File size: 6,544 Bytes
35548f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Filtered Malayalam ASR corpus collected from common_voice 11, fleurs, openslr63, and ucla corpora filtered for duration between 3 - 30 secs"""


import json
import os

import datasets

_CITATION = """\
@misc{https://doi.org/10.48550/arxiv.2211.09536,
  doi = {10.48550/ARXIV.2211.09536},
  
  url = {https://arxiv.org/abs/2211.09536},
  
  author = {Kumar, Gokul Karthik and S, Praveen and Kumar, Pratyush and Khapra, Mitesh M. and Nandakumar, Karthik},
  
  keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
  
  title = {Towards Building Text-To-Speech Systems for the Next Billion Users},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

@inproceedings{commonvoice:2020,
  author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.},
  title = {Common Voice: A Massively-Multilingual Speech Corpus},
  booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)},
  pages = {4211--4215},
  year = 2020
}

@misc{https://doi.org/10.48550/arxiv.2205.12446,
  doi = {10.48550/ARXIV.2205.12446},
  
  url = {https://arxiv.org/abs/2205.12446},
  
  author = {Conneau, Alexis and Ma, Min and Khanuja, Simran and Zhang, Yu and Axelrod, Vera and Dalmia, Siddharth and Riesa, Jason and Rivera, Clara and Bapna, Ankur},
  
  keywords = {Computation and Language (cs.CL), Machine Learning (cs.LG), Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Computer and information sciences, FOS: Computer and information sciences, FOS: Electrical engineering, electronic engineering, information engineering, FOS: Electrical engineering, electronic engineering, information engineering},
  
  title = {FLEURS: Few-shot Learning Evaluation of Universal Representations of Speech},
  
  publisher = {arXiv},
  
  year = {2022},
  
  copyright = {Creative Commons Attribution 4.0 International}
}

"""

_DESCRIPTION = """\
The corpus contains roughly 10 hours of audio and trasncripts in Malayalam language. The transcripts have beedn de-duplicated using exact match deduplication.
"""

_HOMEPAGE = ""

_LICENSE = "https://creativecommons.org/licenses/"


_METADATA_URLS = {
    "train": "data/train.jsonl",
    "test": "data/test.jsonl"
}
_URLS = {
    "train": "data/train.tar.gz",
    "test": "data/test.tar.gz",
    
}

class MalayalamASRCorpus(datasets.GeneratorBasedBuilder):
    """Malayalam ASR Corpus contains transcribed speech corpus for training ASR systems for Malayalam language."""

    VERSION = datasets.Version("1.1.0")
    def _info(self):
        features = datasets.Features(
            {
                "audio": datasets.Audio(sampling_rate=16_000),
                "path": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "length": datasets.Value("float")
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=("sentence", "label"),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        metadata_paths = dl_manager.download(_METADATA_URLS)
        train_archive = dl_manager.download(_URLS["train"])
        test_archive = dl_manager.download(_URLS["test"])
        local_extracted_train_archive = dl_manager.extract(train_archive) if not dl_manager.is_streaming else None
        local_extracted_test_archive = dl_manager.extract(test_archive) if not dl_manager.is_streaming else None
        test_archive = dl_manager.download(_URLS["test"])
        train_dir = "train"
        test_dir = "test"

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "metadata_path": metadata_paths["train"],
                    "local_extracted_archive": local_extracted_train_archive,
                    "path_to_clips": train_dir,
                    "audio_files": dl_manager.iter_archive(train_archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "metadata_path": metadata_paths["test"],
                    "local_extracted_archive": local_extracted_test_archive,
                    "path_to_clips": test_dir,
                    "audio_files": dl_manager.iter_archive(test_archive),
                },
            ),
            
        ]
        
    def _generate_examples(self, metadata_path, local_extracted_archive, path_to_clips, audio_files):
        """Yields examples as (key, example) tuples."""
        examples = {}
        with open(metadata_path, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)
                examples[data["path"]] = data
        inside_clips_dir = False
        id_ = 0
        for path, f in audio_files:
            if path.startswith(path_to_clips):
                inside_clips_dir = True
                if path in examples:
                    result = examples[path]
                    path = os.path.join(local_extracted_archive, path) if local_extracted_archive else path
                    result["audio"] = {"path": path, "bytes": f.read()}
                    result["path"] = path
                    yield id_, result
                    id_ += 1
            elif inside_clips_dir:
                break