Datasets:
File size: 15,953 Bytes
5442891 5e07f87 35da3a5 5e07f87 936f268 5442891 5e07f87 c8de840 5e07f87 8c93a3f b1b89d7 5e07f87 ade1e30 5e07f87 3e3ee39 5e07f87 9742bba 5e07f87 014889f 5e07f87 9742bba 1dfac24 5e07f87 014889f 936f268 9742bba cfffbc0 9742bba 5e07f87 014889f 936f268 2f33d7a 5e07f87 014889f 5e07f87 9742bba ea2827b 28fccf5 5e07f87 014889f e5ff948 5e07f87 1dfac24 5e07f87 cfffbc0 1dfac24 cfffbc0 1dfac24 cfffbc0 1dfac24 5e07f87 5d4aa2b 5e07f87 5d4aa2b 5e07f87 5d4aa2b 5e07f87 e826b86 5e07f87 e826b86 5e07f87 e826b86 5e07f87 e826b86 5e07f87 95ba271 5e07f87 e826b86 b8b1152 5e07f87 b1b89d7 9d7e09c b1b89d7 8c93a3f 8a9f848 b8b1152 8a9f848 b8b1152 6528372 b8b1152 8a9f848 b8b1152 6528372 b8b1152 8a9f848 b8b1152 d25f838 6528372 d25f838 6528372 b8b1152 8c93a3f b1b89d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- en
license:
- mit
multilinguality:
- monolingual
pretty_name: PET
size_categories:
- 1K<n<10K
source_datasets:
[Friedrich et al. original dataset]
task_categories:
- token-classification
task_ids:
- token classification
- named entity recognition
- relation extraction
---
# PET: A NEW DATASET FOR PROCESS EXTRACTION FROM TEXT
# Dataset Card for PET
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
- [Annotation Guidelines](#annotationguidelines)
- [Update](#updates)
- [Loading data](#loadingdata)
## Dataset Description
- **Homepage:** https://pdi.fbk.eu/pet-dataset/
- **Paper:** https://arxiv.org/abs/2203.04860
- **Point of Contact:** [Patrizio Bellan](pbellan@fbk.eu)
### Dataset Summary
Abstract. Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management. For this, we develop the first corpus of business process descriptions annotated with activities, actors, activity data, gateways and their conditions. We present our new resource to benchmark the difficulty and challenges of business process extraction from text.
### Supported Tasks and Leaderboards
- Token Classification
- Named Entity Recognition
- Relations Extraction
### Languages
English
## Dataset Structure
Test set to beanchmark *Business Process Extraction from Text* approaches.
### Data Instances
#### Token Classification
For each instance, there is a document name representing the name of the document of the Friedrich *et al.* dataset, an integer representing the number of the sentence, a list of tokens representing the words of the sentence instance, and a list of *ner tags* (in IOB2 format) representing the annotation of process elements of the sentence.
Below, an example of data instance.
```
{
"document name":"doc-1.1",
"sentence-ID":1,
"tokens":["Whenever","the","sales","department","receives","an","order",",","a","new","process","instance","is","created","."],
"ner-tags":["O","B-Actor","I-Actor","I-Actor","B-Activity","B-Activity Data","I-Activity Data","O","O","O","O","O","O","O","O"]
}
```
#### Relations Extraction
For each instance, there is a document name representing the name of the document of the Friedrich *et al.* dataset, a list of tokens representing the words of the document instance, a list of interger representing the words position within each sentence of the document instance, a list of *ner tags* (in IOB2 format) representing the annotation of the token, a list of sentence id representing for each token the number of the sentence, and a list of relations of the document.
Below, an example of data instance.
```
{
"document name": "doc-1.1",
"tokens": ["A", "small", "company",...],
"tokens-IDs": [0, 1, 2, ...],
"ner_tags": ["O", "O", "O", ...],
"sentence-IDs": [0, 0, 0, ...],
"relations": {
"source-head-sentence-ID": [1, 1, 1, ...],
"source-head-word-ID": [4, 4, 4, ...],
"relation-type": ["uses", "flow", "actor recipient", ...],
"target-head-sentence-ID": [1, 2, 1,...],
"target-head-word-ID": [5, 9, 1, ...]
}
}
```
### Data Fields
#### Token Classification
- *document name*: a string used to represent the name of the document.
- *sentence-ID*: an integer (starting from 0) representing the number of the sentence within the document.
- *tokens*: a list of string representing the words of the sentence
- *ner-tags*: a list of string representing the annotation for each word.
The allowed **ner-tags** are:
- **O**: An O tag indicates that a token belongs to no chunk.
