xlwic / dataset_infos.json
pasinit's picture
dataset infos
d658499
{"xlwic_en_bg": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_bg", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 139338, "num_examples": 998, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 173903, "num_examples": 1220, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 1046528, "size_in_bytes": 19794686}, "xlwic_en_zh": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_zh", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 779740, "num_examples": 3046, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 1434016, "num_examples": 5538, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 2947043, "size_in_bytes": 21695201}, "xlwic_en_hr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_hr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 16877, "num_examples": 104, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 66694, "num_examples": 408, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 816858, "size_in_bytes": 19565016}, "xlwic_en_da": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_da", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 198876, "num_examples": 852, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 800224, "num_examples": 3406, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 1732387, "size_in_bytes": 20480545}, "xlwic_en_nl": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_nl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 40702, "num_examples": 250, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 163964, "num_examples": 1004, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 937953, "size_in_bytes": 19686111}, "xlwic_en_et": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_et", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 16685, "num_examples": 98, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 67034, "num_examples": 390, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 817006, "size_in_bytes": 19565164}, "xlwic_en_fa": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_fa", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 54430, "num_examples": 200, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 208448, "num_examples": 800, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 996165, "size_in_bytes": 19744323}, "xlwic_en_ja": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_ja", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 32438, "num_examples": 208, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 127556, "num_examples": 824, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 893281, "size_in_bytes": 19641439}, "xlwic_en_ko": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_ko", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 42088, "num_examples": 404, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 110032, "num_examples": 1014, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 885407, "size_in_bytes": 19633565}, "xlwic_en_it": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 35720, "num_examples": 198, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 109903, "num_examples": 592, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 878910, "size_in_bytes": 19627068}, "xlwic_en_fr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2045677, "num_examples": 8588, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 5615634, "num_examples": 22232, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 8394598, "size_in_bytes": 27142756}, "xlwic_en_de": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2277398, "num_examples": 8870, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 6360304, "num_examples": 24268, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 9370989, "size_in_bytes": 28119147}, "xlwic_it_it": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_it_it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 204644, "num_examples": 1144, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 35720, "num_examples": 198, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 109903, "num_examples": 592, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 350267, "size_in_bytes": 19098425}, "xlwic_fr_fr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_fr_fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10210148, "num_examples": 39428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2045677, "num_examples": 8588, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 5615634, "num_examples": 22232, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 17871459, "size_in_bytes": 36619617}, "xlwic_de_de": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_de_de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 12625723, "num_examples": 48042, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2277398, "num_examples": 8870, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 6360304, "num_examples": 24268, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 21263425, "size_in_bytes": 40011583}}