025087520599365233, 0.025002464294433594, 0.024997888565063478, 0.0271824951171875, 0.025160287857055662, 0.02529484748840332, 0.02525379180908203, 0.02526963233947754, 0.025129695892333985, 0.025356128692626954, 0.02521718406677246, 0.02517913627624512, 0.024976160049438475, 0.02503670310974121, 0.025268320083618165, 0.025006080627441408, 0.02510220718383789, 0.02514508819580078, 0.02500160026550293, 0.024887359619140625, 0.025094432830810545, 0.026052703857421877, 0.02498796844482422, 0.02509414482116699, 0.025097600936889647, 0.025031295776367188, 0.02494054412841797, 0.026804224014282226, 0.026626016616821287, 0.025489343643188476, 0.025425376892089843, 0.025498239517211915, 0.025311296463012695, 0.02537811279296875, 0.025293439865112306, 0.025260032653808592, 0.025184255599975586, 0.025247743606567383, 0.02505846405029297, 0.024981792449951173, 0.024998176574707032, 0.0250163516998291, 0.025008544921875, 0.025038463592529297, 0.025436384201049805, 0.02671308708190918, 0.02548863983154297, 0.025276159286499022, 0.025283967971801758, 0.02562704086303711, 0.025222816467285157, 0.024955007553100587, 0.02493280029296875, 0.02512825584411621, 0.02484908866882324, 0.02526924705505371, 0.025400352478027344, 0.025415008544921874, 0.02491628837585449, 0.025424192428588867, 0.025188352584838865, 0.025109823226928712, 0.024806079864501954, 0.025032703399658202, 0.025040960311889647, 0.025032480239868163, 0.025065696716308594, 0.025091552734375, 0.025051616668701173, 0.025049087524414062, 0.025034175872802735, 0.02505743980407715, 0.02516828727722168, 0.02498150444030762, 0.02511564826965332, 0.025138912200927736, 0.025090335845947265, 0.025085248947143556, 0.024858943939208983, 0.02497983932495117, 0.025169919967651368, 0.02494438362121582, 0.024942848205566408, 0.02502569580078125, 0.025082719802856444, 0.02495078468322754, 0.027107231140136717, 0.02651875114440918, 0.025428895950317384, 0.025292768478393554, 0.025234687805175782, 0.025207551956176757, 0.02527027130126953, 0.025034303665161132, 0.025467231750488283, 0.025417503356933595, 0.02549763107299805, 0.025315616607666017, 0.025209856033325196, 0.025154048919677735, 0.025164287567138673, 0.02507161521911621, 0.025163200378417967, 0.02524012756347656, 0.025608192443847655, 0.025370304107666015, 0.025320959091186524, 0.0253243522644043, 0.025785503387451173, 0.025219104766845704, 0.025606143951416017, 0.02561270332336426, 0.025569696426391602, 0.025124864578247072, 0.025108480453491212, 0.025214975357055663, 0.025268415451049804, 0.02504889678955078, 0.025364479064941405, 0.025366687774658205, 0.025642847061157225, 0.025130783081054688, 0.025196767807006835, 0.025103776931762696, 0.025227872848510743, 0.025208671569824218, 0.025346208572387695, 0.025290752410888673, 0.02532352066040039, 0.02529644775390625, 0.025213375091552734, 0.025285696029663084, 0.025242559432983397, 0.025083904266357423, 0.025109567642211915, 0.025191360473632813, 0.02516377639770508, 0.025141248703002928, 0.025177087783813477, 0.025731903076171875, 0.02512646484375, 0.025293216705322266, 0.02548918342590332, 0.02528857612609863, 0.025231935501098632, 0.0252860164642334, 0.0251757755279541, 0.025150367736816406, 0.02516377639770508, 0.025315008163452148, 0.0250729923248291, 0.025238496780395508, 0.025126911163330077, 0.025284032821655273, 0.025088575363159178, 0.025157632827758788, 0.02515545654296875, 0.02533967971801758, 0.025356639862060548, 0.02521446418762207, 0.025055744171142577, 0.025089408874511717, 0.02518284797668457, 0.025085887908935546, 0.025235456466674806, 0.025258047103881836, 0.02545254325866699, 0.025685792922973634, 0.026071264266967775, 0.025286272048950197, 0.02522137641906738, 0.025206079483032228, 0.02528748893737793, 0.025274368286132814, 0.02539244842529297, 0.028379840850830076, 0.025569280624389647, 0.025430015563964844, 0.024995712280273436, 0.02526425552368164, 0.025415103912353517, 0.026460128784179686, 0.025956960678100587, 0.02551807975769043, 0.025651199340820312, 0.025610240936279297, 0.02536419105529785, 0.026054208755493163, 0.025277408599853515, 0.025278207778930663, 0.0252205753326416, 0.02519708824157715, 0.025210304260253905, 0.025155328750610353, 0.025242431640625, 0.02512892723083496, 0.025363840103149415, 0.02535696029663086, 0.02512076759338379, 0.025165824890136718, 0.025953632354736328, 0.025737888336181642, 0.025761791229248047, 0.02558585548400879, 0.02567558479309082, 0.025600000381469725, 0.025486623764038086, 0.025348831176757812, 0.02527132797241211, 0.025258975982666014, 0.026195968627929687, 0.025302911758422853, 0.02547110366821289, 0.025251840591430662, 0.02535424041748047, 0.025235456466674806, 0.025233407974243165, 0.025182144165039062, 0.025597600936889647, 0.025569696426391602, 0.025181663513183593, 0.025165983200073242, 0.025561471939086915, 0.025075712203979493, 0.02523910331726074, 0.025227712631225585, 0.02532352066040039, 0.025092096328735353, 0.025860095977783205, 0.0257322883605957, 0.025446847915649416, 0.02504252815246582, 0.025368640899658203, 0.02559859275817871, 0.025475168228149415, 0.025038463592529297, 0.025147775650024413, 0.025380224227905274, 0.025256832122802733, 0.025105663299560547, 0.025266687393188478, 0.025367904663085937, 0.025326240539550782, 0.02525174331665039, 0.02534204864501953, 0.025752992630004884, 0.025367136001586913, 0.025050880432128907, 0.02528281593322754, 0.025174016952514647, 0.02513689613342285, 0.025244960784912108, 0.02513580894470215, 0.02525814437866211, 0.02533724784851074, 0.02527440071105957, 0.025340383529663085, 0.0254814395904541, 0.02577123260498047, 0.02542367935180664, 0.025148351669311522, 0.025401376724243165, 0.025443359375, 0.02538444709777832, 0.02524211120605469, 0.02515260887145996, 0.02510531234741211, 0.024983552932739257, 0.02509823989868164, 0.025266176223754884, 0.025108480453491212, 0.025206783294677734, 0.025188352584838865, 0.02512281608581543, 0.025010112762451173, 0.025212255477905274, 0.025133312225341795, 0.02504547119140625, 0.025495552062988282, 0.0253767032623291, 0.025411264419555664, 0.0255567684173584, 0.02542243194580078, 0.025364479064941405, 0.025233024597167968, 0.02522297668457031, 0.025010751724243163, 0.025114751815795897, 0.025173248291015624, 0.025156511306762695, 0.024923295974731446, 0.02527084732055664, 0.02532966423034668, 0.02507366371154785, 0.025014272689819338, 0.025284608840942382, 0.02572902488708496, 0.02548121643066406, 0.025454591751098633, 0.02520591926574707, 0.025195295333862305, 0.025378240585327148, 0.02522585678100586, 0.025341951370239257, 0.02507766342163086, 0.02528879928588867, 0.025279935836791993, 0.025457216262817384, 0.02515260887145996, 0.02523638343811035, 0.02520579147338867, 0.025336799621582032, 0.025182207107543944, 0.02529280090332031, 0.025188352584838865, 0.025151487350463866, 0.02565894317626953, 0.025184703826904298, 0.025126911163330077, 0.02523750305175781, 0.025148544311523437, 0.025154176712036132, 0.025045248031616212, 0.025444416046142577, 0.02530246353149414, 0.025215263366699218, 0.025411584854125976, 0.025278528213500975, 0.025108415603637694, 0.025200639724731445, 0.02506342315673828, 0.025136320114135743, 0.02512553596496582, 0.02566508865356445, 0.02549225616455078, 0.025070943832397462, 0.025089887619018553, 0.025209312438964845, 0.025163936614990234, 0.025135103225708007, 0.025208831787109375, 0.025217119216918944, 0.02506332778930664, 0.025089056015014648, 0.025180288314819336, 0.025032896041870117, 0.024936960220336913, 0.0250984001159668, 0.025212928771972655, 0.025153343200683593, 0.024930496215820313, 0.02559347152709961, 0.025034656524658205, 0.025057279586791992, 0.02508220863342285, 0.025106559753417967, 0.025083904266357423, 0.025006080627441408, 0.02511996841430664, 0.025209375381469726, 0.025317632675170898, 0.025300991058349608, 0.02533171272277832, 0.02517363166809082, 0.02521116828918457, 0.025184288024902343, 0.025401216506958008, 0.025126880645751953, 0.02520044708251953, 0.025759775161743163, 0.025148799896240234, 0.025122880935668945, 0.025269184112548828, 0.025091487884521483, 0.025391616821289063, 0.02613408088684082, 0.02554319953918457, 0.025694208145141603, 0.025429119110107423, 0.0257524471282959, 0.025447872161865233, 0.02529542350769043, 0.02514739227294922, 0.025201791763305663, 0.025278432846069336, 0.025056127548217774, 0.025933855056762694, 0.026226688385009765, 0.025382911682128906, 0.025218399047851562, 0.025318048477172853, 0.02508902359008789, 0.025289728164672853, 0.025263872146606445, 0.025333215713500976, 0.025242399215698243, 0.02496512031555176, 0.025134239196777344, 0.025068384170532226, 0.02514672088623047, 0.02637481689453125, 0.025581567764282227, 0.025260032653808592, 0.02546272087097168, 0.025276479721069337, 0.025200639724731445, 0.025210880279541017, 0.02525164794921875, 0.025080223083496094, 0.02512873649597168, 0.027023359298706053, 0.026802175521850585, 0.025605695724487305, 0.02593222427368164, 0.025550815582275392, 0.025417695999145506, 0.0256690559387207, 0.02597865676879883, 0.025449087142944336, 0.025179424285888673, 0.025260992050170898, 0.025427743911743163, 0.025229280471801757, 0.025220384597778322, 0.025230304718017578, 0.025378816604614256, 0.025154848098754883, 0.025258560180664063, 0.025437952041625977, 0.025645471572875975, 0.025390592575073243, 0.025353952407836913, 0.02558236885070801, 0.025425920486450194, 0.0252509765625, 0.02518649673461914, 0.025247808456420898, 0.025330272674560547, 0.02527027130126953, 0.02525951957702637, 0.025192960739135743, 0.025100288391113282, 0.02532761573791504, 0.025333759307861328, 0.026474496841430665, 0.025116672515869142, 0.025154815673828126, 0.02512575912475586, 0.02518809509277344, 0.025337984085083008, 0.025079616546630858, 0.02531564712524414]",tokens/s,39.57648770943232,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.223-212.873.