fact
stringlengths 2
32.6k
| type
stringclasses 10
values | library
stringclasses 5
values | imports
stringclasses 205
values | filename
stringclasses 216
values | symbolic_name
stringlengths 1
67
| index_level
int64 0
10.5k
|
---|---|---|---|---|---|---|
Set := | nAnon | nNamed (_ : ident). | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | name | 0 |
Set := Relevant | Irrelevant. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | relevance | 1 |
(A : Type) := mkBindAnn { binder_name : A; binder_relevance : relevance }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | binder_annot | 2 |
(A : Type) (e : Classes.EqDec A) : Classes.EqDec (binder_annot A). Proof. ltac:(Equations.Prop.Tactics.eqdec_proof). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eqdec_binder_annot | 3 |
{A B} (f : A -> B) (b : binder_annot A) : binder_annot B := {| binder_name := f b.(binder_name); binder_relevance := b.(binder_relevance) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_binder_annot | 4 |
{A B} (b : binder_annot A) (b' : binder_annot B) : Prop := b.(binder_relevance) = b'.(binder_relevance). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eq_binder_annot | 5 |
binder_annot name. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | aname | 6 |
Classes.EqDec aname := _. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | anqme_eqdec | 7 |
{A} (b b' : binder_annot A) : bool := match Classes.eq_dec b.(binder_relevance) b'.(binder_relevance) with | left _ => true | right _ => false end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | eqb_binder_annot | 8 |
(na : name) := match na with | nAnon => "_" | nNamed n => n end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_name | 9 |
(r : relevance) := match r with | Relevant => "Relevant" | Irrelevant => "Irrelevant" end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_relevance | 10 |
Set := | VmCast | NativeCast | Cast. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | cast_kind | 11 |
mk_case_info { ci_ind : inductive; ci_npar : nat; ci_cstr_ndecls : list nat; *) ci_relevance : relevance }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | case_info | 12 |
ci := "(" ^ string_of_inductive ci.(ci_ind) ^ "," ^ string_of_nat ci.(ci_npar) ^ "," ^ string_of_relevance ci.(ci_relevance) ^ ")". | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_case_info | 13 |
| Finite | CoFinite | BiFinite . | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | recursivity_kind | 14 |
| Conv | Cumul. | Inductive | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | conv_pb | 15 |
(pb1 pb2 : conv_pb) : bool := match pb1, pb2 with | Cumul, Conv => false | _, _ => true end. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | conv_pb_leqb | 16 |
nat. exact 0. Qed. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fresh_evar_id | 17 |
term := mkdef { dname : aname; dtype : term; dbody : term; rarg : nat }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | def | 18 |
{A} : Classes.EqDec A -> Classes.EqDec (def A). Proof. ltac:(Equations.Prop.Tactics.eqdec_proof). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | def_eq_dec | 19 |
{A} (f : A -> string) (def : def A) := "(" ^ string_of_name (binder_name (dname def)) ^ "," ^ string_of_relevance (binder_relevance (dname def)) ^ "," ^ f (dtype def) ^ "," ^ f (dbody def) ^ "," ^ string_of_nat (rarg def) ^ ")". | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | string_of_def | 20 |
{A} (f : A -> string) (g : A -> string) (def : def A) := string_of_name (binder_name (dname def)) ^ " { struct " ^ string_of_nat (rarg def) ^ " }" ^ " : " ^ f (dtype def) ^ " := " ^ nl ^ g (dbody def). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | print_def | 21 |
{A B} (tyf bodyf : A -> B) (d : def A) := {| dname := d.(dname); dtype := tyf d.(dtype); dbody := bodyf d.(dbody); rarg := d.(rarg) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def | 22 |
{A B} (f : A -> B) (g : A -> B) (d : def A) : f (dtype d) = dtype (map_def f g d). Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_dtype | 23 |
{A B} (f : A -> B) (g : A -> B) (d : def A) : g (dbody d) = dbody (map_def f g d). Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_dbody | 24 |
term := list (def term). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mfixpoint | 25 |
{A} (tyf bodyf : A -> bool) (d : def A) := tyf d.(dtype) && bodyf d.(dbody). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_def | 26 |
{A} (P P' : A -> Type) (m : mfixpoint A) := All (fun x : def A => P x.(dtype) * P' x.(dbody))%type m. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | tFixProp | 27 |
{A B C} (f f' : B -> C) (g g' : A -> B) (d : def A) : map_def f f' (map_def g g' d) = map_def (f ∘ g) (f' ∘ g') d. Proof. destruct d; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_map_def | 28 |
{A B C} (f f' : B -> C) (g g' : A -> B) : (map_def f f') ∘ (map_def g g') = map_def (f ∘ g) (f' ∘ g'). Proof. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | compose_map_def | 29 |
{t} x : map_def (@id t) (@id t) x = id x. Proof. now destruct x. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_id | 30 |
{A B} (P P' : A -> Type) (f f' g g' : A -> B) (x : def A) : P' x.(dbody) -> P x.(dtype) -> (forall x, P x -> f x = g x) -> (forall x, P' x -> f' x = g' x) -> map_def f f' x = map_def g g' x. Proof. intros. destruct x. unfold map_def. simpl. now rewrite !H // !H0. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_spec | 31 |
{A B} (f : B -> B) (x : A * B) : f (snd x) = snd x <-> on_snd f x = x. Proof. destruct x; simpl; unfold on_snd; simpl. split; congruence. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | on_snd_eq_id_spec | 32 |