- **B-Actor**: This tag indicates the beginning of an *Actor* chunk.
- **I-Actor**: This tag indicates that the tag is inside an *Actor* chunk.
- **B-Activity**: This tag indicates the beginning of an *Activity* chunk.
- **I-Activity**: This tag indicates that the tag is inside an *Activity* chunk.
- **B-Activity Data**: This tag indicates the beginning of an *Activity Data* chunk.
- **I-Activity Data**: This tag indicates that the tag is inside an *Activity Data* chunk.
- **B-Further Specification**: This tag indicates the beginning of a *Further Specification* chunk.
- **I-Further Specification**: This tag indicates that the tag is inside a *Further Specification* chunk.
- **B-XOR Gateway**: This tag indicates the beginning of a *XOR Gateway* chunk.
- **I-XOR Gateway**: This tag indicates that the tag is inside a *XOR Gateway* chunk.
- **B-Condition Specification**: This tag indicates the beginning of a *Condition Specification* chunk.
- **I-Condition Specification**: This tag indicates that the tag is inside a *Condition Specification* chunk.
- **B-AND Gateway**: This tag indicates the beginning of an *AND Gateway* chunk.
- **I-AND Gateway**: This tag indicates that the tag is inside an *AND Gateway* chunk.
To have a complete explanation of each process element tag please refer to the [research paper](https://arxiv.org/abs/2203.04860) and the [annotation guidelines](https://pdi.fbk.eu/pet/annotation-guidelines-for-process-description.pdf).
### Relations Extraction
- *document name*: a string used to represent the name of the document.
- *tokens*: a list of string representing the words of the document
- *tokens-IDs*: a list of interger representing the word position within a sentence.
- *ner_tags*: a list of string representing the annotation for each word. (see ner-tags above)
- *sentence-IDs*: a list of interger representing the sentence number for each word of the document.
- *relations*:: a list of document relations.
- *source-head-sentence-ID*: a list of sentence ID pointing to the sentence number of the head (first token) of the source entity.
- *source-head-word-ID*: a list of token ID pointing to the word ID of the head (first token) of the source entity.
- *relation-type*: a list of relation tags.
- *target-head-sentence-ID*: a list of sentence ID pointing to the sentence number of the head (first token) of the target entity.
- *target-head-word-ID*: a list of token ID pointing to the word ID of the head (first token) of the target entity.
For instance, a relation is defined by the instances of *source-head-sentence-ID*, *source-head-word-ID*, *relation-type*, *target-head-sentence-ID*, and *target-head-word-ID* at the same index position.
In the following example, the first relation of the first document is shown:
```python
document_1=modelhub_dataset['test'][0]
relation = {
'source-head-sentence-ID': document_1['relations']['source-head-sentence-ID'][0],
'source-head-word-ID': document_1['relations']['source-head-word-ID'][0],
'relation-type': document_1['relations']['relation-type'][0],
'target-head-sentence-ID': document_1['relations']['target-head-sentence-ID'][0],
'target-head-word-ID': document_1['relations']['target-head-sentence-ID'][0],
}
print(relation)
```
the output is:
```python
{'relation-type': 'uses',
'source-head-sentence-ID': 1,
'source-head-word-ID': 4,
'target-head-sentence-ID': 1,
'target-head-word-ID': 1}
```
That means:
the entity in sentence number *1*, starting at the token position *4* has a *uses* relation with the entity in sentence number *1* starting at token position *1*
### Data Splits
The data was not splited. It contains the test set only.
## Dataset Creation
### Curation Rationale
Although there is a long tradition of work in NLP on extracting entities and relations from text, to date there exists little work on the acquisition of business processes from unstructured data such as textual corpora of process descriptions. With this work we aim at filling this gap and establishing the first steps towards bridging data-driven information extraction methodologies from Natural Language Processing and the model-based formalization that is aimed from Business Process Management.
### Source Data
#### Initial Data Collection and Normalization
The dataset construction process has been split in five main phases:
1. Text pre-processing. As the first operation, we check the content of each document and we tokenized it. This initial check was necessary since some of the original texts were automatically translated into English by the authors of the dataset. The translations were never validated, indeed, several errors have been found and fixed.
2. Text Annotation. Each text has been annotated by using the [guidelines](https://pdi.fbk.eu/pet/annotation-guidelines-for-process-description.pdf). The team was composed by five annotators with high expertise in BPMN. Each document has been assigned to three experts that were in change of identifying all the elements and flows with each document. In this phase, we used the the Inception tool to support annotators.