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.0,,,,1.21.4,,,,0.12.0,,,MB,2199.990272,2551.119872,0.0,2155.872256,2032.413184,s,1,8.8898994140625,8.8898994140625,0.0,8.8898994140625,8.8898994140625,8.8898994140625,8.8898994140625,[8.8898994140625],,kWh,5.1338232924998315e-05,5.6559227750613706e-06,1.5266956657995767e-05,7.226111235805545e-05,,MB,2121.121792,2827.943936,0.0,2418.016256,2280.154112,s,10,0.9278674545288086,0.09278674545288088,9.926888700563933e-05,0.09277532958984375,0.09293991775512696,0.0929553981781006,0.0929677825164795,"[0.09284620666503907, 0.09277664184570313, 0.09267791748046875, 0.0927488021850586, 0.09266400146484376, 0.0927861099243164, 0.09293647766113282, 0.0926864013671875, 0.09297087860107422, 0.09277401733398437]",tokens/s,2759.0147574472517,kWh,2.7518656658488974e-06,3.0333095443466414e-07,1.8249469428224003e-06,4.880143563105961e-06,tokens/kWh,52457473.164389685,MB,2129.481728,2911.830016,0.0,2501.902336,2389.055488,s,10,18.071246215820313,1.807124621582031,0.008751352296018327,1.8075271606445313,1.816113879394531,1.8174338317871093,1.818489793701172,"[1.8187537841796875, 1.8053961181640625, 1.815820556640625, 1.802324951171875, 1.813374755859375, 1.8151702880859375, 1.8087320556640625, 1.806322265625, 1.7911900634765625, 1.794161376953125]",tokens/s,34.862011865483424,kWh,5.3613183272484675e-05,5.913438193190448e-06,2.6872853793177772e-05,8.63994752588529e-05,tokens/kWh,729171.0952092238,,s,630,18.068478263854985,0.028680124228341236,0.0003434489850813749,0.028610991477966308,0.029006570053100585,0.029212997245788574,0.030164768085479743,"[0.029655040740966795, 0.029017215728759767, 0.02900982475280762, 0.028979808807373046, 0.028851680755615235, 0.028976032257080078, 0.028837888717651368, 0.028603679656982423, 0.02885500717163086, 0.02993152046203613, 0.029683456420898438, 0.028732959747314452, 0.028680383682250978, 0.02863158416748047, 0.02895052719116211, 0.028675743103027344, 0.028694911956787108, 0.0288022403717041, 0.02867689514160156, 0.02865283203125, 0.028877536773681642, 0.028691904067993164, 0.02878316879272461, 0.028845535278320313, 0.0289531192779541, 0.02855526351928711, 0.028782848358154298, 0.02863692855834961, 0.02852835273742676, 0.028471200942993165, 0.028573280334472657, 0.028658464431762697, 0.030701568603515625, 0.030256895065307616, 0.029075712203979493, 0.02891062355041504, 0.02873651123046875, 0.028727264404296876, 0.028610559463500978, 0.028595935821533202, 0.028573568344116212, 0.028499647140502928, 0.028508895874023436, 0.028601951599121093, 0.028731807708740235, 0.0289136962890625, 0.02876963233947754, 0.028734079360961916, 0.028598272323608398, 0.028560895919799805, 0.02863564872741699, 0.02876825523376465, 0.028690431594848635, 0.028630815505981445, 0.02858415985107422, 0.02857164764404297, 0.028469440460205078, 0.028546432495117187, 0.030658720016479492, 0.029196575164794923, 0.028792287826538084, 0.02889094352722168, 0.028686559677124024, 0.02922208023071289, 0.029038944244384766, 0.028816064834594726, 0.028639007568359375, 0.02857574462890625, 0.028700672149658202, 0.02855344009399414, 0.028642879486083985, 0.028591615676879883, 0.028614463806152343, 0.028529567718505858, 0.028656671524047852, 0.028592479705810546, 0.02866592025756836, 0.02871571159362793, 0.028731264114379883, 0.028831743240356447, 0.02876620864868164, 0.0285614070892334, 0.028700672149658202, 0.028741472244262694, 0.028772192001342775, 0.028516672134399415, 0.02860851287841797, 0.028496192932128905, 0.028419776916503905, 0.028667903900146483, 0.029261152267456056, 0.02869251251220703, 0.02863974380493164, 0.028478815078735353, 0.028584127426147462, 0.028397792816162108, 0.02846348762512207, 0.028493824005126952, 0.02898944091796875, 0.028656639099121094, 0.02864361572265625, 0.028402399063110352, 0.02852799987792969, 0.028610208511352538, 0.028746368408203125, 0.028778303146362306, 0.02878060722351074, 0.028714975357055663, 0.02854902458190918, 0.0284881591796875, 0.028561151504516602, 0.028458400726318358, 0.029123552322387697, 0.02862828826904297, 0.028676799774169922, 0.02864454460144043, 0.028584224700927734, 0.028554880142211914, 0.028801727294921874, 0.028661535263061522, 0.02856595230102539, 0.02851430320739746, 0.028528287887573243, 0.028430431365966798, 0.028540384292602538, 0.0285765438079834, 0.028842111587524415, 0.028895103454589843, 0.029041183471679687, 0.028963008880615235, 0.028927711486816405, 0.028891679763793945, 0.028706783294677733, 0.028389408111572267, 0.02842848014831543, 0.02841580772399902, 0.028573408126831054, 0.028743711471557618, 0.02894054412841797, 0.029085695266723634, 0.028811264038085937, 0.028792287826538084, 0.028962560653686523, 0.02970636749267578, 0.02868614387512207, 0.028551551818847658, 0.02843280029296875, 0.02850377655029297, 0.028445024490356446, 0.02849001693725586, 0.02839254379272461, 0.028439104080200197, 0.02839360046386719, 0.028571136474609377, 0.02848409652709961, 0.028484928131103517, 0.028781055450439453, 0.028665727615356445, 0.02858624076843262, 0.03141334342956543, 0.029481887817382812, 0.028786752700805666, 0.02859779167175293, 0.028537248611450194, 0.028956159591674805, 0.029706335067749022, 0.02926246452331543, 0.029290271759033204, 0.028962080001831054, 0.02879689598083496, 0.029346559524536135, 0.028729343414306642, 0.029544704437255858, 0.029818624496459962, 0.028756128311157227, 0.028516191482543946, 0.02894643211364746, 0.028560735702514647, 0.028541023254394532, 0.028480064392089843, 0.028504032135009766, 0.02872118377685547, 0.028591520309448244, 0.028793439865112305, 0.028475072860717772, 0.028709184646606444, 0.028597503662109374, 0.02865843200683594, 0.028446720123291015, 0.028595232009887697, 0.02862886428833008, 0.028650720596313475, 0.028820159912109376, 0.028595359802246093, 0.02863030433654785, 0.028553184509277345, 0.02885193634033203, 0.028508127212524412, 0.028872703552246092, 0.02835251235961914, 0.028520383834838868, 0.028354623794555663, 0.028545024871826172, 0.028495328903198242, 0.028612991333007813, 0.028614175796508788, 0.028537471771240233, 0.028479488372802734, 0.028635135650634767, 0.028564640045166016, 0.028519264221191408, 0.028621055603027343, 0.028646400451660156, 0.02849827194213867, 0.02842460823059082, 0.02836675262451172, 0.028414047241210938, 0.028544672012329103, 0.028446144104003906, 0.028381919860839842, 0.028444864273071288, 0.028511327743530275, 0.02852137565612793, 0.02840985679626465, 0.028579519271850585, 0.028899648666381835, 0.028872703552246092, 0.02870675277709961, 0.028681663513183592, 0.028486175537109373, 0.028485727310180665, 0.028622783660888673, 0.028692544937133788, 0.02851020812988281, 0.02868783950805664, 0.02875347137451172, 0.02864022445678711, 0.028593215942382812, 0.028787647247314453, 0.029000864028930665, 0.028892000198364257, 0.02872422409057617, 0.0287324161529541, 0.028577184677124022, 0.028598175048828126, 0.028432640075683593, 0.02847964859008789, 0.028525951385498047, 0.028545951843261717, 0.028716543197631835, 0.02895088005065918, 0.028702335357666017, 0.029205184936523437, 0.028892864227294923, 0.028461376190185548, 0.028620031356811522, 0.02855603218078613, 0.02882508850097656, 0.028700319290161133, 0.028511072158813478, 0.028757631301879884, 0.029006208419799805, 0.028923904418945313, 0.02902835273742676, 0.028735488891601563, 0.0288603515625, 0.028934335708618163, 0.028783584594726564, 0.028593055725097655, 0.028536832809448243, 0.02855526351928711, 0.02872700881958008, 0.02885206413269043, 0.02891584014892578, 0.029085727691650392, 0.029161760330200195, 0.028882623672485352, 0.028706560134887694, 0.028604223251342775, 0.028723039627075196, 0.028631967544555666, 0.028659456253051756, 0.028569759368896483, 0.028569408416748047, 0.02863132858276367, 0.02852016067504883, 0.02850009536743164, 0.02847350311279297, 0.02856867218017578, 0.028887968063354492, 0.028762111663818358, 0.028909215927124022, 0.02888025665283203, 0.029024576187133787, 0.02918876838684082, 0.029164863586425782, 0.02900160026550293, 0.02892883110046387, 0.02937830352783203, 0.030646528244018555, 0.028692256927490233, 0.028600479125976564, 0.028473407745361327, 0.028676095962524413, 0.028569055557250977, 0.028524831771850587, 0.028532415390014648, 0.0287708797454834, 0.02876416015625, 0.028690431594848635, 0.028645376205444335, 0.028670272827148437, 0.028407487869262695, 0.028516288757324218, 0.028530752182006836, 0.02908585548400879, 0.028793312072753905, 0.02881724739074707, 0.02869059181213379, 0.02884841537475586, 0.029199647903442382, 0.028694143295288087, 0.028613664627075194, 0.028612384796142577, 0.028606752395629882, 0.02846281623840332, 0.02863260841369629, 0.028440736770629884, 0.02881772804260254, 0.028821504592895508, 0.02859132766723633, 0.028871456146240235, 0.028676095962524413, 0.028674272537231444, 0.02868332862854004, 0.028708927154541014, 0.028672767639160157, 0.02850806427001953, 0.02871014404296875, 0.028677888870239258, 0.028701087951660157, 0.030229087829589843, 0.030007295608520508, 0.0296013126373291, 0.028913536071777345, 0.02863929557800293, 0.028774944305419922, 0.028759647369384765, 0.0288505916595459, 0.028794879913330077, 0.028872480392456056, 0.02859644889831543, 