Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
semantic-similarity-classification
Size:
100K - 1M
License:
parquet-converter
commited on
Commit
·
d1ce886
1
Parent(s):
cca3cfb
Update parquet files
Browse files- .gitattributes +11 -0
- README.md +0 -69
- dataset_infos.json +0 -1
- xlwic.py +0 -231
- xlwic_de_de/xlwic-test.parquet +3 -0
- xlwic_de_de/xlwic-train.parquet +3 -0
- xlwic_de_de/xlwic-validation.parquet +3 -0
- xlwic_en_bg/xlwic-test.parquet +0 -0
- xlwic_en_bg/xlwic-train.parquet +0 -0
- xlwic_en_bg/xlwic-validation.parquet +0 -0
- xlwic_en_da/xlwic-test.parquet +0 -0
- xlwic_en_da/xlwic-train.parquet +0 -0
- xlwic_en_da/xlwic-validation.parquet +0 -0
- xlwic_en_de/xlwic-test.parquet +3 -0
- xlwic_en_de/xlwic-train.parquet +0 -0
- xlwic_en_de/xlwic-validation.parquet +3 -0
- xlwic_en_et/xlwic-test.parquet +0 -0
- xlwic_en_et/xlwic-train.parquet +0 -0
- xlwic_en_et/xlwic-validation.parquet +0 -0
- xlwic_en_fa/xlwic-test.parquet +0 -0
- xlwic_en_fa/xlwic-train.parquet +0 -0
- xlwic_en_fa/xlwic-validation.parquet +0 -0
- xlwic_en_fr/xlwic-test.parquet +3 -0
- xlwic_en_fr/xlwic-train.parquet +0 -0
- xlwic_en_fr/xlwic-validation.parquet +3 -0
- xlwic_en_hr/xlwic-test.parquet +0 -0
- xlwic_en_hr/xlwic-train.parquet +0 -0
- xlwic_en_hr/xlwic-validation.parquet +0 -0
- xlwic_en_it/xlwic-test.parquet +0 -0
- xlwic_en_it/xlwic-train.parquet +0 -0
- xlwic_en_it/xlwic-validation.parquet +0 -0
- xlwic_en_ja/xlwic-test.parquet +0 -0
- xlwic_en_ja/xlwic-train.parquet +0 -0
- xlwic_en_ja/xlwic-validation.parquet +0 -0
- xlwic_en_ko/xlwic-test.parquet +0 -0
- xlwic_en_ko/xlwic-train.parquet +0 -0
- xlwic_en_ko/xlwic-validation.parquet +0 -0
- xlwic_en_nl/xlwic-test.parquet +0 -0
- xlwic_en_nl/xlwic-train.parquet +0 -0
- xlwic_en_nl/xlwic-validation.parquet +0 -0
- xlwic_en_zh/xlwic-test.parquet +3 -0
- xlwic_en_zh/xlwic-train.parquet +0 -0
- xlwic_en_zh/xlwic-validation.parquet +0 -0
- xlwic_fr_fr/xlwic-test.parquet +3 -0
- xlwic_fr_fr/xlwic-train.parquet +3 -0
- xlwic_fr_fr/xlwic-validation.parquet +3 -0
- xlwic_it_it/xlwic-test.parquet +0 -0
- xlwic_it_it/xlwic-train.parquet +0 -0
- xlwic_it_it/xlwic-validation.parquet +0 -0
.gitattributes
CHANGED
@@ -14,3 +14,14 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
xlwic_de_de/xlwic-train.parquet filter=lfs diff=lfs merge=lfs -text
|
18 |
+
xlwic_de_de/xlwic-validation.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
xlwic_de_de/xlwic-test.parquet filter=lfs diff=lfs merge=lfs -text
|
20 |
+
xlwic_en_de/xlwic-validation.parquet filter=lfs diff=lfs merge=lfs -text
|
21 |
+
xlwic_en_de/xlwic-test.parquet filter=lfs diff=lfs merge=lfs -text
|
22 |
+
xlwic_en_fr/xlwic-validation.parquet filter=lfs diff=lfs merge=lfs -text
|
23 |
+
xlwic_en_fr/xlwic-test.parquet filter=lfs diff=lfs merge=lfs -text
|
24 |
+
xlwic_en_zh/xlwic-test.parquet filter=lfs diff=lfs merge=lfs -text
|
25 |
+
xlwic_fr_fr/xlwic-train.parquet filter=lfs diff=lfs merge=lfs -text
|
26 |
+
xlwic_fr_fr/xlwic-validation.parquet filter=lfs diff=lfs merge=lfs -text
|
27 |
+
xlwic_fr_fr/xlwic-test.parquet filter=lfs diff=lfs merge=lfs -text
|
README.md
DELETED
@@ -1,69 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
extended:
|
5 |
-
- original
|
6 |
-
language_creators:
|
7 |
-
- found
|
8 |
-
language:
|
9 |
-
- en
|
10 |
-
- bg
|
11 |
-
- zh
|
12 |
-
- hr
|
13 |
-
- da
|
14 |
-
- nl
|
15 |
-
- et
|
16 |
-
- fa
|
17 |
-
- ja
|
18 |
-
- ko
|
19 |
-
- it
|
20 |
-
- fr
|
21 |
-
- de
|
22 |
-
license:
|
23 |
-
- cc-by-nc-4.0
|
24 |
-
multilinguality:
|
25 |
-
- multilingual
|
26 |
-
size_categories:
|
27 |
-
- 10K<n<100K
|
28 |
-
source_datasets:
|
29 |
-
- original
|
30 |
-
task_categories:
|
31 |
-
- text-classification
|
32 |
-
task_ids:
|
33 |
-
- semantic-similarity-classification
|
34 |
-
---
|
35 |
-
|
36 |
-
# XL-WiC
|
37 |
-
Huggingface dataset for the XL-WiC paper [https://www.aclweb.org/anthology/2020.emnlp-main.584.pdf](https://www.aclweb.org/anthology/2020.emnlp-main.584.pdf).
|
38 |
-
Please refer to the official [website](https://pilehvar.github.io/xlwic/) for more information.
|
39 |
-
|
40 |
-
|
41 |
-
## Configurations
|
42 |
-