3. Automatic annotation fixing. After the second phase, we ran an automatic procedure relying on a rule-based script to automatically fix annotations that were not compliant with the guidelines. For example, if a modal verb was erroneously included in the annotation of an Activity, the procedure removed it from the annotation. Another example is the missing of the article within an annotation related to an Actor. In this case, the script included it in the annotation. This phase allowed to remove possible annotation errors and to obtain annotations compliant with the guidelines.
4. Agreement Computation. Here, we computed, on the annotation provided by the experts, the agreement scores for each process element and for each relation between process elements pair adopting the methodology proposed in [Hripcsak *et al.*](https://academic.oup.com/jamia/article/12/3/296/812057?login=true). We measured the agreement in terms of the F1 measure because, besides being straightforward to calculate, it is directly interpretable. Note that chance-corrected measures like *k* approach the F1-measure as the number of cases that raters agree are negative grows. By following such a methodology, an annotation was considered in agreement among the experts if and only if they capture the same span of words and they assign the same process element tag to the annotation.
5. Reconciliation. The last phase consisted of the mitigation of disagreements within the annotations provided by the experts. The aim of this phase is to obtain a shared and agreed set of gold standard annotations on each text for both entities and relations. Such entities also enable the generation of the related full-connected process model flow that can be rendered by using, but not limited to, a BPMN diagram. During this last phase, among the 47 documents originally included into the dataset, 2 of them were discarded. These texts were not fully annotated by the annotators since they were not be able to completely understand which process elements were actually included in some specific parts of the text. For this reason, the final size of the dataset is 45 textual descriptions of the corresponding process models together with their annotations.
#### Who are the source language producers?
English
### Annotations
#### Annotation process
You can read about the annotation process in the original paper https://arxiv.org/abs/2203.04860
#### Who are the annotators?
Expert Annotators
### Personal and Sensitive Information
No personal or sensitive information issues.
## Considerations for Using the Data
### Social Impact of Dataset
The dataset has no social impact
### Discussion of Biases
No bias found in the dataset
### Other Known Limitations
The *Further specification* and *AND Gateway* elements obtained very poor performance on the baselines proposed in the paper.
The *AND Gateway* is the less represented process elements in this dataset.
The *Further Specification* process element was the most difficult element to annotate.
## Additional Information
### Dataset Curators
- Patrizio Bellan (Fondazione Bruno Kessler, Trento, Italy and Free University of Bozen-Bolzano, Bolzano, Italy)
- Mauro Dragoni (Fondazione Bruno Kessler, Trento, Italy)
- Chiara Ghidini (Fondazione Bruno Kessler, Trento, Italy)
- Han van der Aa (University of Mannheim, Mannheim, Germany)
- Simone Ponzetto (University of Mannheim, Mannheim, Germany)
### Licensing Information
### Citation Information
```
@article{DBLP:journals/corr/abs-2203-04860,
author = {Patrizio Bellan and
Han van der Aa and
Mauro Dragoni and
Chiara Ghidini and
Simone Paolo Ponzetto},
title = {{PET:} {A} new Dataset for Process Extraction from Natural Language
Text},
journal = {CoRR},
volume = {abs/2203.04860},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2203.04860},
doi = {10.48550/arXiv.2203.04860},
eprinttype = {arXiv},
eprint = {2203.04860},
timestamp = {Wed, 16 Mar 2022 16:39:52 +0100},
biburl = {https://dblp.org/rec/journals/corr/abs-2203-04860.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [Patrizio Bellan](https://pdi.fbk.eu/bellan/) for adding this dataset.
#### <a name="updates"></a>Update
- v1.0.0: Added token classification task
- v1.0.1: Added extraction relation task
## <a name="annotationguidelines"></a>Annotation Guidelines
### Inception Schema
The inception schema can be found [here](https://pdi.fbk.eu/pet/inception-schema.json)
### Annotation Guidelines
The Annotation guidelines and procedures adopted to annotate the PET dataset can be downloaded [here](https://pdi.fbk.eu/pet/annotation-guidelines-for-process-description.pdf)
### Article
The Article can be downloeaded [here](https://doi.org/10.48550/arXiv.2203.04860)
### Python Interface
A python interface (beta version) to interact with the dataset can be found [here](https://pypi.org/project/petdatasetreader/)
### Benchmarks
A python benchmarking procedure to test approaches on the PET dataset will be released soon.
## <a name="loadingdata"></a>Loading data
### Token-classification task
```python
from datasets import load_dataset
modelhub_dataset = load_dataset("patriziobellan/PET", name='token-classification')
```
### Relations-extraction task
```python
from datasets import load_dataset
modelhub_dataset = load_dataset("patriziobellan/PET", name='relations-extraction')
|