Datasets:
Tasks:
Text Classification
Sub-tasks:
multi-label-classification
Languages:
English
Size:
10K<n<100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Class for loading datafrom rtGender""" | |
from __future__ import absolute_import, division, print_function | |
import csv | |
from enum import Enum | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{voigt-etal-2018-rtgender, | |
title = "{R}t{G}ender: A Corpus for Studying Differential Responses to Gender", | |
author = "Voigt, Rob and | |
Jurgens, David and | |
Prabhakaran, Vinodkumar and | |
Jurafsky, Dan and | |
Tsvetkov, Yulia", | |
booktitle = "Proceedings of the Eleventh International Conference on Language Resources and Evaluation ({LREC} 2018)", | |
month = may, | |
year = "2018", | |
address = "Miyazaki, Japan", | |
publisher = "European Language Resources Association (ELRA)", | |
url = "https://www.aclweb.org/anthology/L18-1445", | |
} | |
""" | |
_DESCRIPTION = """\ | |
RtGender is a corpus for studying responses to gender online, including posts and responses from Facebook, TED, Fitocracy, and Reddit where the gender of the source poster/speaker is known. | |
""" | |
_HOMEPAGE = "https://nlp.stanford.edu/robvoigt/rtgender/#contact" | |
_LICENSE = "Research Only" | |
_URL = "https://nlp.stanford.edu/robvoigt/rtgender/rtgender.tar.gz" | |
class Config(Enum): | |
ANNOTATIONS = "annotations" | |
POSTS = "posts" | |
RESPONSES = "responses" | |
FB_POLI = "fb_politicians" | |
FB_PUB = "fb_public" | |
TED = "ted" | |
FITOCRACY = "fitocracy" | |
REDDIT = "reddit" | |
class rtGender(datasets.GeneratorBasedBuilder): | |
"""TODO: Short description of my dataset.""" | |
VERSION = datasets.Version("1.1.0") | |
# This is an example of a dataset with multiple configurations. | |
# If you don't want/need to define several sub-sets in your dataset, | |
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. | |
# If you need to make complex sub-parts in the datasets with configurable options | |
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig | |
# BUILDER_CONFIG_CLASS = MyBuilderConfig | |
# You will be able to load one or the other configurations in the following list with | |
# data = datasets.load_dataset('my_dataset', 'first_domain') | |
# data = datasets.load_dataset('my_dataset', 'second_domain') | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name=Config.ANNOTATIONS.value, | |
version=VERSION, | |
description="Retrieves only the annotations.", | |
), | |
datasets.BuilderConfig( | |
name=Config.POSTS.value, | |
version=VERSION, | |
description="Retrieves all posts.", | |
), | |
datasets.BuilderConfig( | |
name=Config.RESPONSES.value, | |
version=VERSION, | |
description="Retrieves all responses.", | |
) | |
] | |
DEFAULT_CONFIG_NAME = Config.ANNOTATIONS.value # It's not mandatory to have a default configuration. Just use one if it make sense. | |
POSTS_FEATURES = { | |
"source": datasets.Value("string"), | |
"op_id": datasets.Value("string"), | |
"op_gender": datasets.Value("string"), | |
"post_id": datasets.Value("string"), | |
"post_text": datasets.Value("string"), | |
"post_type": datasets.Value("string"), # only for fb | |
"subreddit": datasets.Value("string"), # only for reddit | |
"op_gender_visible": datasets.Value("string"), # only for reddit | |
} | |
RESPONSES_FEATURES = { | |
"source": datasets.Value("string"), | |
"op_id": datasets.Value("string"), | |
"op_gender": datasets.Value("string"), | |
"post_id": datasets.Value("string"), | |
"responder_id": datasets.Value("string"), | |
"response_text": datasets.Value("string"), | |
"op_name": datasets.Value("string"), # only for fb | |
"op_category": datasets.Value("string"), # only for fb | |
"responder_gender": datasets.Value("string"), # only for fitocracy and reddit | |
"responder_gender_visible": datasets.Value("string"), # only for reddit | |
"subreddit": datasets.Value("string"), | |
} | |
ANNOTATION_FEATURES = { | |
