Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Size:
100K - 1M
License:
File size: 1,410 Bytes
5c151dd 9977ea0 cfc0d6d 9977ea0 cca3cfb 9977ea0 cfc0d6d cca3cfb cfc0d6d 9977ea0 cfc0d6d 9977ea0 cfc0d6d 9977ea0 cfc0d6d 5c151dd f8f47ee 8a6fab1 649a59e 45ad0fc 649a59e 8a6fab1 253e34d 8a6fab1 023a543 8a6fab1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
annotations_creators:
- expert-generated
extended:
- original
language_creators:
- found
language:
- en
- bg
- zh
- hr
- da
- nl
- et
- fa
- ja
- ko
- it
- fr
- de
license:
- cc-by-nc-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- semantic-similarity-classification
---
# XL-WiC
Huggingface dataset for the XL-WiC paper [https://www.aclweb.org/anthology/2020.emnlp-main.584.pdf](https://www.aclweb.org/anthology/2020.emnlp-main.584.pdf).
Please refer to the official [website](https://pilehvar.github.io/xlwic/) for more information.
## Configurations
When loading one of the XL-WSD datasets one has to specify the training language and the target language (on which dev and test will be performed).
Please refer to [Languages](#languages) section to see in which languages training data is available.
For example, we can load the dataset having English as training language and Italian as target language as follows:
```python
from datasets import load_dataset
dataset = load_dataset('pasinit/xlwic', 'en_it')
```
## Languages
**Training data**
- en (English)
- fr (French)
- de (German)
- it (Italian)
**Dev & Test data**
- fr (French)
- de (German)
- it (Italian)
- bg (Bulgarian)
- zh (Chinese)
- hr (Croatian)
- da (Danish)
- nl (Dutch)
- et (Estonian)
- fa (Farsi)
- ja (Japanesse)
- ko (Korean)
|