0.02878463935852051, 0.02850201606750488, 0.028769760131835936, 0.028513887405395507, 0.028420703887939453, 0.0291560001373291, 0.02899510383605957, 0.02864703941345215, 0.02866640090942383, 0.028670015335083007, 0.02863030433654785, 0.028653535842895508, 0.03055686378479004, 0.029673471450805664, 0.0292096004486084, 0.028605440139770507, 0.028512256622314453, 0.028440576553344726, 0.02851968002319336, 0.02858880043029785, 0.028581695556640627, 0.02860665512084961, 0.02873958396911621, 0.028499103546142577, 0.02865443229675293, 0.028655616760253907, 0.0291267204284668, 0.028964799880981447, 0.028579839706420897, 0.02869980812072754, 0.028738399505615235, 0.028733247756958007, 0.028421407699584962, 0.028478464126586913, 0.029215776443481445, 0.029442943572998048, 0.02885647964477539, 0.028866016387939453, 0.02874950408935547, 0.02873750305175781, 0.028666591644287108, 0.028591840744018555, 0.028423904418945312, 0.029784576416015625, 0.028698495864868164, 0.028936384201049804, 0.028433727264404296, 0.028495967864990233, 0.028361183166503906, 0.02851238441467285, 0.028588031768798827, 0.02857779121398926, 0.02855116844177246, 0.028576095581054686, 0.0284946231842041, 0.028414783477783204, 0.02845907211303711, 0.028512191772460938, 0.028776512145996094, 0.029321216583251954, 0.02893619155883789, 0.029080863952636718, 0.029092607498168947, 0.028893152236938478, 0.028665855407714845, 0.028673696517944335, 0.02866771125793457, 0.028600160598754882, 0.028442720413208007, 0.02849443244934082, 0.028432384490966797, 0.028436832427978516, 0.028466720581054688, 0.028653696060180665, 0.028672000885009766, 0.028622880935668945, 0.028446687698364257, 0.028622848510742187, 0.028956672668457032, 0.02860611152648926, 0.028698976516723634, 0.028589632034301756, 0.028919744491577148, 0.028467615127563475, 0.028373088836669922, 0.028669599533081055, 0.028522048950195313, 0.02901865577697754, 0.028883007049560545, 0.029074623107910157, 0.028592960357666015, 0.028493919372558595, 0.02871286392211914, 0.02911631965637207, 0.028698720932006837, 0.028816831588745116, 0.02825222396850586, 0.02843084716796875, 0.028477439880371092, 0.028637184143066406, 0.028626943588256838, 0.02846073532104492, 0.028547391891479493, 0.02851840019226074, 0.028841983795166014, 0.02871494483947754, 0.02856284713745117, 0.028295839309692383, 0.02831974411010742, 0.028704767227172853, 0.028665855407714845, 0.028591487884521486, 0.028723840713500978, 0.02874367904663086, 0.028495872497558594, 0.028393728256225586, 0.028466880798339842, 0.028408000946044922, 0.028510080337524415, 0.028987136840820313, 0.028516128540039064, 0.028479551315307616, 0.028307775497436523, 0.029233440399169922, 0.028370752334594726, 0.02831155204772949, 0.028413951873779295, 0.028362688064575196, 0.028829311370849608, 0.02856185531616211, 0.028839744567871094, 0.028342464447021484, 0.028516351699829103, 0.02874275207519531, 0.02854185676574707, 0.028812864303588866, 0.028712799072265625, 0.028295200347900392, 0.0283756160736084, 0.029234752655029297, 0.02956742477416992, 0.028704767227172853, 0.028851648330688477, 0.028619327545166016, 0.02933350372314453, 0.029197952270507813, 0.029055360794067384, 0.0291362247467041, 0.02885209655761719, 0.028748575210571288, 0.028868608474731446, 0.028436479568481447, 0.02851878356933594, 0.02854262351989746, 0.02828633689880371, 0.02849072074890137, 0.028405311584472657, 0.028421728134155274, 0.028377952575683593, 0.028260351181030274, 0.02831564712524414, 0.028415199279785155, 0.028248863220214845, 0.028231679916381838, 0.028167327880859374, 0.028455072402954102, 0.028259008407592774, 0.028939584732055663, 0.028782943725585937, 0.028592479705810546, 0.028514400482177734, 0.02849577522277832, 0.028424192428588867, 0.028467199325561524, 0.02840131187438965, 0.028295520782470704, 0.028459007263183594, 0.028416000366210937, 0.028430335998535155, 0.028626943588256838, 0.028254207611083985, 0.028430335998535155, 0.02852659225463867, 0.028470720291137695, 0.0283571834564209, 0.02838528060913086, 0.028330015182495116, 0.028626720428466798, 0.028719295501708986, 0.028424192428588867, 0.028315008163452147, 0.028310304641723634, 0.02833827209472656, 0.02840278434753418, 0.028240480422973634, 0.02843244743347168, 0.028424192428588867, 0.028399616241455077, 0.02838118362426758, 0.028411903381347657, 0.028276735305786133, 0.028514272689819337, 0.028329696655273438, 0.028436672210693358, 0.02829324722290039, 0.028446720123291015, 0.028499967575073244, 0.028411615371704103, 0.028303232192993164, 0.028336063385009765, 0.02826697540283203, 0.02859014320373535, 0.0288023681640625, 0.02840230369567871, 0.028608480453491212, 0.028696159362792968, 0.028512256622314453, 0.02868614387512207, 0.028213855743408203, 0.028379135131835938, 0.02846211242675781, 0.028353504180908203, 0.028438528060913085, 0.02828886413574219, 0.028268703460693358, 0.02816204833984375, 0.028184576034545897, 0.028241504669189454, 0.02844076728820801, 0.02834636878967285, 0.028566911697387697, 0.02876608085632324, 0.028514495849609377, 0.028277503967285157, 0.028249216079711915, 0.028265024185180666, 0.028303680419921876, 0.02828822326660156, 0.028564287185668946, 0.028290943145751955, 0.028395263671875, 0.02833148765563965, 0.02848246383666992, 0.029099424362182616, 0.028584543228149413, 0.028395519256591797, 0.028588031768798827, 0.028217344284057616, 0.028274015426635744, 0.028446687698364257, 0.028703168869018556, 0.028379520416259765, 0.028482751846313478, 0.028207872390747072, 0.028409791946411134, 0.028409055709838867, 0.028672800064086915, 0.02840985679626465, 0.02851840019226074, 0.02838937568664551, 0.028280832290649413, 0.028329984664916992, 0.02856755256652832, 0.028530815124511718, 0.028338048934936525, 0.028294879913330077, 0.02853638458251953, 0.02846793556213379, 0.02846112060546875, 0.028453887939453124, 0.029133760452270507, 0.028489471435546875, 0.028583295822143556, 0.02861142349243164, 0.029011999130249023, 0.028804447174072264, 0.02887740707397461, 0.028934207916259766]",tokens/s,34.867352457693194,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,3550.654464,4495.179776,0.0,4116.709376,3980.386816,s,1,9.758755859375,9.758755859375,0.0,9.758755859375,9.758755859375,9.758755859375,9.758755859375,[9.758755859375],,kWh,8.898960568749884e-05,9.809050610969499e-06,2.695057711600015e-05,0.00012574923341446848,,MB,3549.011968,4826.529792,0.0,4418.699264,4245.89568,s,10,6.605035339355468,0.6605035339355468,0.0006230609261115123,0.6603740234375,0.6612575622558594,0.661468197631836,0.6616367059326171,"[0.6597408447265625, 0.6600413818359375, 0.6596790771484375, 0.660224853515625, 0.6602737426757812, 0.6604743041992187, 0.6611260375976562, 0.6612107543945313, 0.6616788330078125, 0.6605855102539062]",tokens/s,387.5830890330724,kWh,1.9281606503906238e-05,2.1255516435658325e-06,1.287422904937502e-05,3.428138719684709e-05,tokens/kWh,7467609.1294095805,MB,3556.94592,4837.015552,0.0,4429.185024,4245.89824,s,10,385.3308124999999,38.53308125,0.0249248607635426,38.5474375,38.55015078125,38.55081171875,38.55134046875,"[38.47213671875, 38.50425390625, 38.5239609375, 38.53500390625, 38.54686328125, 38.55147265625, 38.54991015625, 38.54801171875, 38.55000390625, 38.5491953125]",tokens/s,1.63495879271269,kWh,0.0011238995098256774,0.0001239736496154392,0.0007469280732364251,0.0019948012326775418,tokens/kWh,31582.093979076613,,s,630,385.32706719970645,0.6116302653963603,0.0005920977871824857,0.6116809997558594,0.6123485229492188,0.6124803436279297,0.6127918884277344,"[0.6100867309570313, 0.610197021484375, 0.6103533325195313, 0.6096705932617188, 0.6108343505859375, 0.6095738525390625, 0.6110203857421875, 0.6089094848632812, 0.6107077026367187, 0.610044921875, 0.609010009765625, 0.6115314331054688, 0.60957080078125, 0.6103983154296875, 0.6107708740234375, 0.610209716796875, 0.6111192016601562, 0.6099435424804688, 0.610407470703125, 0.6109091186523438, 0.6098042602539062, 0.6107578125, 0.6106380004882812, 0.6103272094726563, 0.6102745361328125, 0.6112899169921875, 0.6105045166015625, 0.610654296875, 0.6111459350585937, 0.6102752075195312, 0.610801513671875, 0.6112227783203125, 0.6105524291992187, 0.61095556640625, 0.6106604614257812, 0.611110107421875, 0.610850830078125, 0.6102777709960937, 0.6112688598632813, 0.6107890014648437, 0.610859375, 0.6106542358398438, 0.610566162109375, 0.6109616088867188, 0.6111590576171875, 0.610697998046875, 0.6113421630859375, 0.6108383178710938, 0.6102860107421875, 0.6111743774414062, 0.6108426513671875, 0.6111047973632813, 0.610873046875, 0.6104456176757812, 0.6114224243164063, 0.6110021362304687, 0.6109299926757813, 0.61133447265625, 0.61034521484375, 0.6125866088867188, 0.6106936645507812, 0.6112772827148437, 0.6109339599609375, 0.6115963134765625, 0.61043017578125, 0.6112429809570312, 0.6107515258789062, 0.61059912109375, 0.6110541381835938, 0.6098611450195313, 0.611631591796875, 0.6110841674804688, 0.610819580078125, 0.61090234375, 0.6101548461914063, 0.6113565673828125, 0.6110004272460937, 0.6110596923828125, 0.6109173583984375, 0.6111201171875, 0.6114240112304687, 0.6107047729492188, 0.6108209228515625, 0.6112788696289062, 0.6108262329101563, 0.6119588012695313, 0.61079345703125, 0.61098388671875, 0.6112564086914063, 0.6110984497070312, 0.61134423828125, 0.6106360473632813, 0.6111801147460938, 0.6110778198242187, 0.6114282836914062, 0.6116187744140625, 0.6108777465820312, 0.6109251098632813, 0.6113710327148437, 0.61138330078125, 0.6113792114257812, 0.6106234741210937, 0.611322998046875, 