Datasets:

Modalities:
Text
Formats:
parquet
Size:
< 1K
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
static-analysis-eval / _script_for_eval.py
codelion's picture
Upload _script_for_eval.py
3c831f2 verified
raw
history blame
11.9 kB
import json
import os
import random
import pickle
import time
import datetime
import subprocess
import argparse
import re
import multiprocessing
import numpy as np
from openai import OpenAI
from openai import OpenAIError
from tqdm import tqdm
from functools import partial
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, CrossEncoder
from sklearn.metrics.pairwise import cosine_similarity
client = OpenAI()
def load_cache(use_cache):
if use_cache and os.path.exists('cache.pkl'):
with open('cache.pkl', 'rb') as f:
return pickle.load(f)
return {}
def save_cache(cache, use_cache):
if use_cache:
with open('cache.pkl', 'wb') as f:
pickle.dump(cache, f)
def has_all_comments(text):
lines=text.split('\n')
for line in lines:
if line != "" and not line.startswith("#"):
return False
return True
def fetch_dataset_examples(prompt, num_examples=0, use_similarity=False):
dataset = load_dataset("patched-codes/synth-vuln-fixes", split="train")
if use_similarity:
# Load a lightweight model for initial retrieval
retrieval_model = SentenceTransformer('all-MiniLM-L6-v2')
# Load the cross-encoder model for reranking
rerank_model = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Extract user messages
user_messages = [
next(msg['content'] for msg in item['messages'] if msg['role'] == 'user')
for item in dataset
]
# Encode the prompt and user messages for initial retrieval
prompt_embedding = retrieval_model.encode(prompt, convert_to_tensor=False)
corpus_embeddings = retrieval_model.encode(user_messages, convert_to_tensor=False, show_progress_bar=True)
# Perform initial retrieval
similarities = cosine_similarity([prompt_embedding], corpus_embeddings)[0]
top_k = min(100, len(dataset))
top_indices = similarities.argsort()[-top_k:][::-1]
# Prepare pairs for reranking
rerank_pairs = [[prompt, user_messages[idx]] for idx in top_indices]
# Rerank using the cross-encoder model
rerank_scores = rerank_model.predict(rerank_pairs)
# Sort by reranked score and select top examples
reranked_indices = [top_indices[i] for i in np.argsort(rerank_scores)[::-1][:num_examples]]
top_indices = reranked_indices
else:
top_indices = np.random.choice(len(dataset), num_examples, replace=False)
few_shot_messages = []
for index in top_indices:
py_index = int(index)
messages = dataset[py_index]["messages"]
dialogue = [msg for msg in messages if msg['role'] != 'system']
few_shot_messages.extend(dialogue)
return few_shot_messages
def sanitize_filename(name):
# Replace ':' with '_', and any other non-alphanumeric characters (except '-' and '_') with '*'
sanitized = re.sub(r':', '_', name)
sanitized = re.sub(r'[^a-zA-Z0-9\-_]', '*', sanitized)
return sanitized
def get_semgrep_version():
try:
result = subprocess.run(["semgrep", "--version"], capture_output=True, text=True)
version = result.stdout.strip().split()[-1]
return version
except Exception:
return "unknown"
def get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name):
system_message = (
"You are an AI assistant specialized in fixing code vulnerabilities. "
"Your task is to provide corrected code that addresses the reported security issue. "
"Always maintain the original functionality while improving security. "
"Be precise and make only necessary changes. "
"Maintain the original code style and formatting unless it directly relates to the vulnerability. "
"Pay attention to data flow between sources and sinks when provided."
)
messages = [
{"role": "system", "content": system_message},
]
messages.extend(few_shot_messages)
messages.append({"role": "user", "content": prompt})
max_retries = 3
for attempt in range(max_retries):
try:
response = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=512,
temperature=0.2,
top_p=0.95
)
return response.choices[0].message.content
except OpenAIError as e:
if attempt < max_retries - 1:
time.sleep(2 ** attempt) # Exponential backoff
else:
raise Exception(f"API call failed after {max_retries} attempts: {str(e)}")
def process_file(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity):
file_name = test_case["file_name"]
input_file = os.path.join("staticeval", file_name)
if use_cache and input_file in cache:
tqdm.write(f"Skipping {input_file} (cached)")
return cache[input_file]
file_text = test_case["source"]
output_file = input_file + "_fixed.py"
tmp_file = input_file + ".output.json"
try:
os.makedirs(os.path.dirname(input_file), exist_ok=True)
with open(input_file, "w") as file_object:
file_object.write(file_text)
if os.path.exists(tmp_file):
os.remove(tmp_file)
tqdm.write("Scanning file " + input_file + "...")
scan_command_input = f"semgrep --config p/python {input_file} --output {tmp_file} --json > /dev/null 2>&1"
os.system(scan_command_input)
if not os.path.exists(tmp_file):
tqdm.write(f"Semgrep failed to create output file for {input_file}")
return False
with open(tmp_file, 'r') as jf:
data = json.load(jf)
if len(data.get("errors", [])) == 0:
if len(data.get("results", [])) == 0:
tqdm.write(input_file + " has no vulnerabilities")
result = False
else:
tqdm.write("Vulnerability found in " + input_file + "...")
