Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Size:
100K - 1M
License:
File size: 8,179 Bytes
0f54849 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
from dataclasses import dataclass
import datasets
from datasets.info import DatasetInfo
from datasets.utils.download_manager import DownloadManager
import os
_DESCRIPTION = """A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.
XL-WiC provides dev and test sets in the following 12 languages:
Bulgarian (BG)
Danish (DA)
German (DE)
Estonian (ET)
Farsi (FA)
French (FR)
Croatian (HR)
Italian (IT)
Japanese (JA)
Korean (KO)
Dutch (NL)
Chinese (ZH)
and training sets in the following 3 languages:
German (DE)
French (FR)
Italian (IT)
"""
_CITATION = """@inproceedings{raganato-etal-2020-xl-wic,
title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},
author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
pages={7193--7206},
year={2020}
}
"""
_DOWNLOAD_URL = "https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip"
_VERSION = "1.0.0"
_WN_LANGS = ["EN", "BG", "ZH", "HR", "DA", "NL", "ET", "FA", "JA", "KO"]
_WIKT_LANGS = ["IT", "FR", "DE"]
_CODE_TO_LANG_ID = {
"EN": "english",
"BG": "bulgarian",
"ZH": "chinese",
"HR": "croatian",
"DA": "danish",
"NL": "dutch",
"ET": "estonian",
"FA": "farsi",
"JA": "japanese",
"KO": "korean",
"IT": "italian",
"FR": "french",
"DE": "german",
}
_AVAILABLE_PAIRS = (
list(zip(["EN"] * (len(_WN_LANGS) - 1), _WN_LANGS[1:]))
+ list(zip(["EN"] * len(_WIKT_LANGS), _WIKT_LANGS))
+ [("IT", "IT"), ("FR", "FR"), ("DE", "DE")]
)
@dataclass
class XLWiCConfig(datasets.BuilderConfig):
version:str=None
training_lang:str = None
target_lang:str = None
name:str = None
class XLWIC(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
XLWiCConfig(
name=f"xlwic_{source.lower()}_{target.lower()}",
training_lang=source,
target_lang=target,
version=datasets.Version(_VERSION, ""),
)
for source, target in _AVAILABLE_PAIRS
]
def _info(self) -> DatasetInfo:
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"context_1": datasets.Value("string"),
"context_2": datasets.Value("string"),
"target_word": datasets.Value("string"),
"pos": datasets.Value("string"),
"target_word_location_1":
{
"char_start": datasets.Value("int32"),
"char_end": datasets.Value("int32"),
},
"target_word_location_2":
{
"char_start": datasets.Value("int32"),
"char_end": datasets.Value("int32"),
},
"language": datasets.Value("string"),
"label": datasets.Value("int32"),
}
),
supervised_keys=None,
homepage="https://pilehvar.github.io/xlwic/",
citation=_CITATION,
)
def _split_generators(self, dl_manager: DownloadManager):
downloaded_file = dl_manager.download_and_extract(_DOWNLOAD_URL)
dataset_root_folder = os.path.join(downloaded_file, "xlwic_datasets")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"dataset_root": dataset_root_folder,
"lang": self.config.training_lang,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"dataset_root": dataset_root_folder,
"lang": self.config.target_lang,
"split": "valid",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"dataset_root": dataset_root_folder,
"lang": self.config.target_lang,
"split": "test",
},
),
]
def _yield_from_lines(self, lines, lang):
for i, (
tw,
pos,
char_start_1,
char_end_1,
char_start_2,
char_end_2,
context_1,
context_2,
label,
) in enumerate(lines):
_id = f"{lang}_{i}"
yield _id, {
"id": _id,
"target_word": tw,
"context_1": context_1,
"context_2": context_2,
"label": int(label),
"target_word_location_1": {
"char_start": int(char_start_1),
"char_end": int(char_end_1),
},
"target_word_location_2": {
"char_start": int(char_start_2),
"char_end": int(char_end_2)
},
"pos": pos,
"language": lang,
}
def _from_selfcontained_file(self, dataset_root, lang, split):
ext_lang = _CODE_TO_LANG_ID[lang]
if lang in _WIKT_LANGS:
path = os.path.join(
dataset_root,
"xlwic_wikt",
f"{ext_lang}_{lang.lower()}",
f"{lang.lower()}_{split}.txt",
)
elif lang != "EN" and lang in _WN_LANGS:
path = os.path.join(
dataset_root,
"xlwic_wn",
f"{ext_lang}_{lang.lower()}",
f"{lang.lower()}_{split}.txt",
)
elif lang == "EN" and lang in _WN_LANGS:
path = os.path.join(
dataset_root, "wic_english", f"{split}_{lang.lower()}.txt"
)
with open(path) as lines:
all_lines = [line.strip().split("\t") for line in lines]
yield from self._yield_from_lines(all_lines, lang)
def _from_test_files(self, dataset_root, lang, split):
ext_lang = _CODE_TO_LANG_ID[lang]
if lang in _WIKT_LANGS:
path_data = os.path.join(
dataset_root,
"xlwic_wikt",
f"{ext_lang}_{lang.lower()}",
f"{lang.lower()}_{split}_data.txt",
)
elif lang != "EN" and lang in _WN_LANGS:
path_data = os.path.join(
dataset_root,
"xlwic_wn",
f"{ext_lang}_{lang.lower()}",
f"{lang.lower()}_{split}_data.txt",
)
path_gold = path_data.replace('_data.txt', '_gold.txt')
with open(path_data) as lines:
all_lines = [line.strip().split("\t") for line in lines]
with open(path_gold) as lines:
all_labels = [line.strip() for line in lines]
for line, label in zip(all_lines, all_labels):
line.append(label)
yield from self._yield_from_lines(all_lines, lang)
def _generate_examples(self, dataset_root, lang, split, **kwargs):
if split in {"train", "valid"}:
yield from self._from_selfcontained_file(dataset_root, lang, split)
else:
yield from self._from_test_files(dataset_root, lang, split)
|