When loading one of the XL-WSD datasets one has to specify the training language and the target language (on which dev and test will be performed).
|
43 |
-
Please refer to [Languages](#languages) section to see in which languages training data is available.
|
44 |
-
For example, we can load the dataset having English as training language and Italian as target language as follows:
|
45 |
-
```python
|
46 |
-
from datasets import load_dataset
|
47 |
-
dataset = load_dataset('pasinit/xlwic', 'en_it')
|
48 |
-
```
|
49 |
-
|
50 |
-
## Languages
|
51 |
-
**Training data**
|
52 |
-
- en (English)
|
53 |
-
- fr (French)
|
54 |
-
- de (German)
|
55 |
-
- it (Italian)
|
56 |
-
|
57 |
-
**Dev & Test data**
|
58 |
-
- fr (French)
|
59 |
-
- de (German)
|
60 |
-
- it (Italian)
|
61 |
-
- bg (Bulgarian)
|
62 |
-
- zh (Chinese)
|
63 |
-
- hr (Croatian)
|
64 |
-
- da (Danish)
|
65 |
-
- nl (Dutch)
|
66 |
-
- et (Estonian)
|
67 |
-
- fa (Farsi)
|
68 |
-
- ja (Japanesse)
|
69 |
-
- ko (Korean)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"xlwic_en_bg": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_bg", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 139338, "num_examples": 998, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 173903, "num_examples": 1220, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 1046528, "size_in_bytes": 19794686}, "xlwic_en_zh": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_zh", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 779740, "num_examples": 3046, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 1434016, "num_examples": 5538, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 2947043, "size_in_bytes": 21695201}, "xlwic_en_hr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_hr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 16877, "num_examples": 104, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 66694, "num_examples": 408, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 816858, "size_in_bytes": 19565016}, "xlwic_en_da": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_da", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 198876, "num_examples": 852, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 800224, "num_examples": 3406, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 1732387, "size_in_bytes": 20480545}, "xlwic_en_nl": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_nl", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 40702, "num_examples": 250, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 163964, "num_examples": 1004, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 937953, "size_in_bytes": 19686111}, "xlwic_en_et": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_et", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 16685, "num_examples": 98, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 67034, "num_examples": 390, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 817006, "size_in_bytes": 19565164}, "xlwic_en_fa": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_fa", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 54430, "num_examples": 200, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 208448, "num_examples": 800, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 996165, "size_in_bytes": 19744323}, "xlwic_en_ja": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_ja", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 32438, "num_examples": 208, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 127556, "num_examples": 824, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 893281, "size_in_bytes": 19641439}, "xlwic_en_ko": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_ko", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 42088, "num_examples": 404, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 110032, "num_examples": 1014, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 885407, "size_in_bytes": 19633565}, "xlwic_en_it": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 35720, "num_examples": 198, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 109903, "num_examples": 592, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 878910, "size_in_bytes": 