{A B} (f f' g g' : A -> B) (x : def A) : f (dtype x) = g (dtype x) -> f' (dbody x) = g' (dbody x) -> map_def f f' x = map_def g g' x. Proof. intros. unfold map_def; f_equal; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_eq_spec | 33 |
{A} (f f' : A -> A) (x : def A) : f (dtype x) = (dtype x) -> f' (dbody x) = (dbody x) -> map_def f f' x = x. Proof. intros. rewrite (map_def_eq_spec _ _ id id); auto. destruct x; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_def_id_spec | 34 |
{A B} {P P' : A -> Type} {l} {f f' g g' : A -> B} : tFixProp P P' l -> (forall x, P x -> f x = g x) -> (forall x, P' x -> f' x = g' x) -> map (map_def f f') l = map (map_def g g') l. Proof. intros. eapply All_map_eq. red in X. eapply All_impl; eauto. simpl. intros. destruct X0; eapply map_def_spec; eauto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | tfix_map_spec | 35 |
{universe Term} := Judge { j_term : option Term; j_typ : Term; j_univ : option universe; }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | judgment_ | 36 |
{univ T A} (f: T -> A) (j : judgment_ univ T) := Judge (option_map f (j_term j)) (f (j_typ j)) (j_univ j) . | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | judgment_map | 37 |
mkdecl { decl_name : aname ; decl_body : option term ; decl_type : term }. | Record | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | context_decl | 38 |
{term term'} (f : term -> term') (d : context_decl term) : context_decl term' := {| decl_name := d.(decl_name); decl_body := option_map f d.(decl_body); decl_type := f d.(decl_type) |}. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl | 39 |
{term term' term''} (g : term -> term') (f : term' -> term'') x : map_decl f (map_decl g x) = map_decl (f ∘ g) x. Proof. destruct x as [? [?|] ?]; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | compose_map_decl | 40 |
{term term'} (f g : term -> term') x : (forall x, f x = g x) -> map_decl f x = map_decl g x. Proof. intros H; destruct x as [? [?|] ?]; rewrite /map_decl /=; f_equal; auto. now rewrite (H t). Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_ext | 41 |
{term term'} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@map_decl term term'). Proof. intros f g Hfg x y ->. now apply map_decl_ext. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_proper | 42 |
{term term'} : Proper (`=1` ==> `=1`) (@map_decl term term'). Proof. intros f g Hfg x. rewrite /map_decl. destruct x => /=. f_equal. - now rewrite Hfg. - apply Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_pointwise | 43 |
{A B} : subrelation (`=1`) (@Logic.eq A ==> @Logic.eq B)%signature. Proof. intros f g Hfg x y ->. now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | pointwise_subrelation | 44 |
{A B} : subrelation (@Logic.eq A ==> @Logic.eq B)%signature (`=1`). Proof. intros f g Hfg x. now specialize (Hfg x x eq_refl). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | pointwise_subrelation_inv | 45 |
{term term'} (f : term -> term') (c : list (context_decl term)) := List.map (map_decl f) c. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context | 46 |
{term term'} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@map_context term term'). Proof. intros f g Hfg x y ->. now rewrite /map_context Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_proper | 47 |
{term term'} (f : term -> term') l : #|map_context f l| = #|l|. Proof. now unfold map_context; rewrite length_map. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_length | 48 |
{term} (f : term -> bool) (d : context_decl term) : bool := option_default f d.(decl_body) true && f d.(decl_type). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl | 49 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@test_decl term). Proof. intros f g Hfg [na [b|] ty] ? <- => /=; rewrite /test_decl /=; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_proper | 50 |
{A} (Γ : list A) (d : A) := d :: Γ. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | snoc | 51 |
{A} (Γ Γ': list A) := Γ' ++ Γ. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context | 52 |
{T} Γ : [] ,,, Γ = Γ :> list T. Proof. unfold app_context. rewrite app_nil_r. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_nil_l | 53 |
{T} Γ Γ' Γ'' : Γ ,,, (Γ' ,,, Γ'') = Γ ,,, Γ' ,,, Γ'' :> list T. Proof. unfold app_context; now rewrite app_assoc. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_assoc | 54 |
{T} Γ Γ' A : Γ ,,, (Γ' ,, A) = (Γ ,,, Γ') ,, A :> list T. Proof. exact (app_context_assoc _ _ [A]). Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_cons | 55 |
{T} Γ Δ Δ' d : (Γ ,,, Δ ,,, Δ') ,, d = (Γ ,,, Δ ,,, (Δ' ,, d)) :> list T. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_push | 56 |
{T Γ Δ d} : (Γ ,,, (d :: Δ)) = (Γ ,,, Δ) ,,, [d] :> list T. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | snoc_app_context | 57 |
{T} (Γ Γ' : list T) : #|Γ ,,, Γ'| = #|Γ'| + #|Γ|. Proof. unfold app_context. now rewrite length_app. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | app_context_length | 58 |
{T} v Γ Γ' : #|Γ'| <= v -> nth_error (Γ ,,, Γ') v = nth_error Γ (v - #|Γ'|) :> option T. Proof. apply nth_error_app_ge. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | nth_error_app_context_ge | 59 |
{T} v Γ Γ' : v < #|Γ'| -> nth_error (Γ ,,, Γ') v = nth_error Γ' v :> option T. Proof. apply nth_error_app_lt. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | nth_error_app_context_lt | 60 |
{A} (P : A -> Type) (d : context_decl A) := option_default P d.(decl_body) unit × P d.(decl_type). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | ondecl | 61 |
(c : list (context_decl term)) : list (context_decl term') := match c with | d :: Γ => map_decl (f #|Γ|) d :: mapi_context Γ | [] => [] end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context | 62 |
{term term'} : Proper (`=2` ==> Logic.eq ==> