File size: 4,884 Bytes
94e19f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8479798
94e19f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df9bf3e
94e19f1
df9bf3e
 
 
 
94e19f1
 
 
 
 
 
 
 
 
 
 
 
2aa5080
94e19f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Cleaned and split version of the English Wikipedia."""


import json
import gzip
import textwrap
import datasets
import random
from itertools import zip_longest

logger = datasets.logging.get_logger(__name__)

_CITATION = """
"""

_DESCRIPTION = """\

"""

_HOMEPAGE = ""

_LICENSE = ""

_DATA_URL = "https://huggingface.co/datasets/pdelobelle/enwiki-yearly-cleaned/resolve/main/enwiki-yearly-cleaned/{split}/enwiki_{index}_{split}.jsonl.gz"
_CONFIG_NAMES = ["tiny", "small", "medium", "large", "full"]

_CONFIGS = dict(
    tiny={"train": 2, "validation": 1, "estimate": "0.1GB"},
    small={"train": 100, "validation": 2, "estimate": "4GB"},
    medium={"train": 750, "validation": 2, "estimate": "30GB"},
    large={"train": 1500, "validation": 3, "estimate": "59GB"},
    full={"train": 3497, "validation": 4, "estimate": "137GB"},
)

class Wikipedia(datasets.GeneratorBasedBuilder):
    """Cleaned and split version of the English Wikipedia."""

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name=name,
            version=datasets.Version("1.0.0"),
            description=textwrap.dedent(
                f"""\
            A {name} version of the English Wikipedia.
            Estimated size of compressed files: {_CONFIGS[name]['estimate']}
            """
            ),
        )
        for name in _CONFIG_NAMES
    ]


    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "year": datasets.Value("string"),
                    "tlsh": datasets.Value("string"),
                    "title": datasets.Value("string"),
                    
                }
            ),
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_urls = {}
        config = _CONFIGS[self.config.name]
        for split in ["train", "validation"]:
            start_file = config.get("start", 1) if split == "train" else 1
            num_files = config.get(split)

            data_urls[split] = []
            for index in range(start_file, start_file + num_files):
                data_urls[split].append(
                    _DATA_URL.format(
                        split=split,
                        index=index,
                    )
                )
               
        # Shuffle data in streaming mode, so restarts will not always start with the same data
        if dl_manager.is_streaming:
            random.shuffle(data_urls["train"])
        train_downloaded_files = dl_manager.download(data_urls["train"])
        validation_downloaded_files = dl_manager.download(data_urls["validation"])
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepaths": train_downloaded_files},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepaths": validation_downloaded_files},
            ),
        ]

    @staticmethod
    def grouper(iterable, n, fillvalue=None):
        """Collect data into fixed-length chunks or blocks"""
        # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx"
        args = [iter(iterable)] * n
        return zip_longest(*args, fillvalue=fillvalue)

    @staticmethod
    def gzip_open(filepath):
        if filepath:
            return gzip.open(open(filepath, "rb"), "rt", encoding="utf-8")

    def _generate_examples(self, filepaths):
        """This function returns the examples in the raw (text) form by iterating on all the files."""
        id_ = 0
        for files in self.grouper(filepaths, 2, None):
            logger.info(f"Generating examples from {files}")
            gzip_iters = [self.gzip_open(file) for file in files if file is not None]
            for lines in zip(*gzip_iters):
                for line in lines:
                    example = json.loads(line)
                    yield id_, example
                    id_ += 1