19627068}, "xlwic_en_fr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2045677, "num_examples": 8588, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 5615634, "num_examples": 22232, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 8394598, "size_in_bytes": 27142756}, "xlwic_en_de": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_en_de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 733287, "num_examples": 5428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2277398, "num_examples": 8870, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 6360304, "num_examples": 24268, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 9370989, "size_in_bytes": 28119147}, "xlwic_it_it": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_it_it", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 204644, "num_examples": 1144, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 35720, "num_examples": 198, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 109903, "num_examples": 592, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 350267, "size_in_bytes": 19098425}, "xlwic_fr_fr": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_fr_fr", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 10210148, "num_examples": 39428, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2045677, "num_examples": 8588, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 5615634, "num_examples": 22232, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 17871459, "size_in_bytes": 36619617}, "xlwic_de_de": {"description": "A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.\n\nXL-WiC provides dev and test sets in the following 12 languages:\n\nBulgarian (BG)\nDanish (DA)\nGerman (DE)\nEstonian (ET)\nFarsi (FA)\nFrench (FR)\nCroatian (HR)\nItalian (IT)\nJapanese (JA)\nKorean (KO)\nDutch (NL)\nChinese (ZH)\nand training sets in the following 3 languages:\n\nGerman (DE)\nFrench (FR)\nItalian (IT)\n", "citation": "@inproceedings{raganato-etal-2020-xl-wic,\n title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},\n author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},\n booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},\n pages={7193--7206},\n year={2020}\n}\n", "homepage": "https://pilehvar.github.io/xlwic/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context_1": {"dtype": "string", "id": null, "_type": "Value"}, "context_2": {"dtype": "string", "id": null, "_type": "Value"}, "target_word": {"dtype": "string", "id": null, "_type": "Value"}, "pos": {"dtype": "string", "id": null, "_type": "Value"}, "target_word_location_1": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "target_word_location_2": {"char_start": {"dtype": "int32", "id": null, "_type": "Value"}, "char_end": {"dtype": "int32", "id": null, "_type": "Value"}}, "language": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "xlwic", "config_name": "xlwic_de_de", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 12625723, "num_examples": 48042, "dataset_name": "xlwic"}, "validation": {"name": "validation", "num_bytes": 2277398, "num_examples": 8870, "dataset_name": "xlwic"}, "test": {"name": "test", "num_bytes": 6360304, "num_examples": 24268, "dataset_name": "xlwic"}}, "download_checksums": {"https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip": {"num_bytes": 18748158, "checksum": "40d12d338c90937eab820f24206c06d58b21d996b1d5c7bf69b3f8c65cf7eaff"}}, "download_size": 18748158, "post_processing_size": null, "dataset_size": 21263425, "size_in_bytes": 40011583}}
|
|
|
|
xlwic.py
DELETED
@@ -1,231 +0,0 @@
|
|
1 |
-
from dataclasses import dataclass
|
2 |
-
import datasets
|
3 |
-
from datasets.info import DatasetInfo
|
4 |
-
from datasets.utils.download_manager import DownloadManager
|
5 |
-
import os
|
6 |
-
|
7 |
-
_DESCRIPTION = """A system's task on any of the XL-WiC datasets is to identify the intended meaning of a word in a context of a given language. XL-WiC is framed as a binary classification task. Each instance in XL-WiC has a target word w, either a verb or a noun, for which two contexts are provided. Each of these contexts triggers a specific meaning of w. The task is to identify if the occurrences of w in the two contexts correspond to the same meaning or not.
