File size: 5,524 Bytes
99bfbcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
---
license:
- cc-by-4.0
size_categories:
ar:
- n==1k
task_categories:
- automatic-speech-recognition
task_ids: []
pretty_name: MASC dataset
extra_gated_prompt: >-
By clicking on “Access repository” below, you also agree to not attempt to
determine the identity of speakers in the MASC dataset.
language:
- ar
---
# Dataset Card for Common Voice Corpus 11.0
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [How to use](#how-to-use)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Additional Information](#additional-information)
- [Citation Information](#citation-information)
## Dataset Description
- **Homepage:** https://ieee-dataport.org/open-access/masc-massive-arabic-speech-corpus
- **Paper:** https://ieeexplore.ieee.org/document/10022652
### Dataset Summary
MASC is a dataset that contains 1,000 hours of speech sampled at 16 kHz and crawled from over 700 YouTube channels.
The dataset is multi-regional, multi-genre, and multi-dialect intended to advance the research and development of Arabic speech technology with a special emphasis on Arabic speech recognition.
### Supported Tasks
- Automatics Speach Recognition
### Languages
```
Arabic
```
## How to use
The `datasets` library allows you to load and pre-process your dataset in pure Python, at scale. The dataset can be downloaded and prepared in one call to your local drive by using the `load_dataset` function.
```python
from datasets import load_dataset
masc = load_dataset("pain/MASC", split="train")
```
Using the datasets library, you can also stream the dataset on-the-fly by adding a `streaming=True` argument to the `load_dataset` function call. Loading a dataset in streaming mode loads individual samples of the dataset at a time, rather than downloading the entire dataset to disk.
```python
from datasets import load_dataset
masc = load_dataset("pain/MASC", split="train", streaming=True)
print(next(iter(masc)))
```
*Bonus*: create a [PyTorch dataloader](https://huggingface.co/docs/datasets/use_with_pytorch) directly with your own datasets (local/streamed).
### Local
```python
from datasets import load_dataset
from torch.utils.data.sampler import BatchSampler, RandomSampler
masc = load_dataset("pain/MASC", split="train")
batch_sampler = BatchSampler(RandomSampler(masc), batch_size=32, drop_last=False)
dataloader = DataLoader(masc, batch_sampler=batch_sampler)
```
### Streaming
```python
from datasets import load_dataset
from torch.utils.data import DataLoader
masc = load_dataset("pain/MASC", split="train")
dataloader = DataLoader(masc, batch_size=32)
```
To find out more about loading and preparing audio datasets, head over to [hf.co/blog/audio-datasets](https://huggingface.co/blog/audio-datasets).
### Example scripts
Train your own CTC or Seq2Seq Automatic Speech Recognition models on MASC with `transformers` - [here](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition).
## Dataset Structure
### Data Instances
A typical data point comprises the `path` to the audio file and its `sentence`.
```python
{'video_id': 'OGqz9G-JO0E', 'start': 770.6, 'end': 781.835, 'duration': 11.24,
'text': 'اللهم من ارادنا وبلادنا وبلاد المسلمين بسوء اللهم فاشغله في نفسه ورد كيده في نحره واجعل تدبيره تدميره يا رب العالمين',
'type': 'c', 'file_path': '87edeceb-5349-4210-89ad-8c3e91e54062_OGqz9G-JO0E.wav',
'audio': {'path': None,
'array': array([
0.05938721,
0.0539856,
0.03460693, ...,
0.00393677,
0.01745605,
0.03045654
]), 'sampling_rate': 16000
}
}
```
### Data Fields
`video_id` (`string`): An id for the video that the voice has been created from
`start` (`float64`): The start of the audio's chunk
`end` (`float64`): The end of the audio's chunk
`duration` (`float64`): The duration of the chunk
`text` (`string`): The text of the chunk
`audio` (`dict`): A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.
`type` (`string`): It refers to the data set type, either clean or noisy where "c: clean and n: noisy"
'file_path' (`string`): A path for the audio chunk
"audio" ("audio"): Audio for the chunk
### Data Splits
The speech material has been subdivided into portions for train, dev, test.
The dataset splits has clean and noisy data that can be determined by type field.
### Citation Information
```
@INPROCEEDINGS{10022652,
author={Al-Fetyani, Mohammad and Al-Barham, Muhammad and Abandah, Gheith and Alsharkawi, Adham and Dawas, Maha},
booktitle={2022 IEEE Spoken Language Technology Workshop (SLT)},
title={MASC: Massive Arabic Speech Corpus},
year={2023},
volume={},
number={},
pages={1006-1013},
doi={10.1109/SLT54892.2023.10022652}}
}
``` |