File size: 7,076 Bytes
81aad76 aad69ee fa88c12 aad69ee 81aad76 e920af0 81aad76 e920af0 81aad76 e920af0 fa88c12 81aad76 aad69ee fa88c12 aad69ee 8980d65 fa88c12 aad69ee 8980d65 aad69ee 8980d65 aad69ee 8980d65 aad69ee 3b321c6 fa88c12 aad69ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
license: cc-by-4.0
task_categories:
- text-to-speech
- automatic-speech-recognition
language:
- en
size_categories:
- 10K<n<100K
dataset_info:
- config_name: clean
features:
- name: audio
dtype:
audio:
sampling_rate: 24000
- name: text_normalized
dtype: string
- name: text_original
dtype: string
- name: speaker_id
dtype: string
- name: path
dtype: string
- name: chapter_id
dtype: string
- name: id
dtype: string
splits:
- name: dev.clean
num_bytes: 1506311977.8882804
num_examples: 5589
- name: test.clean
num_bytes: 1432099582.6705585
num_examples: 4689
- name: train.clean.100
num_bytes: 8985618654.720787
num_examples: 32215
- name: train.clean.360
num_bytes: 31794257100.91056
num_examples: 112326
download_size: 44461321972
dataset_size: 43718287316.190186
- config_name: other
features:
- name: audio
dtype:
audio:
sampling_rate: 24000
- name: text_normalized
dtype: string
- name: text_original
dtype: string
- name: speaker_id
dtype: string
- name: path
dtype: string
- name: chapter_id
dtype: string
- name: id
dtype: string
splits:
- name: dev.other
num_bytes: 1042714063.4789225
num_examples: 4342
- name: test.other
num_bytes: 1061489621.2561874
num_examples: 4716
- name: train.other.500
num_bytes: 50718457351.73659
num_examples: 194626
download_size: 54153699917
dataset_size: 52822661036.471695
configs:
- config_name: clean
data_files:
- split: dev.clean
path: clean/dev.clean-*
- split: test.clean
path: clean/test.clean-*
- split: train.clean.100
path: clean/train.clean.100-*
- split: train.clean.360
path: clean/train.clean.360-*
- config_name: other
data_files:
- split: dev.other
path: other/dev.other-*
- split: test.other
path: other/test.other-*
- split: train.other.500
path: other/train.other.500-*
pretty_name: Filtered LibriTTS-R
---
# Dataset Card for Filtered LibriTTS-R
This is a filtered version of [LibriTTS-R](https://huggingface.co/datasets/mythicinfinity/libritts_r). It has been filtered based on two sources:
1. LibriTTS-R paper [1], which lists samples for which speech restoration have failed
2. LibriTTS-P [2] list of [excluded speakers](https://github.com/line/LibriTTS-P/blob/main/data/excluded_spk_list.txt) for which multiple speakers have been detected.
LibriTTS-R [1] is a sound quality improved version of the [LibriTTS corpus](http://www.openslr.org/60/) which is a multi-speaker English corpus of approximately
585 hours of read English speech at 24kHz sampling rate, published in 2019.
## Usage
### Example
Loading the `clean` config with only the `train.clean.360` split.
```py
from datasets import load_dataset
load_dataset("blabble-io/libritts_r", "clean", split="train.clean.100")
```
Streaming is also supported.
```py
from datasets import load_dataset
load_dataset("blabble-io/libritts_r", streaming=True)
```
### Splits
There are 7 splits (dots replace dashes from the original dataset, to comply with hf naming requirements):
- dev.clean
- dev.other
- test.clean
- test.other
- train.clean.100
- train.clean.360
- train.other.500
### Configurations
There are 3 configurations, each which limits the splits the `load_dataset()` function will download.
The default configuration is "all".
- "dev": only the "dev.clean" split (good for testing the dataset quickly)
- "clean": contains only "clean" splits
- "other": contains only "other" splits
- "all": contains only "all" splits
### Columns
```
{
"audio": datasets.Audio(sampling_rate=24_000),
"text_normalized": datasets.Value("string"),
"text_original": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"path": datasets.Value("string"),
"chapter_id": datasets.Value("string"),
"id": datasets.Value("string"),
}
```
### Example Row
```
{
'audio': {
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'array': ...,
'sampling_rate': 24000
},
'text_normalized': 'How quickly he disappeared!"',
'text_original': 'How quickly he disappeared!"',
'speaker_id': '3081',
'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/5551a515e85b9e463062524539c2e1cb52ba32affe128dffd866db0205248bdd/LibriTTS_R/dev-clean/3081/166546/3081_166546_000028_000002.wav',
'chapter_id': '166546',
'id': '3081_166546_000028_000002'
}
```
## Dataset Details
### Dataset Description
- **License:** CC BY 4.0
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Homepage:** https://www.openslr.org/141/
- **Paper:** https://arxiv.org/abs/2305.18802
## Citation
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
```
@ARTICLE{Koizumi2023-hs,
title = "{LibriTTS-R}: A restored multi-speaker text-to-speech corpus",
author = "Koizumi, Yuma and Zen, Heiga and Karita, Shigeki and Ding,
Yifan and Yatabe, Kohei and Morioka, Nobuyuki and Bacchiani,
Michiel and Zhang, Yu and Han, Wei and Bapna, Ankur",
abstract = "This paper introduces a new speech dataset called
``LibriTTS-R'' designed for text-to-speech (TTS) use. It is
derived by applying speech restoration to the LibriTTS
corpus, which consists of 585 hours of speech data at 24 kHz
sampling rate from 2,456 speakers and the corresponding
texts. The constituent samples of LibriTTS-R are identical
to those of LibriTTS, with only the sound quality improved.
Experimental results show that the LibriTTS-R ground-truth
samples showed significantly improved sound quality compared
to those in LibriTTS. In addition, neural end-to-end TTS
trained with LibriTTS-R achieved speech naturalness on par
with that of the ground-truth samples. The corpus is freely
available for download from
\textbackslashurl\{http://www.openslr.org/141/\}.",
month = may,
year = 2023,
copyright = "http://creativecommons.org/licenses/by-nc-nd/4.0/",
archivePrefix = "arXiv",
primaryClass = "eess.AS",
eprint = "2305.18802"
}
```
```
@misc{kawamura2024librittspcorpusspeakingstyle,
title={LibriTTS-P: A Corpus with Speaking Style and Speaker Identity Prompts for Text-to-Speech and Style Captioning},
author={Masaya Kawamura and Ryuichi Yamamoto and Yuma Shirahata and Takuya Hasumi and Kentaro Tachibana},
year={2024},
eprint={2406.07969},
archivePrefix={arXiv},
primaryClass={eess.AS},
url={https://arxiv.org/abs/2406.07969},
}
``` |