|
8 |
-
|
9 |
-
XL-WiC provides dev and test sets in the following 12 languages:
|
10 |
-
|
11 |
-
Bulgarian (BG)
|
12 |
-
Danish (DA)
|
13 |
-
German (DE)
|
14 |
-
Estonian (ET)
|
15 |
-
Farsi (FA)
|
16 |
-
French (FR)
|
17 |
-
Croatian (HR)
|
18 |
-
Italian (IT)
|
19 |
-
Japanese (JA)
|
20 |
-
Korean (KO)
|
21 |
-
Dutch (NL)
|
22 |
-
Chinese (ZH)
|
23 |
-
and training sets in the following 3 languages:
|
24 |
-
|
25 |
-
German (DE)
|
26 |
-
French (FR)
|
27 |
-
Italian (IT)
|
28 |
-
"""
|
29 |
-
_CITATION = """@inproceedings{raganato-etal-2020-xl-wic,
|
30 |
-
title={XL-WiC: A Multilingual Benchmark for Evaluating Semantic Contextualization},
|
31 |
-
author={Raganato, Alessandro and Pasini, Tommaso and Camacho-Collados, Jose and Pilehvar, Mohammad Taher},
|
32 |
-
booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
|
33 |
-
pages={7193--7206},
|
34 |
-
year={2020}
|
35 |
-
}
|
36 |
-
"""
|
37 |
-
_DOWNLOAD_URL = "https://pilehvar.github.io/xlwic/data/xlwic_datasets.zip"
|
38 |
-
_VERSION = "1.0.0"
|
39 |
-
_WN_LANGS = ["EN", "BG", "ZH", "HR", "DA", "NL", "ET", "FA", "JA", "KO"]
|
40 |
-
_WIKT_LANGS = ["IT", "FR", "DE"]
|
41 |
-
_CODE_TO_LANG_ID = {
|
42 |
-
"EN": "english",
|
43 |
-
"BG": "bulgarian",
|
44 |
-
"ZH": "chinese",
|
45 |
-
"HR": "croatian",
|
46 |
-
"DA": "danish",
|
47 |
-
"NL": "dutch",
|
48 |
-
"ET": "estonian",
|
49 |
-
"FA": "farsi",
|
50 |
-
"JA": "japanese",
|
51 |
-
"KO": "korean",
|
52 |
-
"IT": "italian",
|
53 |
-
"FR": "french",
|
54 |
-
"DE": "german",
|
55 |
-
}
|
56 |
-
_AVAILABLE_PAIRS = (
|
57 |
-
list(zip(["EN"] * (len(_WN_LANGS) - 1), _WN_LANGS[1:]))
|
58 |
-
+ list(zip(["EN"] * len(_WIKT_LANGS), _WIKT_LANGS))
|
59 |
-
+ [("IT", "IT"), ("FR", "FR"), ("DE", "DE")]
|
60 |
-
)
|
61 |
-
|
62 |
-
@dataclass
|
63 |
-
class XLWiCConfig(datasets.BuilderConfig):
|
64 |
-
version:str=None
|
65 |
-
training_lang:str = None
|
66 |
-
target_lang:str = None
|
67 |
-
name:str = None
|
68 |
-
|
69 |
-
|
70 |
-
class XLWIC(datasets.GeneratorBasedBuilder):
|
71 |
-
BUILDER_CONFIGS = [
|
72 |
-
XLWiCConfig(
|
73 |
-
name=f"xlwic_{source.lower()}_{target.lower()}",
|
74 |
-
training_lang=source,
|
75 |
-
target_lang=target,
|
76 |
-
version=datasets.Version(_VERSION, ""),
|
77 |
-
)
|
78 |
-
for source, target in _AVAILABLE_PAIRS
|
79 |
-
]
|
80 |
-
|
81 |
-
def _info(self) -> DatasetInfo:
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
description=_DESCRIPTION,
|
84 |
-
features=datasets.Features(
|
85 |
-
{
|
86 |
-
"id": datasets.Value("string"),
|
87 |
-
"context_1": datasets.Value("string"),
|
88 |
-
"context_2": datasets.Value("string"),
|
89 |
-
"target_word": datasets.Value("string"),
|
90 |
-
"pos": datasets.Value("string"),
|
91 |
-
"target_word_location_1":
|
92 |
-
{
|
93 |
-
"char_start": datasets.Value("int32"),
|
94 |
-
"char_end": datasets.Value("int32"),
|
95 |
-
},
|
96 |
-
"target_word_location_2":
|
97 |
-
{
|