0.6113616943359375, 0.61153076171875, 0.6110494995117187, 0.6110392456054687, 0.6116618041992188, 0.6112166748046876, 0.6115838012695313, 0.6112612915039063, 0.6110740356445312, 0.6114365234375, 0.611292724609375, 0.6114259643554687, 0.6112550659179687, 0.6111948852539062, 0.6115687255859374, 0.61121630859375, 0.6115549926757813, 0.6113662719726562, 0.6114887084960937, 0.6114703979492188, 0.6114799194335937, 0.6118580932617188, 0.61162548828125, 0.6115798950195312, 0.611135498046875, 0.6108765258789063, 0.6112225952148438, 0.6110739135742187, 0.611142822265625, 0.6112203369140625, 0.610957275390625, 0.6111561279296875, 0.6113258056640625, 0.611061767578125, 0.6114877319335937, 0.6107731323242187, 0.6111189575195313, 0.6112454833984375, 0.61106640625, 0.6115083618164062, 0.611123046875, 0.6112849731445312, 0.6114754638671875, 0.6112337646484375, 0.6113956298828125, 0.6112267456054687, 0.611590087890625, 0.611854248046875, 0.6115601806640625, 0.6119142456054687, 0.6109790649414063, 0.6119214477539062, 0.612299560546875, 0.611412109375, 0.6113074340820313, 0.611765869140625, 0.6118466186523438, 0.611181884765625, 0.611301513671875, 0.6116542358398438, 0.6109094848632812, 0.6116719360351562, 0.6122107543945312, 0.611000244140625, 0.611877685546875, 0.6112620239257812, 0.61207763671875, 0.6121326293945313, 0.6109374389648438, 0.6120220947265625, 0.6113857421875, 0.6120875244140624, 0.6114581909179687, 0.6120641479492187, 0.6115491943359375, 0.6118441162109375, 0.6118250732421875, 0.611924560546875, 0.6112235717773438, 0.6115874633789062, 0.6117986450195313, 0.6119608154296875, 0.611535400390625, 0.6116593017578125, 0.6118470458984375, 0.6114503173828125, 0.612738037109375, 0.6118358764648437, 0.6109839477539063, 0.6119075927734375, 0.611090576171875, 0.6118807983398438, 0.611280029296875, 0.6113063354492188, 0.6113076782226563, 0.6112477416992188, 0.6117296142578125, 0.6115123291015625, 0.6111682739257812, 0.611694580078125, 0.6109653930664063, 0.6115628662109375, 0.6117786254882812, 0.6112447509765625, 0.611982666015625, 0.611343017578125, 0.6116022338867187, 0.6114140014648437, 0.6116100463867188, 0.6115374145507813, 0.6111929931640625, 0.61177880859375, 0.6119177856445313, 0.611346435546875, 0.6115819702148437, 0.6109470825195312, 0.6124107666015625, 0.6109736938476562, 0.6119307250976562, 0.6117291870117187, 0.6115064086914063, 0.61217578125, 0.6114890747070313, 0.61170166015625, 0.6121551513671875, 0.6119916381835937, 0.6127471923828125, 0.6110349731445313, 0.6121996459960938, 0.6112449951171876, 0.6121649169921874, 0.612045166015625, 0.6112271118164062, 0.6116300048828125, 0.6117802734375, 0.6122683715820313, 0.6113378295898437, 0.6117656860351562, 0.6114736328125, 0.611730224609375, 0.6118562622070313, 0.611344482421875, 0.6121122436523437, 0.6114164428710938, 0.6118440551757812, 0.6117517700195313, 0.6120194091796874, 0.6115458374023437, 0.6125361938476562, 0.612640380859375, 0.6116910400390625, 0.6108280029296875, 0.6117782592773438, 0.6113224487304687, 0.612083740234375, 0.6109819946289062, 0.6113761596679688, 0.6123519897460937, 0.6109807739257812, 0.6120018920898438, 0.61100634765625, 0.6117019653320312, 0.6111486206054687, 0.611885009765625, 0.6125772705078125, 0.6108948364257812, 0.6113424682617188, 0.61180810546875, 0.6117007446289062, 0.6113034057617187, 0.6120345458984375, 0.6122250366210937, 0.611577880859375, 0.6113272705078125, 0.6122667236328125, 0.6115052490234375, 0.6119617309570312, 0.6121383056640625, 0.6112713012695312, 0.6125997924804687, 0.6112788696289062, 0.612013671875, 0.6117134399414063, 0.6122352905273437, 0.6120238647460937, 0.6116519775390625, 0.6117332763671876, 0.6118280029296875, 0.6121653442382813, 0.6120798950195312, 0.6116488647460937, 0.6122659301757812, 0.6116287841796875, 0.6124349365234375, 0.6120017700195313, 0.61205908203125, 0.6118953247070312, 0.6121962280273437, 0.6119605712890624, 0.6128274536132813, 0.6122230834960938, 0.6122086181640625, 0.6117847290039062, 0.6124800415039062, 0.6116911010742188, 0.6117849731445313, 0.6125952758789063, 0.6111460571289062, 0.6127905883789062, 0.6115914306640625, 0.6121683349609375, 0.61209716796875, 0.61191796875, 0.612640625, 0.6110637817382812, 0.6115594482421876, 0.612121826171875, 0.6112201538085937, 0.6117783203125, 0.6113529663085937, 0.611819091796875, 0.6113018798828125, 0.6122822265625, 0.6118338623046875, 0.61203662109375, 0.61149951171875, 0.6117914428710938, 0.611531982421875, 0.6117403564453125, 0.6119852294921875, 0.6121980590820313, 0.6109639892578125, 0.6124329833984375, 0.6110625, 0.6117787475585937, 0.611724365234375, 0.6115828857421876, 0.612011962890625, 0.6118659057617187, 0.6120718383789062, 0.6121231689453125, 0.6124175415039063, 0.6121798095703125, 0.6114788818359375, 0.61227294921875, 0.6122002563476563, 0.6121082763671875, 0.6117191772460937, 0.6123735961914063, 0.611915771484375, 0.6119144897460937, 0.6118585815429688, 0.6122119140625, 0.6117993774414062, 0.6126126098632813, 0.6121094360351562, 0.61227099609375, 0.6115380249023438, 0.6126572875976563, 0.6113551025390624, 0.61220458984375, 0.6124115600585938, 0.6120941162109375, 0.6118339233398438, 0.6122511596679687, 0.6117440795898438, 0.6119541015625, 0.6115374145507813, 0.6120458984375, 0.6121747436523437, 0.612713623046875, 0.6117813110351562, 0.6124095458984375, 0.6112662963867187, 0.61240771484375, 0.6112577514648437, 0.6117216796875, 0.61115185546875, 0.6116004028320312, 0.6115552978515625, 0.6116796875, 0.6114078979492188, 0.612432373046875, 0.6116531372070313, 0.6120514526367188, 0.612039794921875, 0.611510498046875, 0.6129464111328125, 0.6108401489257812, 0.612366943359375, 0.611108642578125, 0.612112548828125, 0.6117539672851563, 0.6120386352539062, 0.6122014770507812, 0.610892822265625, 0.6124089965820313, 0.6112544555664062, 0.612296875, 0.6117885131835937, 0.6124813232421875, 0.6114488525390624, 0.6121001586914062, 0.6117293701171875, 0.6118292846679687, 0.6114818725585938, 0.6121261596679688, 0.6116583862304688, 0.611817626953125, 0.6119771728515625, 0.6119376220703125, 0.6120693359375, 0.6117487182617187, 0.6118214111328125, 0.6121790771484374, 0.6123486328125, 0.6122989501953126, 0.6123724975585938, 0.6121533203125, 0.6122147827148438, 0.6122823486328125, 0.6118863525390625, 0.6121823120117188, 0.6119112548828125, 0.6119692993164062, 0.6123930053710938, 0.6113568115234375, 0.6123175659179687, 0.6118001098632813, 0.6119844970703125, 0.6119932250976563, 0.6120860595703125, 0.6121143188476562, 0.6115952758789063, 0.6121318359375, 0.6116773681640625, 0.6123018188476562, 0.6116881103515625, 0.6114631958007812, 0.6121328735351562, 0.6111272583007813, 0.6119588623046875, 0.61170263671875, 0.6119564208984375, 0.6112684326171876, 0.6118877563476562, 0.6115038452148438, 0.6114746704101562, 0.6119205932617188, 0.6120281372070312, 0.6116987915039063, 0.6114064331054687, 0.6124113159179687, 0.6112781372070313, 0.6120066528320313, 0.611626953125, 0.6123621215820313, 0.61093798828125, 0.6119782104492187, 0.6115983276367187, 0.6121513061523437, 0.61161474609375, 0.6117186889648437, 0.6113179321289063, 0.611909912109375, 0.6120181884765625, 0.6120342407226562, 0.6114204711914063, 0.612114013671875, 0.6120016479492187, 0.612050537109375, 0.6117672729492187, 0.6117969360351563, 0.61220361328125, 0.6111314086914063, 0.6126417846679687, 0.611280029296875, 0.6126109008789062, 0.6116351318359375, 0.6120182495117188, 0.6121041259765625, 0.6115387573242187, 0.6120286254882813, 0.6117396240234375, 0.6120509643554688, 0.61136279296875, 0.6125336303710938, 0.61175439453125, 0.6116763305664062, 0.6122394409179688, 0.61179443359375, 0.6122379760742187, 0.6120364379882812, 0.6118072509765625, 0.6126284790039063, 0.6119752807617187, 0.6128693237304688, 0.6118898315429687, 0.6119874267578125, 0.6124451904296875, 0.6117816162109375, 0.6116331176757812, 0.6122645874023438, 0.6111027221679688, 0.6122823486328125, 0.61180419921875, 0.6120498657226563, 0.6111559448242188, 0.611862548828125, 0.6112052001953125, 0.6119134521484375, 0.61221826171875, 0.6110249633789062, 0.6118604736328125, 0.6112611694335938, 0.6116834106445312, 0.6120723876953125, 0.6109813842773437, 0.6128661499023438, 0.6112119140625, 0.612406494140625, 0.6119605712890624, 0.6113814086914062, 0.6115191040039063, 0.6121307983398437, 0.6115082397460937, 0.6124724731445312, 0.611697021484375, 0.6117130126953125, 0.6124393310546875, 0.6120467529296875, 0.6117588500976563, 0.6121447143554688, 0.6123012084960937, 0.611454345703125, 0.6122400512695313, 0.6113724365234375, 0.6123485107421875, 0.6113218383789063, 0.6121974487304688, 0.6117467041015625, 0.612235107421875, 0.61198291015625, 0.6116659545898437, 0.6121889038085937, 0.6113687744140625, 0.612431884765625, 0.6117457885742188, 0.612025634765625, 0.612070068359375, 0.6119446411132813, 0.61252490234375, 0.6114900512695313, 0.612707275390625, 0.6114993896484375, 0.6124589233398438, 0.6123704223632812, 0.612073486328125, 0.6117560424804688, 0.6119668579101563, 0.6117354736328126, 0.6124805908203125, 0.61143701171875, 0.6127924194335937, 0.6124965209960938, 0.6111691284179688, 0.61187890625, 0.6114877319335937, 0.6118578491210938, 0.6114903564453125, 0.61153076171875, 0.6115978393554687, 0.61136962890625, 0.6120692138671875, 0.6116220092773438, 0.6122158813476563, 0.6112848510742187, 0.6118174438476562, 0.6116864013671875, 0.6121880493164062, 0.611337646484375, 0.6113819580078125, 0.6126708374023437, 0.6112508544921875, 0.6123948974609374, 0.61131787109375, 0.6128312377929688, 0.6115405883789062, 0.6118854370117187, 