import datasets as ds import json _SUBSET_NAMES = ["all", "spring", "summer", "autumn", "winter", "none", "kigo"] _COMMON_FEATURES = { "id": ds.Value("int64"), "haiku": ds.Value("string"), "author": ds.Value("string"), "foreword": ds.Value("string"), "source": ds.Value("string"), "comment": ds.Value("string"), "reviewer": ds.Value("string"), "note": ds.Value("string"), } _KIGO_FEATURES = { "id": ds.Value("int64"), "word": ds.Value("string"), "kana": ds.Value("string"), "old_kana": ds.Value("string"), "season": ds.Value("string"), "subtitle": ds.Sequence(ds.Value("string")), } # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is designed to solve this great NLP task and is crafted with a lot of care. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" _FEATURES = { "all": ds.Features( {**_COMMON_FEATURES, "season": ds.Value("string"), "kigo": _KIGO_FEATURES} ), "spring": ds.Features({**_COMMON_FEATURES, "kigo": _KIGO_FEATURES}), "summer": ds.Features({**_COMMON_FEATURES, "kigo": _KIGO_FEATURES}), "autumn": ds.Features({**_COMMON_FEATURES, "kigo": _KIGO_FEATURES}), "winter": ds.Features({**_COMMON_FEATURES, "kigo": _KIGO_FEATURES}), "none": ds.Features(_COMMON_FEATURES), "kigo": ds.Features(_KIGO_FEATURES), } _DATA_URL = "https://pub-6dee886ee0a5425c8fb25fe18f3acc73.r2.dev/public/datasets/modern_haiku/data.json" class ModernHaikuDataset(ds.GeneratorBasedBuilder): VERSION = ds.Version("0.0.1") BUILDER_CONFIGS = [ds.BuilderConfig(name=subset) for subset in _SUBSET_NAMES] DEFAULT_CONFIG_NAME = "all" def _info(self): return ds.DatasetInfo( description=_DESCRIPTION, features=_FEATURES.get(self.config.name), homepage=_HOMEPAGE, license=_LICENSE, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download(_DATA_URL) return [ ds.SplitGenerator( name=ds.Split.TRAIN, gen_kwargs={ "filepath": data_dir, }, ), ] def _generate_examples(self, filepath): with open(filepath, "r", encoding="utf-8") as f: data: list[dict] = json.load(f) key = 0 if self.config.name == "all": for row in data: yield key, row key += 1 elif self.config.name == "none": data = [row for row in data if row["season"] == self.config.name] for row in data: row.pop("season") row.pop("kigo") yield key, row key += 1 elif self.config.name != "kigo": data = [row for row in data if row["season"] == self.config.name] for row in data: row.pop("season") yield key, row key += 1 else: all_kigo = {} for row in data: if row["kigo"] is None: continue kigo = row["kigo"] id = kigo["id"] if all_kigo.get(id) is None: all_kigo[id] = kigo else: continue for id, kigo in all_kigo.items(): yield key, kigo key += 1