98 |
-
"char_start": datasets.Value("int32"),
|
99 |
-
"char_end": datasets.Value("int32"),
|
100 |
-
},
|
101 |
-
"language": datasets.Value("string"),
|
102 |
-
"label": datasets.Value("int32"),
|
103 |
-
}
|
104 |
-
),
|
105 |
-
supervised_keys=None,
|
106 |
-
homepage="https://pilehvar.github.io/xlwic/",
|
107 |
-
citation=_CITATION,
|
108 |
-
)
|
109 |
-
|
110 |
-
def _split_generators(self, dl_manager: DownloadManager):
|
111 |
-
downloaded_file = dl_manager.download_and_extract(_DOWNLOAD_URL)
|
112 |
-
dataset_root_folder = os.path.join(downloaded_file, "xlwic_datasets")
|
113 |
-
|
114 |
-
return [
|
115 |
-
datasets.SplitGenerator(
|
116 |
-
name=datasets.Split.TRAIN,
|
117 |
-
# These kwargs will be passed to _generate_examples
|
118 |
-
gen_kwargs={
|
119 |
-
"dataset_root": dataset_root_folder,
|
120 |
-
"lang": self.config.training_lang,
|
121 |
-
"split": "train",
|
122 |
-
},
|
123 |
-
),
|
124 |
-
datasets.SplitGenerator(
|
125 |
-
name=datasets.Split.VALIDATION,
|
126 |
-
# These kwargs will be passed to _generate_examples
|
127 |
-
gen_kwargs={
|
128 |
-
"dataset_root": dataset_root_folder,
|
129 |
-
"lang": self.config.target_lang,
|
130 |
-
"split": "valid",
|
131 |
-
},
|
132 |
-
),
|
133 |
-
datasets.SplitGenerator(
|
134 |
-
name=datasets.Split.TEST,
|
135 |
-
# These kwargs will be passed to _generate_examples
|
136 |
-
gen_kwargs={
|
137 |
-
"dataset_root": dataset_root_folder,
|
138 |
-
"lang": self.config.target_lang,
|
139 |
-
"split": "test",
|
140 |
-
},
|
141 |
-
),
|
142 |
-
]
|
143 |
-
|
144 |
-
def _yield_from_lines(self, lines, lang):
|
145 |
-
|
146 |
-
for i, (
|
147 |
-
tw,
|
148 |
-
pos,
|
149 |
-
char_start_1,
|
150 |
-
char_end_1,
|
151 |
-
char_start_2,
|
152 |
-
char_end_2,
|
153 |
-
context_1,
|
154 |
-
context_2,
|
155 |
-
label,
|
156 |
-
) in enumerate(lines):
|
157 |
-
_id = f"{lang}_{i}"
|
158 |
-
yield _id, {
|
159 |
-
"id": _id,
|
160 |
-
"target_word": tw,
|
161 |
-
"context_1": context_1,
|
162 |
-
"context_2": context_2,
|
163 |
-
"label": int(label),
|
164 |
-
"target_word_location_1": {
|
165 |
-
"char_start": int(char_start_1),
|
166 |
-
"char_end": int(char_end_1),
|
167 |
-
},
|
168 |
-
"target_word_location_2": {
|
169 |
-
"char_start": int(char_start_2),
|
170 |
-
"char_end": int(char_end_2)
|
171 |
-
},
|
172 |
-
"pos": pos,
|
173 |
-
"language": lang,
|
174 |
-
}
|
175 |
-
|
176 |
-
def _from_selfcontained_file(self, dataset_root, lang, split):
|
177 |
-
ext_lang = _CODE_TO_LANG_ID[lang]
|
178 |
-
if lang in _WIKT_LANGS:
|
179 |
-
path = os.path.join(
|
180 |
-
dataset_root,
|
181 |
-
"xlwic_wikt",
|
182 |
-
f"{ext_lang}_{lang.lower()}",
|
183 |
-
f"{lang.lower()}_{split}.txt",
|
184 |
-
)
|
185 |
-
elif lang != "EN" and lang in _WN_LANGS:
|
186 |
-
path = os.path.join(
|
187 |
-
dataset_root,
|
188 |
-
"xlwic_wn",
|
189 |
-
f"{ext_lang}_{lang.lower()}",
|
190 |
-
f"{lang.lower()}_{split}.txt",