0.6120525512695313, 0.6114081420898437, 0.6123910522460938, 0.6116823120117187, 0.6123521118164063, 0.6113831787109375, 0.6121242065429687, 0.611533447265625, 0.6117701416015625, 0.6116065063476562, 0.6117473754882813, 0.6116456909179687, 0.6114653930664062, 0.61201611328125, 0.6121922607421875, 0.6118807373046875, 0.612284912109375, 0.6114402465820312, 0.612060791015625, 0.6114349975585938, 0.6126071166992187, 0.6115418701171875, 0.61243798828125, 0.6115164184570312, 0.61290673828125, 0.611835693359375, 0.61220703125, 0.6122926025390625, 0.6111846313476562, 0.6127697143554688, 0.6120305786132813, 0.6122406616210937, 0.6120680541992187, 0.6117254638671875, 0.6124521484375, 0.6115799560546875, 0.6124517822265625, 0.6120985717773437]",tokens/s,1.6349746841778028,, 4bit-gptq-exllama-v1-eager,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,2174.373888,2194.604032,0.0,1816.133632,1727.29344,s,1,8.94433203125,8.94433203125,0.0,8.94433203125,8.94433203125,8.94433203125,8.94433203125,[8.94433203125],,kWh,5.511606295416034e-05,6.0725403847365365e-06,1.7106958129980976e-05,7.829556146887786e-05,,MB,2227.195904,2406.416384,0.0,1998.585856,1980.448768,s,10,3.2092273559570312,0.3209227355957031,0.0008386638202555853,0.3211023712158203,0.32185628967285157,0.32205032196044925,0.32220554779052735,"[0.3199826354980469, 0.32017123413085935, 0.31957742309570314, 0.32088507080078127, 0.32027764892578126, 0.32133026123046876, 0.3218131713867188, 0.3213196716308594, 0.32224435424804687, 0.32162588500976563]",tokens/s,797.6997937675178,kWh,9.385472596354085e-06,1.0347539388508268e-06,6.223433798187121e-06,1.6643660333392034e-05,tokens/kWh,15381231.944897924,MB,2235.76064,2597.257216,0.0,2189.426688,2078.022144,s,10,177.43118554687499,17.7431185546875,0.033526370132177866,17.758843749999997,17.7714302734375,17.77307646484375,17.77439341796875,"[17.675099609375, 17.694265625, 17.717541015625, 17.745, 17.7532890625, 17.7643984375, 17.769435546875, 17.766369140625, 17.771064453125, 17.77472265625]",tokens/s,3.5506723243618428,kWh,0.0005187076917844781,5.721722755934871e-05,0.0003448937915398119,0.0009208187108836387,tokens/kWh,68417.37603218744,,s,630,177.42690451049805,0.2816300071595207,0.0006598392608408472,0.2817473449707031,0.28242669372558593,0.28255672454833985,0.2828116159057617,"[0.2800423889160156, 0.2798489685058594, 0.27987677001953126, 0.28069677734375, 0.2809182739257812, 0.2799151611328125, 0.2804708557128906, 0.2804883117675781, 0.280727294921875, 0.28029803466796877, 0.2804562683105469, 0.2802956237792969, 0.28037606811523436, 0.2803502502441406, 0.2799678955078125, 0.28061727905273437, 0.27993701171875, 0.28083200073242187, 0.28064358520507815, 0.27996954345703123, 0.2806561279296875, 0.28070816040039065, 0.28012542724609374, 0.2807080383300781, 0.2807132263183594, 0.28060049438476564, 0.28059661865234375, 0.2804834289550781, 0.2809849548339844, 0.28008346557617186, 0.28019439697265625, 0.28069955444335937, 0.28046044921875, 0.2801589660644531, 0.28077825927734373, 0.2805921020507812, 0.28040835571289063, 0.28039385986328125, 0.28098391723632815, 0.280465087890625, 0.28005825805664064, 0.28069232177734377, 0.2807298278808594, 0.2803466796875, 0.280330322265625, 0.2809014892578125, 0.2810062255859375, 0.2803957824707031, 0.2808667602539062, 0.28111810302734375, 0.2807504272460937, 0.28062753295898435, 0.28100579833984374, 0.28070892333984376, 0.2809819946289063, 0.28046047973632815, 0.2810714111328125, 0.2802329711914063, 0.2805138854980469, 0.28088592529296874, 0.28113006591796874, 0.2816296081542969, 0.28068658447265626, 0.281005859375, 0.28015133666992187, 0.2804008178710938, 0.28073983764648436, 0.28049612426757814, 0.28073321533203127, 0.28063790893554685, 0.28020941162109375, 0.2803833618164063, 0.2812335510253906, 0.28066201782226563, 0.2800002136230469, 0.28072726440429685, 0.2811516418457031, 0.2803818664550781, 0.2807459716796875, 0.28107571411132815, 0.2807296142578125, 0.280090087890625, 0.28065847778320313, 0.280848388671875, 0.2805125122070313, 0.2809405517578125, 0.2810262451171875, 0.28134841918945314, 0.28045413208007813, 0.28098153686523436, 0.2812651062011719, 0.28072549438476563, 0.28061270141601563, 0.2810942993164062, 0.28120046997070314, 0.2811516418457031, 0.28120883178710937, 0.28136788940429686, 0.28082965087890627, 0.2804236755371094, 0.28094329833984377, 0.2808046264648438, 0.2805627746582031, 0.28110296630859377, 0.28122930908203125, 0.2805247802734375, 0.2808934631347656, 0.28068658447265626, 0.2811058349609375, 0.28089788818359374, 0.2809177551269531, 0.2811558837890625, 0.2807339172363281, 0.28060467529296873, 0.28165310668945315, 0.2810533142089844, 0.280748046875, 0.2808401794433594, 0.28158770751953127, 0.28121279907226565, 0.2812069091796875, 0.2809117431640625, 0.28113461303710935, 0.2811109008789062, 0.2807441711425781, 0.2812673645019531, 0.2806640625, 0.2807945556640625, 0.28124627685546877, 0.28088262939453124, 0.281145751953125, 0.28130291748046876, 0.2816937255859375, 0.2803898620605469, 0.28093280029296874, 0.2809283447265625, 0.28078048706054687, 0.280913330078125, 0.2810458984375, 0.28148532104492185, 0.280922119140625, 0.2811125793457031, 0.28112240600585936, 0.2808047790527344, 0.2807490539550781, 0.28160614013671875, 0.281249755859375, 0.28072171020507813, 0.2812303771972656, 0.2810395812988281, 0.28151602172851564, 0.2808606872558594, 0.28136856079101563, 0.2807767028808594, 0.2813706359863281, 0.28103884887695313, 0.2810142822265625, 0.28121701049804687, 0.28157131958007814, 0.28107366943359374, 0.28137210083007813, 0.2811848449707031, 0.2810491027832031, 0.281143310546875, 0.28145895385742187, 0.28184756469726563, 0.28124978637695314, 0.2812653503417969, 0.28144723510742187, 0.2813807678222656, 0.2816123962402344, 0.28132147216796877, 0.2814075012207031, 0.28182464599609375, 0.28112857055664064, 0.2807162780761719, 0.2815958251953125, 0.2814337158203125, 0.28157586669921875, 0.2812951049804687, 0.28182913208007815, 0.2811023254394531, 0.2814849853515625, 0.2818131103515625, 0.2814261169433594, 0.2813286437988281, 0.28186517333984373, 0.2815753173828125, 0.2808505554199219, 0.2822403564453125, 0.2807236938476563, 0.2805497741699219, 0.2815038146972656, 0.28116583251953126, 0.28076220703125, 0.2811209411621094, 0.2815037536621094, 0.28119210815429685, 0.28136688232421875, 0.28179364013671876, 0.28147393798828124, 0.2810163269042969, 0.2815672302246094, 0.281280517578125, 0.28149090576171876, 0.28075677490234374, 0.28159796142578125, 0.28178399658203124, 0.2808909912109375, 0.2817575073242187, 0.2825286865234375, 0.28195806884765623, 0.28188088989257815, 0.28218746948242185, 0.28228436279296876, 0.28108184814453124, 0.28176177978515626, 0.282838134765625, 0.2814873352050781, 0.2818338012695312, 0.2822354736328125, 0.28211404418945313, 0.28158770751953127, 0.2818495788574219, 0.28214300537109377, 0.2822717590332031, 0.28159591674804685, 0.2825904541015625, 0.2814175720214844, 0.2816391296386719, 0.2814712219238281, 0.2818414611816406, 0.2815576171875, 0.28091595458984375, 0.28136032104492187, 0.2823326416015625, 0.28136099243164064, 0.28139706420898436, 0.28150320434570314, 0.28204721069335936, 0.28181292724609375, 0.28150790405273435, 0.28198297119140625, 0.2825850830078125, 0.2817843322753906, 0.28202392578125, 0.28227609252929686, 0.28162753295898435, 0.28117041015625, 0.2816596374511719, 0.2821185607910156, 0.28147891235351563, 0.28207513427734376, 0.28206472778320313, 0.2810799560546875, 0.2822287292480469, 0.281380859375, 0.28096307373046875, 0.28201495361328127, 0.28191543579101563, 0.2808220825195312, 0.2812441101074219, 0.2820792236328125, 0.28129074096679685, 0.2807245483398437, 0.2816378173828125, 0.28133172607421875, 0.2814259338378906, 0.2809405517578125, 0.2820807189941406, 0.2818770446777344, 0.2812231750488281, 0.28140945434570314, 0.2818765869140625, 0.281585205078125, 0.2813772277832031, 0.28210791015625, 0.2815528869628906, 0.28134954833984377, 0.281118408203125, 0.28153668212890626, 0.2811440124511719, 0.281315185546875, 0.28166574096679686, 0.28222409057617187, 0.2818480529785156, 0.28228182983398437, 0.2820284729003906, 0.28187362670898436, 0.2818568115234375, 0.28186767578125, 0.28210015869140626, 0.2811656494140625, 0.2817580261230469, 0.2824253540039062, 0.2816795654296875, 0.28214822387695315, 0.282633056640625, 0.28246231079101564, 0.28224920654296876, 0.28219390869140626, 0.28176177978515626, 0.28234295654296876, 0.281440673828125, 0.28233282470703125, 0.28235589599609373, 0.28176202392578126, 0.28263742065429687, 0.2827757263183594, 0.28194482421875, 0.2814791564941406, 0.28246823120117187, 0.28238861083984373, 0.28188467407226564, 0.2819947509765625, 0.2818296813964844, 0.28161227416992185, 0.28164312744140624, 0.2824798583984375, 0.28089599609375, 0.2816155395507812, 0.282393310546875, 0.28163201904296875, 0.28096578979492187, 0.2822208251953125, 0.2825495910644531, 0.28141635131835935, 0.2813686218261719, 0.28233929443359373, 0.28234951782226564, 0.2814049377441406, 0.2820491027832031, 0.2822655944824219, 0.28181671142578124, 0.28181951904296876, 0.282474365234375, 0.2828248291015625, 0.28128375244140624, 0.2819653930664062, 0.28253378295898435, 0.28245318603515623, 0.28302224731445313, 0.2817261962890625, 0.2820779418945312, 0.28135592651367186, 0.28173553466796875, 0.2820218811035156, 0.2824163818359375, 0.281559814453125, 0.2818511962890625, 0.281985595703125, 0.28193911743164063, 0.2824345397949219, 0.2821079406738281, 0.28175128173828123, 0.28165960693359376, 