cwe = data["results"][0]["extra"]["metadata"]["cwe"][0]
lines = data["results"][0]["extra"]["lines"]
message = data["results"][0]["extra"]["message"]
prompt = f"""Vulnerability Report:
- Type: {cwe}
- Location: {lines}
- Description: {message}
Original Code:
```
{file_text}
```
Task: Fix the vulnerability in the code above. Provide only the complete fixed code without explanations or comments. Make minimal changes necessary to address the security issue while preserving the original functionality."""
few_shot_messages = fetch_dataset_examples(prompt, n_shot, use_similarity)
response = get_fixed_code_fine_tuned(prompt, few_shot_messages, model_name)
if "```python" in response:
idx = response.find("```python")
shift = len("```python")
fixed_code = response[idx + shift :]
else:
fixed_code = response
stop_words = ["```", "assistant"]
for w in stop_words:
if w in fixed_code:
fixed_code = fixed_code[:fixed_code.find(w)]
if len(fixed_code) < 400:
result = False
if has_all_comments(fixed_code):
result = False
if os.path.exists(output_file):
os.remove(output_file)
with open(output_file, 'w') as wf:
wf.write(fixed_code)
if os.path.exists(tmp_file):
os.remove(tmp_file)
scan_command_output = f"semgrep --config p/python {output_file} --output {tmp_file} --json > /dev/null 2>&1"
os.system(scan_command_output)
with open(tmp_file, 'r') as jf:
data = json.load(jf)
if len(data["errors"]) == 0 and len(data["results"]) == 0:
tqdm.write("Passing response for " + input_file + " at 1 ...")
result = True
fixed_files.append(file_name)
else:
result = False
else:
tqdm.write(f"Semgrep reported errors for {input_file}")
result = False
if os.path.exists(tmp_file):
os.remove(tmp_file)
if use_cache:
cache[input_file] = result
return result
except Exception as e:
tqdm.write(f"Error processing {input_file}: {str(e)}")
return False
def process_test_case(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity):
return process_file(test_case, cache, fixed_files, model_name, use_cache, n_shot, use_similarity)
def main():
parser = argparse.ArgumentParser(description="Run Static Analysis Evaluation")
parser.add_argument("--model", type=str, default="gpt-4o-mini", help="OpenAI model to use")
parser.add_argument("--cache", action="store_true", help="Enable caching of results")
parser.add_argument("--n_shot", type=int, default=0, help="Number of examples to use for few-shot learning")
parser.add_argument("--use_similarity", action="store_true", help="Use similarity for fetching dataset examples")
args = parser.parse_args()
model_name = args.model
use_cache = args.cache
n_shot = args.n_shot
use_similarity = args.use_similarity
sanitized_model_name = f"{sanitize_filename(model_name)}-{n_shot}-shot{'-sim' if use_similarity else ''}"
dataset = load_dataset("patched-codes/static-analysis-eval", split="train")
data = [{"file_name": item["file_name"], "source": item["source"], "cwe": item["cwe"]} for item in dataset]
cache = load_cache(use_cache)
total_tests = len(data)
semgrep_version = get_semgrep_version()
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
log_file_name = f"{sanitized_model_name}_semgrep_{semgrep_version}_{timestamp}.log"
manager = multiprocessing.Manager()
fixed_files = manager.list()
process_func = partial(process_test_case, cache=cache, fixed_files=fixed_files, model_name=model_name, use_cache=use_cache, n_shot=n_shot, use_similarity=use_similarity)
with multiprocessing.Pool(processes=4) as pool:
results = list(tqdm(pool.imap(process_func, data), total=total_tests))
passing_tests = sum(results)
score = passing_tests / total_tests * 100
if use_cache:
save_cache(cache, use_cache)
with open(log_file_name, 'w') as log_file:
log_file.write(f"Evaluation Run Log\n")
log_file.write(f"==================\n\n")
log_file.write(f"Date and Time: {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n")
log_file.write(f"Model: {model_name}\n")
log_file.write(f"Semgrep Version: {semgrep_version}\n")
log_file.write(f"Caching: {'Enabled' if use_cache else 'Disabled'}\n\n")
log_file.write(f"Total Tests: {total_tests}\n")
log_file.write(f"Passing Tests: {passing_tests}\n")
log_file.write(f"Score: {score:.2f}%\n\n")
log_file.write(f"Number of few-shot examples: {n_shot}\n")
log_file.write(f"Use similarity for examples: {'Yes' if use_similarity else 'No'}\n")
log_file.write("Fixed Files:\n")
for file in fixed_files:
log_file.write(f"- {file}\n")
print(f"Results for StaticAnalysisEval: {score:.2f}%")
print(f"Log file created: {log_file_name}")
if __name__ == '__main__':
main()