|
191 |
-
)
|
192 |
-
elif lang == "EN" and lang in _WN_LANGS:
|
193 |
-
path = os.path.join(
|
194 |
-
dataset_root, "wic_english", f"{split}_{lang.lower()}.txt"
|
195 |
-
)
|
196 |
-
with open(path) as lines:
|
197 |
-
all_lines = [line.strip().split("\t") for line in lines]
|
198 |
-
yield from self._yield_from_lines(all_lines, lang)
|
199 |
-
|
200 |
-
def _from_test_files(self, dataset_root, lang, split):
|
201 |
-
ext_lang = _CODE_TO_LANG_ID[lang]
|
202 |
-
if lang in _WIKT_LANGS:
|
203 |
-
path_data = os.path.join(
|
204 |
-
dataset_root,
|
205 |
-
"xlwic_wikt",
|
206 |
-
f"{ext_lang}_{lang.lower()}",
|
207 |
-
f"{lang.lower()}_{split}_data.txt",
|
208 |
-
)
|
209 |
-
elif lang != "EN" and lang in _WN_LANGS:
|
210 |
-
path_data = os.path.join(
|
211 |
-
dataset_root,
|
212 |
-
"xlwic_wn",
|
213 |
-
f"{ext_lang}_{lang.lower()}",
|
214 |
-
f"{lang.lower()}_{split}_data.txt",
|
215 |
-
)
|
216 |
-
path_gold = path_data.replace('_data.txt', '_gold.txt')
|
217 |
-
with open(path_data) as lines:
|
218 |
-
all_lines = [line.strip().split("\t") for line in lines]
|
219 |
-
with open(path_gold) as lines:
|
220 |
-
all_labels = [line.strip() for line in lines]
|
221 |
-
for line, label in zip(all_lines, all_labels):
|
222 |
-
line.append(label)
|
223 |
-
yield from self._yield_from_lines(all_lines, lang)
|
224 |
-
|
225 |
-
|
226 |
-
def _generate_examples(self, dataset_root, lang, split, **kwargs):
|
227 |
-
if split in {"train", "valid"}:
|
228 |
-
yield from self._from_selfcontained_file(dataset_root, lang, split)
|
229 |
-
else:
|
230 |
-
yield from self._from_test_files(dataset_root, lang, split)
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
xlwic_de_de/xlwic-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ec6270249bf18af487f95531453e410125c039ac2f400577082ab7c1de7c3de
|
3 |
+
size 4296957
|
xlwic_de_de/xlwic-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:edc44e1695c75c0a1a0e348eedd51e017106b0a0e00a12d8f7c0a97b96e6041d
|
3 |
+
size 8495279
|
xlwic_de_de/xlwic-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd02b2d1681e99c35386770ef91949905c2eb21e24413eca791f9157ba81cfe
|
3 |
+
size 1444821
|
xlwic_en_bg/xlwic-test.parquet
ADDED
Binary file (82 kB). View file
|
|
xlwic_en_bg/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_bg/xlwic-validation.parquet
ADDED
Binary file (59.2 kB). View file
|
|
xlwic_en_da/xlwic-test.parquet
ADDED
Binary file (533 kB). View file
|
|
xlwic_en_da/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_da/xlwic-validation.parquet
ADDED
Binary file (128 kB). View file
|
|
xlwic_en_de/xlwic-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ec6270249bf18af487f95531453e410125c039ac2f400577082ab7c1de7c3de
|
3 |
+
size 4296957
|
xlwic_en_de/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_de/xlwic-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6fd02b2d1681e99c35386770ef91949905c2eb21e24413eca791f9157ba81cfe