0.28184490966796877, 0.2818196411132812, 0.2816590576171875, 0.28129541015625, 0.2822452087402344, 0.282148681640625, 0.28179647827148435, 0.2818431701660156, 0.281916259765625, 0.282071044921875, 0.28207308959960936, 0.28224102783203125, 0.28240692138671875, 0.28170367431640625, 0.28196322631835935, 0.2822586975097656, 0.2821107482910156, 0.2816573486328125, 0.28200115966796874, 0.28276107788085936, 0.28166796875, 0.28264389038085935, 0.28165985107421876, 0.2816119079589844, 0.2818493041992188, 0.28241342163085936, 0.28160269165039065, 0.2821709289550781, 0.28233157348632815, 0.281638916015625, 0.2820690002441406, 0.2820444030761719, 0.2819522705078125, 0.2817003479003906, 0.28188671875, 0.2821754760742187, 0.28198440551757814, 0.28190985107421873, 0.28162771606445314, 0.28219027709960937, 0.2819363708496094, 0.28173867797851565, 0.2817145080566406, 0.2827763061523437, 0.2823818664550781, 0.282061279296875, 0.2822955322265625, 0.28185458374023437, 0.2820845947265625, 0.28183645629882814, 0.2820997009277344, 0.28219384765625, 0.2820178527832031, 0.28301669311523436, 0.2816857604980469, 0.2826753845214844, 0.28165997314453123, 0.2818326110839844, 0.28254217529296877, 0.28154898071289064, 0.2824791564941406, 0.28230215454101565, 0.282519287109375, 0.282200439453125, 0.2817508544921875, 0.28248358154296876, 0.2819420166015625, 0.2820316467285156, 0.2820674133300781, 0.2824532775878906, 0.2819747619628906, 0.281317626953125, 0.2821370849609375, 0.28193997192382814, 0.28199856567382814, 0.282194580078125, 0.28177011108398436, 0.2821119995117187, 0.2824540100097656, 0.2815442199707031, 0.28249545288085937, 0.2822952880859375, 0.281781005859375, 0.28232345581054685, 0.2816731872558594, 0.2817425842285156, 0.2815733032226562, 0.282046875, 0.28263876342773436, 0.2819246826171875, 0.280864990234375, 0.2823441467285156, 0.2817774047851562, 0.28158438110351564, 0.281775390625, 0.2825755920410156, 0.281280517578125, 0.28094049072265626, 0.28242132568359374, 0.2824335327148437, 0.2814668884277344, 0.28139007568359375, 0.28251776123046873, 0.28208615112304686, 0.2814786376953125, 0.28204290771484375, 0.28198822021484377, 0.28178521728515626, 0.28226739501953124, 0.2823375244140625, 0.2817307739257813, 0.28193624877929685, 0.28203347778320315, 0.2822744140625, 0.2821096496582031, 0.2826099548339844, 0.2821754760742187, 0.28191094970703123, 0.2817907104492188, 0.2819154968261719, 0.282218505859375, 0.28213824462890624, 0.2821349182128906, 0.282040283203125, 0.28201541137695313, 0.2820816345214844, 0.28174261474609374, 0.2815003967285156, 0.2821997375488281, 0.28205908203125, 0.2816632385253906, 0.282668701171875, 0.28182794189453125, 0.2821672973632813, 0.2818334655761719, 0.28256256103515626, 0.28206491088867186, 0.2816860046386719, 0.2823475341796875, 0.2824228515625, 0.28201397705078124, 0.2820582275390625, 0.2820000305175781, 0.2821888427734375, 0.28197781372070313, 0.28243557739257813, 0.28195431518554687, 0.28218572998046876, 0.28233468627929686, 0.28162115478515626, 0.2822348937988281, 0.2820526123046875, 0.2816813659667969, 0.28182583618164064, 0.2823434143066406, 0.28173226928710937, 0.2815312194824219, 0.2821590270996094, 0.28229574584960937, 0.2820245666503906, 0.28214068603515624, 0.282492919921875, 0.28185305786132814, 0.28190194702148436, 0.2820603332519531, 0.28267156982421876, 0.28136856079101563, 0.282112060546875, 0.2824962463378906, 0.2821064453125, 0.2815693359375, 0.28216445922851563, 0.28250607299804686, 0.281864013671875, 0.28174533081054687, 0.2819934692382812, 0.281740478515625, 0.28147732543945314, 0.2822243957519531, 0.28174221801757815, 0.2820280456542969, 0.28201895141601563, 0.2824937744140625, 0.2817577514648438, 0.28169625854492186, 0.28246426391601565, 0.282492919921875, 0.2821160888671875, 0.282071044921875, 0.2819317626953125, 0.281697998046875, 0.281837890625, 0.2820362243652344, 0.2827120666503906, 0.28151602172851564, 0.28276840209960935, 0.28217239379882814, 0.2814392395019531, 0.2822522888183594, 0.2821119995117187, 0.2827202453613281, 0.28199502563476564, 0.28225689697265627, 0.2823175354003906, 0.2820803833007812, 0.28190399169921876, 0.28221826171875, 0.2828515625, 0.2820765380859375, 0.2819029235839844, 0.2825469970703125, 0.281478759765625, 0.28158453369140624, 0.2819154052734375, 0.2817404479980469, 0.2814493103027344, 0.2822504272460937, 0.2821331787109375, 0.2818151550292969, 0.281635986328125, 0.2826691589355469, 0.28135467529296876, 0.28190548706054686, 0.28174935913085936, 0.2820091247558594, 0.2818586730957031, 0.28164913940429687, 0.2826322021484375, 0.2821663818359375, 0.2818118591308594, 0.2821775207519531, 0.28203826904296875, 0.2821048278808594, 0.2819526672363281, 0.28202249145507813, 0.28223480224609376, 0.2818842163085937, 0.28232101440429686, 0.28194351196289064, 0.28260369873046876, 0.2824259338378906, 0.28248236083984374, 0.28222836303710935, 0.2819715576171875, 0.2824027404785156, 0.2820341796875, 0.281385009765625, 0.28212225341796876, 0.2824920349121094, 0.28204327392578127, 0.28189816284179686, 0.282149658203125, 0.28204217529296877, 0.28256689453125, 0.2821114807128906, 0.2821842041015625, 0.2820157470703125, 0.2827670288085937, 0.28207037353515624, 0.28220645141601564, 0.28214492797851565, 0.28206887817382814, 0.28248272705078126, 0.28248028564453126, 0.2826987609863281, 0.2822668762207031, 0.282213134765625, 0.28295150756835935, 0.282881591796875, 0.2827792663574219, 0.2821653747558594, 0.2824528503417969, 0.2820559387207031, 0.281964599609375]",tokens/s,3.550757996585146,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-eager,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,eager,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-32B,Qwen/Qwen1.5-32B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-4B,Qwen/Qwen1.5-4B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-0.5B,Qwen/Qwen1.5-0.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.3b,EleutherAI/pythia-1.3b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-72B,Qwen/Qwen1.5-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-1.4b,EleutherAI/pythia-1.4b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-7.5B,facebook/xglm-7.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.3.1+cu121,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,deci,Deci/DeciLM-7B,Deci/DeciLM-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.75552,Linux,x86_64,Linux-5.10.220-209.869.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.43.4,,0.33.0,,,,1.21.2,,,,0.12.0,,,MB,4385.583104,4566.482944,0.0,4188.012544,4187.049984,s,1,10.2750205078125,10.2750205078125,0.0,10.2750205078125,10.2750205078125,10.2750205078125,10.2750205078125,[10.2750205078125],,kWh,9.746523692499522e-05,1.0743721955271504e-05,3.126280278799992e-05,0.00013947176166826666,,MB,4391.743488,4962.844672,0.0,4555.014144,4514.269184,s,10,7.850749145507812,0.7850749145507813,0.0029818719380852246,0.7838614196777344,0.789292431640625,0.7898505920410157,0.7902971203613282,"[0.7818594360351563, 0.7877095947265625, 0.7823174438476562, 0.7825433959960938, 0.7844056396484375, 0.7904087524414063, 0.7833171997070313, 0.7865393676757813, 0.7824799194335937, 0.7891683959960938]",tokens/s,326.08353069908344,kWh,2.281054614999978e-05,2.5155927895983764e-06,1.517390102799981e-05,4.0500039967597965e-05,tokens/kWh,6320981.4164334815,MB,4399.607808,4979.621888,0.0,4571.79136,4514.271744,s,10,466.8263046875,46.68263046875,0.015457591777333574,46.686087890625004,46.693671093750005,46.69438828125,46.69496203125,"[46.64066015625, 46.670609375, 46.685453125, 46.69510546875, 46.69034375, 46.69351171875, 46.68563671875, 46.69313671875, 46.6865390625, 46.68530859375]",tokens/s,1.3495383479337797,kWh,0.0013616506224445842,0.00015019915050282654,0.0009056978078910003,0.0024175475808384107,tokens/kWh,26059.466419333705,,s,630,466.81600244140645,0.7409777816530257,0.0005184305986670322,0.7410007019042969,0.7414539123535155,0.7416112060546874,0.7419606964111328,"[0.7400110473632813, 0.7402894897460938, 0.7400440063476562, 0.7403200073242188, 0.7396430053710937, 0.7401265869140625, 0.7395269165039062, 0.7397890625, 0.7398823852539063, 0.73982421875, 0.740220947265625, 0.7401492309570312, 0.7397346801757813, 0.7396583862304688, 0.7403153076171874, 0.7400753784179688, 0.7398667602539063, 0.7393792114257812, 0.7404309692382812, 0.74035400390625, 0.7401881103515625, 0.7396765747070313, 0.7399342041015625, 0.7405410766601562, 0.7398911743164063, 0.7407472534179688, 0.7407882080078125, 0.7400386352539062, 0.73987890625, 0.7409293212890625, 0.7406143798828125, 0.7407343139648438, 0.7397560424804688, 0.7399384155273437, 0.740581298828125, 0.7402973022460938, 0.740220947265625, 0.740360107421875, 0.7411057739257813, 0.740449462890625, 0.7406700439453126, 0.7400977172851563, 0.7408890991210938, 0.740763671875, 0.7403888549804688, 0.7405721435546875, 0.7406007080078125, 0.7408599853515625, 0.740433349609375, 0.7407367553710937, 0.7409295654296875, 0.7406866455078125, 0.7404031982421875, 0.7403448486328125, 0.7409674072265625, 0.7407156982421875, 0.7408065795898438, 0.740592529296875, 0.7401984252929688, 0.7403945922851562, 0.7403984985351563, 0.741126953125, 0.7402785034179687, 0.7403516235351563, 0.7404179077148437, 0.7406781005859375, 0.7401555786132813, 0.7410413208007812, 0.74025439453125, 0.7404482421875, 0.7400786743164063, 0.74094482421875, 0.7405525512695312, 0.7404586791992187, 0.7402434692382812, 0.7404423217773437, 0.74058935546875, 0.740398681640625, 0.7412412719726562, 0.7406448364257813, 0.7404994506835938, 0.7403804931640625, 0.7406102294921875, 0.7411128540039063, 0.7417538452148438, 0.7404564819335937, 0.7408516845703125, 0.7410953979492187, 0.740627685546875, 0.7406206665039062, 0.740828857421875, 0.741005859375, 0.7405958862304688, 0.7401922607421875, 0.7412469482421875, 0.74111181640625, 0.7408843994140625, 0.7404359741210937, 0.7411138916015625, 0.7408823852539063, 0.7407124633789063, 0.74094384765625, 0.7413555297851563, 0.7404906616210938, 0.7410133666992188, 0.7409793701171875, 0.740929443359375, 0.7408640747070312, 0.7405813598632812, 0.7402782592773437, 0.7413414916992187, 0.7409857788085937, 0.7406785888671875, 0.7406057739257812, 0.7411691284179688, 0.7411315307617188, 0.74105859375, 0.7411226806640625, 0.7413324584960937, 0.7406558227539063, 0.740982666015625, 0.74103369140625, 0.7415252685546875, 0.7407310180664063, 0.7412965698242188, 0.7410989990234375, 0.740869873046875, 0.740468994140625, 0.7411036376953125, 0.740706298828125, 0.7408719482421875, 0.740638916015625, 0.7408571166992187, 0.7408074340820312, 0.7406796875, 0.7405250854492188, 0.7408786010742188, 0.741176025390625, 0.740675048828125, 0.7408501586914062, 0.74096435546875, 0.741158935546875, 0.741158935546875, 0.7413923950195312, 0.740759521484375, 0.7410171508789063, 0.7406097412109375, 0.7411217651367188, 0.7407523803710937, 0.7410889892578125, 0.7411448974609375, 0.740943359375, 0.7407252197265625, 0.7412610473632812, 0.7411159057617187, 0.7411837768554688, 0.7409470825195312, 0.7410205688476562, 0.7412899780273438, 0.740505615234375, 0.7411202392578125, 0.7413648071289063, 0.7410611572265625, 0.7406178588867187, 0.7403484497070313, 0.7415132446289062, 0.7412777099609374, 0.7411558837890625, 0.7409234619140626, 0.7417967529296875, 0.7408416748046875, 0.7407122802734375, 0.7415451049804688, 0.74143994140625, 0.7403668823242188, 0.7410130004882812, 0.7412227783203125, 0.7412770385742188, 0.7410735473632812, 0.7407284545898437, 0.7417527465820313, 0.7415567626953125, 0.7406766967773437, 0.7416492309570313, 0.7416729736328125, 0.7409459228515625, 0.7413637084960938, 0.7415271606445313, 0.7411019287109375, 0.7406522827148437, 0.7408670654296875, 0.7413903198242188, 0.7409971313476562, 0.7406673583984374, 0.7407609252929688, 0.7414934692382813, 0.7408578491210938, 0.7410231323242188, 0.7411513671875, 0.7412428588867187, 0.74096435546875, 0.7406705322265625, 0.7410676879882813, 0.7414188232421876, 0.741134521484375, 0.74067333984375, 0.740796630859375, 0.7407656860351562, 0.7411671142578125, 0.7410687255859375, 0.740404541015625, 0.7409191284179687, 0.7406130981445312, 0.7412982788085938, 0.7409271240234375, 0.7409646606445313, 0.7411522827148438, 0.7412577514648437, 0.7407513427734375, 0.7421317138671875, 0.7406898193359375, 0.741083251953125, 0.741148681640625, 0.7414967041015625, 0.741117919921875, 0.741251220703125, 0.7408323364257813, 0.7416058349609375, 0.7406943969726563, 0.7411171264648437, 0.7410963134765625, 0.74192236328125, 0.74168505859375, 0.7406979370117187, 0.7414682006835938, 0.7410567016601562, 0.7410836181640625, 0.7407222290039063, 0.7419583129882813, 0.7410271606445312, 0.7411206665039063, 0.74096435546875, 0.7410503540039063, 0.7414824829101563, 0.7414549560546875, 0.7413988037109375, 0.7414192504882813, 0.741542236328125, 0.7408271484375, 0.7461724243164063, 0.7407713623046875, 0.741369873046875, 0.741060791015625, 0.7408067016601563, 0.741339599609375, 0.7412830810546875, 0.7406840209960938, 0.740358642578125, 0.7411712036132813, 0.741201904296875, 0.7406981201171875, 0.7412203369140625, 0.7410372924804688, 0.7412518920898438, 0.74081689453125, 0.74126953125, 0.740822021484375, 0.7409920043945313, 0.7408836669921876, 0.741301025390625, 0.7412136840820313, 0.7412188110351563, 0.7408919067382812, 0.7412188720703125, 0.7414063720703125, 0.7408522338867187, 0.741738525390625, 0.7410501098632812, 0.7414287719726562, 0.7408514404296875, 0.7411904907226563, 0.7410075073242187, 0.7409111328125, 0.7416375732421875, 0.741001708984375, 0.7411466674804688, 0.7413488159179688, 0.7409137573242187, 0.7413770751953125, 0.7412225952148438, 0.7407398071289063, 0.7414620361328125, 0.7413800659179688, 0.7403970336914063, 0.7408448486328125, 0.7415630493164063, 0.7409124755859375, 0.7413480224609375, 0.7406469116210938, 0.741533203125, 0.7410672607421875, 0.7411220703125, 0.7410269165039063, 0.7413400268554687, 0.7415316772460937, 0.740600830078125, 0.74132373046875, 0.7415449829101562, 0.7412333984375, 0.740911376953125, 0.7413792114257812, 0.7409547119140625, 0.7410911254882813, 0.7410734252929687, 0.741003173828125, 0.74100146484375, 0.7405606689453125, 0.7409389038085937, 0.7408321533203125, 0.741001220703125, 0.7408599243164062, 0.7409613647460938, 0.7415075073242188, 0.7406945190429688, 0.7410227661132812, 0.7412909545898437, 0.7417645263671875, 0.7411779174804688, 0.7408681030273437, 0.7413229370117187, 0.7407265625, 0.7409848022460938, 0.7410198364257813, 0.7413305053710938, 0.7408888549804687, 0.7409436645507812, 0.7412243041992187, 0.741204345703125, 0.7410892944335937, 0.7410191650390625, 0.7411611938476562, 0.74098095703125, 0.7409533081054688, 0.7411494750976563, 0.7408394165039063, 0.7410585327148438, 0.7416481323242188, 0.7412449951171876, 0.740628662109375, 0.74061962890625, 0.7409568481445312, 0.7417200927734375, 0.7409229736328125, 0.7412781372070313, 0.7406406860351562, 0.7419451293945313, 0.7410582275390625, 0.7408953247070312, 0.7413330078125, 0.7406510009765624, 0.7417876586914063, 0.7407821044921875, 0.741222412109375, 0.7412777099609374, 0.7410585327148438, 0.741105712890625, 0.7408578491210938, 0.740893798828125, 0.7417701416015625, 0.7412296752929688, 0.740856689453125, 0.7409622802734375, 0.74039501953125, 0.741365234375, 0.7414215698242187, 0.7406849365234375, 0.7411270141601562, 0.7410870361328125, 0.7406585083007813, 0.7405780029296875, 0.74112939453125, 0.7410717163085937, 0.7406264038085938, 0.7405916137695312, 0.7411134033203125, 0.740692626953125, 0.74117236328125, 0.7411555786132813, 0.7407922973632812, 0.74039501953125, 0.7411712036132813, 0.7411712036132813, 0.7413074951171875, 0.7409837036132813, 0.7411322631835937, 0.7407247314453125, 0.7409061889648437, 0.741374755859375, 0.7408959350585937, 0.7425195922851563, 0.740439453125, 0.7409522094726563, 0.7411123046875, 0.7409574584960937, 0.741372802734375, 0.7410932006835937, 0.7408209838867188, 0.7407821044921875, 0.7407656860351562, 0.74102685546875, 0.7413851928710937, 0.7412572021484375, 0.741064697265625, 0.741011474609375, 0.7408129272460937, 0.7410192260742188, 0.74131640625, 0.7405298461914063, 0.7413767700195313, 0.74063671875, 0.7410964965820312, 0.7412127075195313, 0.7412821655273437, 0.7412142333984375, 0.7414312744140625, 0.7404844360351562, 0.7407822265625, 0.7410919189453125, 0.7412132568359375, 0.7407432250976562, 0.741016357421875, 0.7410842895507812, 0.741087646484375, 0.7406998291015625, 0.7413154907226562, 0.7415840454101562, 0.7410225830078125, 0.7411015625, 0.7414537963867187, 0.740874267578125, 0.7414203491210938, 0.7403264770507813, 0.7410634155273438, 0.7409185180664063, 0.7408353271484375, 0.7404669189453125, 0.7404203491210938, 0.7403519897460937, 0.7420149536132813, 0.7408612670898438, 0.7405206298828125, 0.7407544555664063, 0.7414341430664062, 0.7410803833007813, 0.7410902099609376, 0.7408519287109375, 0.7409415893554687, 0.7404564208984376, 0.7404268188476563, 0.740907958984375, 0.741411865234375, 0.7406228637695312, 0.741372314453125, 0.7408510131835937, 0.7408688354492188, 0.741296142578125, 0.7404994506835938, 0.74149267578125, 0.74127978515625, 0.7410421752929688, 0.7401585693359375, 0.7415073852539062, 0.7416324462890626, 0.7409112548828125, 0.7406940307617188, 0.7410747680664063, 0.7413629760742187, 0.7412233276367187, 0.74068994140625, 0.7412100830078125, 0.7406735229492187, 0.7413104858398437, 0.7413859252929688, 0.7409503173828125, 0.7408230590820313, 0.7416156005859375, 0.741074951171875, 0.7407103881835938, 0.741961669921875, 0.7415742797851562, 0.7415607299804687, 0.7408815307617187, 0.741004150390625, 0.7419085083007813, 0.7408836059570313, 0.7411778564453125, 0.7420112915039062, 0.7413792114257812, 0.7412273559570313, 0.7409903564453125, 0.7410182495117188, 0.74169140625, 0.746708984375, 0.7411466064453125, 0.741240478515625, 0.7410732421875, 0.7407437744140625, 0.740569091796875, 0.7410682983398438, 0.7411778564453125, 0.7406277465820312, 0.7407330322265625, 0.7405321044921875, 0.741503662109375, 0.7409111328125, 0.7410657348632812, 0.74077490234375, 0.7412572021484375, 0.740464599609375, 0.7408700561523438, 0.7406626586914062, 0.7411368408203125, 0.741069091796875, 0.74134326171875, 0.7410131225585938, 0.7410650634765625, 0.7405731811523437, 0.7413833618164063, 0.7407764282226562, 0.7408101196289063, 0.7409360961914062, 0.7406024169921875, 0.7416668090820312, 0.7409581909179688, 0.740361572265625, 0.7412241821289063, 0.7413707275390625, 0.7408877563476562, 0.7406815795898437, 0.74096728515625, 0.7412142944335938, 0.7409121704101562, 0.7410260620117187, 0.74164501953125, 0.7411445922851563, 0.741074951171875, 0.7407349853515625, 0.7418388671875, 0.7409418334960938, 0.7413053588867188, 0.7412003173828124, 0.7406268310546875, 0.741662841796875, 0.7410089721679688, 0.7414379272460937, 0.7410524291992188, 0.741074951171875, 0.7409862670898437, 0.741231201171875, 0.7412080688476562, 0.7415582885742188, 0.7415643920898437, 0.7411831665039063, 0.740969970703125, 0.7412069091796875, 0.7410032348632812, 0.7411319580078125, 0.7406467895507812, 