Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
multi-class-classification
Size:
10K - 100K
File size: 4,988 Bytes
5a356be 3974d11 a52234f 3974d11 5a356be a52234f 5a356be a52234f 5a356be a52234f 5a356be a52234f 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 5a356be 275fa07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
---
annotations_creators: []
language_creators: []
language:
- ar
- bg
- de
- el
- en
- es
- fr
- hi
- it
- ja
- nl
- pl
- pt
- ru
- sw
- th
- tr
- ur
- vi
- zh
license: []
multilinguality:
- multilingual
pretty_name: Language Identification dataset
size_categories:
- unknown
source_datasets:
- extended|amazon_reviews_multi
- extended|xnli
- extended|stsb_multi_mt
task_categories:
- text-classification
task_ids:
- multi-class-classification
---
# Dataset Card for Language Identification dataset
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The Language Identification dataset is a collection of 90k samples consisting of text passages and corresponding language label.
This dataset was created by collecting data from 3 sources: [Multilingual Amazon Reviews Corpus](https://huggingface.co/datasets/amazon_reviews_multi), [XNLI](https://huggingface.co/datasets/xnli), and [STSb Multi MT](https://huggingface.co/datasets/stsb_multi_mt).
### Supported Tasks and Leaderboards
The dataset can be used to train a model for language identification, which is a **multi-class text classification** task.
The model [papluca/xlm-roberta-base-language-detection](https://huggingface.co/papluca/xlm-roberta-base-language-detection), which is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base), was trained on this dataset and currently achieves 99.6% accuracy on the test set.
### Languages
The Language Identification dataset contains text in 20 languages, which are:
`arabic (ar), bulgarian (bg), german (de), modern greek (el), english (en), spanish (es), french (fr), hindi (hi), italian (it), japanese (ja), dutch (nl), polish (pl), portuguese (pt), russian (ru), swahili (sw), thai (th), turkish (tr), urdu (ur), vietnamese (vi), and chinese (zh)`
## Dataset Structure
### Data Instances
For each instance, there is a string for the text and a string for the label (the language tag). Here is an example:
`{'labels': 'fr', 'text': 'Conforme à la description, produit pratique.'}`
### Data Fields
- **labels:** a string indicating the language label.
- **text:** a string consisting of one or more sentences in one of the 20 languages listed above.
### Data Splits
The Language Identification dataset has 3 splits: *train*, *valid*, and *test*.
The train set contains 70k samples, while the validation and test sets 10k each.
All splits are perfectly balanced: the train set contains 3500 samples per language, while the validation and test sets 500.
## Dataset Creation
### Curation Rationale
This dataset was built during *The Hugging Face Course Community Event*, which took place in November 2021, with the goal of collecting a dataset with enough samples for each language to train a robust language detection model.
### Source Data
The Language Identification dataset was created by collecting data from 3 sources: [Multilingual Amazon Reviews Corpus](https://huggingface.co/datasets/amazon_reviews_multi), [XNLI](https://huggingface.co/datasets/xnli), and [STSb Multi MT](https://huggingface.co/datasets/stsb_multi_mt).
### Personal and Sensitive Information
The dataset does not contain any personal information about the authors or the crowdworkers.
## Considerations for Using the Data
### Social Impact of Dataset
This dataset was developed as a benchmark for evaluating (balanced) multi-class text classification models.
### Discussion of Biases
The possible biases correspond to those of the 3 datasets on which this dataset is based.
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
[More Information Needed]
### Contributions
Thanks to [@LucaPapariello](https://github.com/LucaPapariello) for adding this dataset.
|