|
3 |
+
size 1444821
|
xlwic_en_et/xlwic-test.parquet
ADDED
Binary file (49.2 kB). View file
|
|
xlwic_en_et/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_et/xlwic-validation.parquet
ADDED
Binary file (18 kB). View file
|
|
xlwic_en_fa/xlwic-test.parquet
ADDED
Binary file (105 kB). View file
|
|
xlwic_en_fa/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_fa/xlwic-validation.parquet
ADDED
Binary file (35.4 kB). View file
|
|
xlwic_en_fr/xlwic-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0855494b8c2c18d6051abaf4de5e9176eea8207a2dbeac4c46d171fc20b7a50
|
3 |
+
size 3737736
|
xlwic_en_fr/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_fr/xlwic-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:190aec5760177fe92a1a270c066bfd7dc067005285e46da972e1b4811baac204
|
3 |
+
size 1269199
|
xlwic_en_hr/xlwic-test.parquet
ADDED
Binary file (48.2 kB). View file
|
|
xlwic_en_hr/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_hr/xlwic-validation.parquet
ADDED
Binary file (18.3 kB). View file
|
|
xlwic_en_it/xlwic-test.parquet
ADDED
Binary file (69.9 kB). View file
|
|
xlwic_en_it/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_it/xlwic-validation.parquet
ADDED
Binary file (28.9 kB). View file
|
|
xlwic_en_ja/xlwic-test.parquet
ADDED
Binary file (68.6 kB). View file
|
|
xlwic_en_ja/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_ja/xlwic-validation.parquet
ADDED
Binary file (23.4 kB). View file
|
|
xlwic_en_ko/xlwic-test.parquet
ADDED
Binary file (57.6 kB). View file
|
|
xlwic_en_ko/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_ko/xlwic-validation.parquet
ADDED
Binary file (25.2 kB). View file
|
|
xlwic_en_nl/xlwic-test.parquet
ADDED
Binary file (92.9 kB). View file
|
|
xlwic_en_nl/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_nl/xlwic-validation.parquet
ADDED
Binary file (29.2 kB). View file
|
|
xlwic_en_zh/xlwic-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a90464080f7690fd77b5938dc1aa96b681e500e0fb9b68334c01499b2283bc1d
|
3 |
+
size 1056045
|
xlwic_en_zh/xlwic-train.parquet
ADDED
Binary file (397 kB). View file
|
|
xlwic_en_zh/xlwic-validation.parquet
ADDED
Binary file (556 kB). View file
|
|
xlwic_fr_fr/xlwic-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0855494b8c2c18d6051abaf4de5e9176eea8207a2dbeac4c46d171fc20b7a50
|
3 |
+
size 3737736
|
xlwic_fr_fr/xlwic-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:736b4216da3b2f340e3cf621e7f51ba3d47b3cde7fec247b6ad9e2e5ac200f11
|
3 |
+
size 6790869
|
xlwic_fr_fr/xlwic-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:190aec5760177fe92a1a270c066bfd7dc067005285e46da972e1b4811baac204
|
3 |
+
size 1269199
|
xlwic_it_it/xlwic-test.parquet
ADDED
Binary file (69.9 kB). View file
|
|
xlwic_it_it/xlwic-train.parquet
ADDED
Binary file (126 kB). View file
|
|
xlwic_it_it/xlwic-validation.parquet
ADDED
Binary file (28.9 kB). View file
|
|