0.7410001831054688, 0.7411732177734375, 0.7405772705078125, 0.7407882080078125, 0.74119580078125, 0.7415930786132813, 0.7405238647460938, 0.74088671875, 0.7413165893554687, 0.740890625, 0.7410768432617187, 0.7412532958984375, 0.7409111328125, 0.7414476928710938, 0.740789794921875, 0.740991455078125, 0.7406918334960938, 0.7410219116210938, 0.7410482788085937, 0.74030078125, 0.74102783203125, 0.7408057861328124, 0.7415857543945312, 0.7404413452148437, 0.7403440551757813, 0.7411328125, 0.7417835693359375, 0.741223876953125, 0.7406965942382813, 0.7409930419921875, 0.7410515747070312, 0.7409672241210937, 0.7407218627929687, 0.7408848876953125, 0.7415095825195313, 0.7411261596679688, 0.7403001098632812, 0.740924072265625, 0.7412849731445312, 0.74093994140625, 0.7412880249023438, 0.7411759643554687, 0.7412305908203125, 0.7412200317382812, 0.7410457763671875, 0.74151953125, 0.7411492919921875, 0.7410728759765625, 0.741060302734375, 0.7409923706054687, 0.7410328979492188, 0.7411978149414062, 0.7412183227539062, 0.7411544189453125, 0.7412242431640625, 0.7409833984375, 0.7409845581054687, 0.7409912109375, 0.7409848022460938, 0.7414599609375, 0.7411077270507812, 0.74080419921875]",tokens/s,1.349568131137656,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-2.7b,facebook/opt-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-7b,huggyllama/llama-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-13b,facebook/opt-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-70m,EleutherAI/pythia-70m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-9b,google/recurrentgemma-9b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-564M,facebook/xglm-564M,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-125m,EleutherAI/gpt-neo-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gptj,EleutherAI/gpt-j-6b,EleutherAI/gpt-j-6b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-2b,google/gemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/polyglot-ko-12.8b,EleutherAI/polyglot-ko-12.8b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-72B,Qwen/Qwen-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-14B,Qwen/Qwen-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-6.7b,EleutherAI/pythia-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-34B,01-ai/Yi-34B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-1.3B,EleutherAI/gpt-neo-1.3B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm,internlm/internlm-20b,internlm/internlm-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,internlm2,internlm/internlm2-20b,internlm/internlm2-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-30b,facebook/opt-30b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2_moe,Qwen/Qwen1.5-MoE-A2.7B,Qwen/Qwen1.5-MoE-A2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-410m,EleutherAI/pythia-410m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,dbrx,databricks/dbrx-base,databricks/dbrx-base,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-7B,Qwen/Qwen1.5-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-14B,Qwen/Qwen2-beta-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-350m,facebook/opt-350m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/gpt-neox-20b,EleutherAI/gpt-neox-20b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-12b,EleutherAI/pythia-12b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-160m,EleutherAI/pythia-160m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-14B,Qwen/Qwen1.5-14B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gemma,google/gemma-7b,google/gemma-7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-1.8B,Qwen/Qwen1.5-1.8B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen2-beta-72B,Qwen/Qwen2-beta-72B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,huggyllama/llama-13b,huggyllama/llama-13b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,Deci/DeciCoder-1b,Deci/DeciCoder-1b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,recurrent_gemma,google/recurrentgemma-2b,google/recurrentgemma-2b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neox,EleutherAI/pythia-2.7b,EleutherAI/pythia-2.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen,Qwen/Qwen-7B,Qwen/Qwen-7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,llama,01-ai/Yi-6B,01-ai/Yi-6B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 96, in run self.run_text_generation_memory_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 200, in run_text_generation_memory_tracking _ = backend.prefill(self.inputs, prefill_kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/workspace/optimum_benchmark/backends/pytorch/backend.py"", line 450, in prefill return self.pretrained_model.generate(**inputs, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py"", line 116, in decorate_context return func(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2024, in generate result = self._sample( File ""/usr/local/lib/python3.10/dist-packages/transformers/generation/utils.py"", line 2982, in _sample outputs = self(**model_inputs, return_dict=True) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1189, in forward outputs = self.model( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 1001, in forward layer_outputs = decoder_layer( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 734, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1553, in _wrapped_call_impl return self._call_impl(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py"", line 1562, in _call_impl return forward_call(*args, **kwargs) File ""/usr/local/lib/python3.10/dist-packages/transformers/models/llama/modeling_llama.py"", line 556, in forward attn_output = _flash_attention_forward( File ""/usr/local/lib/python3.10/dist-packages/transformers/modeling_flash_attention_utils.py"", line 296, in _flash_attention_forward attn_output = flash_attn_func( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 880, in flash_attn_func return FlashAttnFunc.apply( File ""/usr/local/lib/python3.10/dist-packages/torch/autograd/function.py"", line 574, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 546, in forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = _flash_attn_forward( File ""/usr/local/lib/python3.10/dist-packages/flash_attn/flash_attn_interface.py"", line 52, in _flash_attn_forward out, q, k, v, out_padded, softmax_lse, S_dmask, rng_state = flash_attn_cuda.fwd( RuntimeError: FlashAttention only supports Ampere GPUs or newer. ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,gpt_neo,EleutherAI/gpt-neo-2.7B,EleutherAI/gpt-neo-2.7B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-66b,facebook/opt-66b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,xglm,facebook/xglm-4.5B,facebook/xglm-4.5B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,mistral,TencentARC/Mistral_Pro_8B_v0.1,TencentARC/Mistral_Pro_8B_v0.1,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-6B-nl,Salesforce/codegen-6B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-125m,facebook/opt-125m,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,qwen2,Qwen/Qwen1.5-110B,Qwen/Qwen1.5-110B,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,codegen,Salesforce/codegen-16B-nl,Salesforce/codegen-16B-nl,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 4bit-gptq-exllama-v1-flash_attention_2,pytorch,2.4.1+cu124,optimum_benchmark.backends.pytorch.backend.PyTorchBackend,text-generation,transformers,opt,facebook/opt-6.7b,facebook/opt-6.7b,cuda,0,42,,,True,True,,float16,True,False,,flash_attention_2,,False,,False,forward,gptq,4,True,1,256,False,,inference,optimum_benchmark.scenarios.inference.scenario.InferenceScenario,10,10,10,1,2,256,,True,True,True,64,64,process,optimum_benchmark.launchers.process.launcher.ProcessLauncher,True,kill,False,spawn, Intel(R) Xeon(R) Platinum 8259CL CPU @ 2.50GHz,8,33163.759616,Linux,x86_64,Linux-5.10.224-212.876.amzn2.x86_64-x86_64-with-glibc2.35,x86_64,3.10.12,['Tesla T4'],1,16106127360,0.4.0,,4.44.2,,0.34.2,,,,1.22.0,,,,0.12.0,,"Traceback (most recent call last): File ""/workspace/llm_perf/update_llm_perf_cuda_pytorch.py"", line 153, in benchmark_cuda_pytorch benchmark_report = Benchmark.launch(benchmark_config) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 47, in launch report = launcher.launch(worker=cls.run, worker_args=[config]) File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 67, in launch raise ChildProcessError(response[""traceback""]) ChildProcessError: Traceback (most recent call last): File ""/workspace/optimum_benchmark/launchers/process/launcher.py"", line 103, in target report = worker(*worker_args) File ""/workspace/optimum_benchmark/benchmark/base.py"", line 68, in run report = scenario.run(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 89, in run self.run_model_loading_tracking(backend) File ""/workspace/optimum_benchmark/scenarios/inference/scenario.py"", line 178, in run_model_loading_tracking context_stack.enter_context(energy_tracker.track()) File ""/usr/lib/python3.10/contextlib.py"", line 492, in enter_context result = _cm_type.__enter__(cm) File ""/usr/lib/python3.10/contextlib.py"", line 135, in __enter__ return next(self.gen) File ""/workspace/optimum_benchmark/trackers/energy.py"", line 173, in track self.emission_tracker.start_task() File ""/usr/local/lib/python3.10/dist-packages/codecarbon/emissions_tracker.py"", line 547, in start_task if self._scheduler: AttributeError: 'EmissionsTracker' object has no attribute '_scheduler' ",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,