File size: 5,842 Bytes
bad90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a9cad9
 
 
bad90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42d181e
bad90f5
0a9cad9
bad90f5
 
 
 
 
 
 
 
84d9949
bad90f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LeNER-Br dataset"""


import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """
@inproceedings{luz_etal_propor2018,
    author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
    Renato R. R. {de Oliveira} and Matheus Stauffer and
    Samuel Couto and Paulo Bermejo},
    title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
    booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
    publisher = {Springer},
    series = {Lecture Notes on Computer Science ({LNCS})},
    pages = {313--323},
    year = {2018},
    month = {September 24-26},
    address = {Canela, RS, Brazil},
    doi = {10.1007/978-3-319-99722-3_32},
    url = {https://cic.unb.br/~teodecampos/LeNER-Br/},
}
"""

_DESCRIPTION = """
LeNER-Br is a Portuguese language dataset for named entity recognition
applied to legal documents. LeNER-Br consists entirely of manually annotated
legislation and legal cases texts and contains tags for persons, locations,
time entities, organizations, legislation and legal cases.
To compose the dataset, 66 legal documents from several Brazilian Courts were
collected. Courts of superior and state levels were considered, such as Supremo
Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas
Gerais and Tribunal de Contas da União. In addition, four legislation documents
were collected, such as "Lei Maria da Penha", giving a total of 70 documents
"""

_HOMEPAGE = "https://cic.unb.br/~teodecampos/LeNER-Br/"

_URL = "https://github.com/peluz/lener-br/raw/master/leNER-Br/"
_TRAINING_FILE = "train/train.conll"
_DEV_FILE = "dev/dev.conll"
_TEST_FILE = "test/test.conll"


class LenerBr(datasets.GeneratorBasedBuilder):
    """LeNER-Br dataset"""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="lener_br", version=VERSION, description="LeNER-Br dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O",
                                "B-ORGANIZACAO",
                                "I-ORGANIZACAO",
                                "B-PESSOA",
                                "I-PESSOA",
                                "B-TEMPO",
                                "I-TEMPO",
                                "B-LOCAL",
                                "I-LOCAL",
                                "B-LEGISLACAO",
                                "I-LEGISLACAO",
                                "B-JURISPRUDENCIA",
                                "I-JURISPRUDENCIA",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://cic.unb.br/~teodecampos/LeNER-Br/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "dev": f"{_URL}{_DEV_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"], "split": "train"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["dev"], "split": "validation"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"], "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        """Yields examples."""

        logger.info("⏳ Generating examples from = %s", filepath)

        with open(filepath, encoding="utf-8") as f:

            guid = 0
            tokens = []
            ner_tags = []

            for line in f:
                if line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    splits = line.split(" ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())

            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }