File size: 6,098 Bytes
bad90f5
 
 
 
 
029d466
bad90f5
029d466
bad90f5
 
 
 
 
 
 
 
c8f27e3
bad90f5
 
34e0f75
b0bb874
0295750
 
 
 
 
 
 
 
 
 
08a71b2
 
 
 
 
 
 
 
 
 
 
 
 
0295750
 
 
 
 
 
 
 
6bb65fa
 
 
0295750
 
bad90f5
 
 
 
 
 
 
34e0f75
bad90f5
 
 
34e0f75
 
bad90f5
 
 
 
 
 
 
 
 
 
 
 
 
a52f65f
bad90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a52f65f
 
 
0295750
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
language:
- pt
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- token-classification
task_ids:
- named-entity-recognition
paperswithcode_id: lener-br
pretty_name: leNER-br
dataset_info:
  features:
  - name: id
    dtype: string
  - name: tokens
    sequence: string
  - name: ner_tags
    sequence:
      class_label:
        names:
          '0': O
          '1': B-ORGANIZACAO
          '2': I-ORGANIZACAO
          '3': B-PESSOA
          '4': I-PESSOA
          '5': B-TEMPO
          '6': I-TEMPO
          '7': B-LOCAL
          '8': I-LOCAL
          '9': B-LEGISLACAO
          '10': I-LEGISLACAO
          '11': B-JURISPRUDENCIA
          '12': I-JURISPRUDENCIA
  config_name: lener_br
  splits:
  - name: train
    num_bytes: 3984189
    num_examples: 7828
  - name: validation
    num_bytes: 719433
    num_examples: 1177
  - name: test
    num_bytes: 823708
    num_examples: 1390
  download_size: 2983137
  dataset_size: 5527330
---

# Dataset Card for leNER-br

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [leNER-BR homepage](https://cic.unb.br/~teodecampos/LeNER-Br/)
- **Repository:** [leNER-BR repository](https://github.com/peluz/lener-br)
- **Paper:** [leNER-BR: Long Form Question Answering](https://cic.unb.br/~teodecampos/LeNER-Br/luz_etal_propor2018.pdf)
- **Point of Contact:** [Pedro H. Luz de Araujo](mailto:pedrohluzaraujo@gmail.com)

### Dataset Summary

LeNER-Br is a Portuguese language dataset for named entity recognition 
applied to legal documents. LeNER-Br consists entirely of manually annotated 
legislation and legal cases texts and contains tags for persons, locations, 
time entities, organizations, legislation and legal cases.
To compose the dataset, 66 legal documents from several Brazilian Courts were
collected. Courts of superior and state levels were considered, such as Supremo
Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas
Gerais and Tribunal de Contas da União. In addition, four legislation documents
were collected, such as "Lei Maria da Penha", giving a total of 70 documents

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

The language supported is Portuguese.

## Dataset Structure

### Data Instances

An example from the dataset looks as follows:

```
{
  "id": "0",
  "ner_tags": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0],
  "tokens": [
    "EMENTA", ":", "APELAÇÃO", "CÍVEL", "-", "AÇÃO", "DE", "INDENIZAÇÃO", "POR", "DANOS", "MORAIS", "-", "PRELIMINAR", "-", "ARGUIDA", "PELO", "MINISTÉRIO", "PÚBLICO", "EM", "GRAU", "RECURSAL"]
}
```
### Data Fields

- `id`: id of the sample
- `tokens`: the tokens of the example text
- `ner_tags`: the NER tags of each token

The NER tags correspond to this list:
```
"O", "B-ORGANIZACAO", "I-ORGANIZACAO", "B-PESSOA", "I-PESSOA", "B-TEMPO", "I-TEMPO", "B-LOCAL", "I-LOCAL", "B-LEGISLACAO", "I-LEGISLACAO", "B-JURISPRUDENCIA", "I-JURISPRUDENCIA"
```
The NER tags have the same format as in the CoNLL shared task: a B denotes the first item of a phrase and an I any non-initial word.

### Data Splits

The data is split into train, validation and test set. The split sizes are as follow:

| Train  | Val   | Test |
| ------ | ----- | ---- |
| 7828   | 1177  | 1390 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```
@inproceedings{luz_etal_propor2018,
      author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
      Renato R. R. {de Oliveira} and Matheus Stauffer and
      Samuel Couto and Paulo Bermejo},
      title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
      booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
      publisher = {Springer},
      series = {Lecture Notes on Computer Science ({LNCS})},
      pages = {313--323},
      year = {2018},
      month = {September 24-26},
      address = {Canela, RS, Brazil},	  
      doi = {10.1007/978-3-319-99722-3_32},
      url = {https://cic.unb.br/~teodecampos/LeNER-Br/},
}	
```

### Contributions

Thanks to [@jonatasgrosman](https://github.com/jonatasgrosman) for adding this dataset.