"source": datasets.Value("string"), | |
"op_gender": datasets.Value("string"), | |
"post_text": datasets.Value("string"), | |
"response_text": datasets.Value("string"), | |
"sentiment": datasets.Value("string"), | |
"relevance": datasets.Value("string"), | |
} | |
def _info(self): | |
if ( | |
self.config.name == Config.ANNOTATIONS.value | |
): # This is the name of the configuration selected in BUILDER_CONFIGS above | |
features = datasets.Features(self.ANNOTATION_FEATURES) | |
elif self.config.name == Config.POSTS.value: | |
features = datasets.Features(self.POSTS_FEATURES) | |
else: | |
features = datasets.Features(self.RESPONSES_FEATURES) | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# This defines the different columns of the dataset and their types | |
features=features, # Here we define them above because they are different between the two configurations | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage=_HOMEPAGE, | |
# License for the dataset if available | |
license=_LICENSE, | |
# Citation for the dataset | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name | |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs | |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. | |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive | |
data_dir = dl_manager.download_and_extract(_URL) | |
if self.config.name == Config.ANNOTATIONS.value: | |
files = ["annotations.csv"] | |
elif self.config.name == Config.POSTS.value: | |
files = [ | |
"facebook_congress_posts.csv", | |
"facebook_wiki_posts.csv", | |
"fitocracy_posts.csv", | |
"reddit_posts.csv", | |
] | |
else: | |
files = [ | |
"facebook_congress_responses.csv", | |
"facebook_wiki_responses.csv", | |
"fitocracy_responses.csv", | |
"reddit_responses.csv", | |
"ted_responses.csv", | |
] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepaths": list(map(lambda x: os.path.join(data_dir, x), files)), | |
"split": "train", | |
}, | |
), | |
] | |
def _generate_examples( | |
self, | |
filepaths, | |
split, # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` | |
): | |
""" Yields examples as (key, example) tuples. """ | |
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. | |
# The `key` is here for legacy reason (tfds) and is not important in itself. | |
files = [] | |
readers = {} | |
for fp in filepaths: | |
f = open(fp, encoding="utf-8") | |
reader = csv.reader(f) | |
next(reader) | |
readers[fp.replace(".csv", "")] = reader | |
files.append(f) | |
id_ = 0 | |
for reader_name, reader in readers.items(): | |
for row in reader: | |
if self.config.name == Config.ANNOTATIONS.value: | |
yield id_, { | |
"source": row[0], | |
"op_gender": row[1], | |
"post_text": row[2], | |
"response_text": row[3], | |
"sentiment": row[4], | |
"relevance": row[5], | |
} | |
elif self.config.name == Config.POSTS.value: | |
r = { | |
"source": reader_name, | |
"op_id": row[0], | |
"op_gender": row[1], | |
"post_id": row[2], | |
"post_text": row[3], | |
"post_type": None, | |
"subreddit": None, | |
"op_gender_visible": None, | |
} | |
if "facebook" in reader_name: | |
r["post_type"] = row[4] | |
elif "reddit" in reader_name: | |
r["subreddit"] = row[4] | |
r["op_gender_visible"] = row[5] | |
yield id_, r | |
else: | |
r = { | |
"source": reader_name, | |
"op_id": row[0], | |
"op_gender": row[1], | |
"post_id": row[2], | |
"responder_id": row[3], | |
"response_text": row[4], | |
"op_name": None, | |
"op_category": None, | |
"responder_gender": None, | |
"responder_gender_visible": None, | |
"subreddit": None | |
} | |
if "facebook" in reader_name: | |
r["op_name"] = row[5] | |
r["op_category"] = row[6] | |
elif "fitocracy" in reader_name: | |
r["responder_gender"] = row[5] | |
elif "reddit" in reader_name: | |
r["subreddit"] = row[5] | |
r["responder_gender"] = row[6] | |
r["responder_gender_visible"] = row[7] | |
yield id_, r | |
id_ += 1 | |
for fd in files: | |
fd.close() | |