File size: 4,091 Bytes
7f2843a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import csv
import json
import os

import datasets


# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@INPROCEEDINGS{10022652,
  author={Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha},
  booktitle={2022 IEEE Spoken Language Technology Workshop (SLT)}, 
  title={MASC: Massive Arabic Speech Corpus}, 
  year={2023},
  volume={},
  number={},
  pages={1006-1013},
  doi={10.1109/SLT54892.2023.10022652}}
"""

# You can copy an official description
_DESCRIPTION = """\
This dataset has been collected from twitter which is more than 41 GB of clean data of Arabic Tweets with nearly 4-billion Arabic words (12-million unique Arabic words).
"""

_HOMEPAGE = "https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus"

_LICENSE = "https://creativecommons.org/licenses/by/4.0/"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "train": "https://huggingface.co/datasets/pain/Arabic-Tweets/blob/main/lm_twitter.txt",
}


# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class arabic_tweets(datasets.GeneratorBasedBuilder):
    """This dataset has been collected from twitter which is more than 41 GB of clean data of Arabic Tweets with nearly 4-billion Arabic words (12-million unique Arabic words)."""

    VERSION = datasets.Version("1.0.0")

    def _info(self):

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=datasets.Features(
                {
                    "text": datasets.Value("string")
                }
            ),  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        urls = _URLS["train"]
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": os.path.join(data_dir),
                    "split": "train",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, filepath, split):

            """Yields examples."""
            with open(filepath, encoding="utf-8") as f:
                for idx, row in enumerate(f):
                    if row.strip():
                        yield idx, {"text": row}
                    else:
                        yield idx, {"text": ""}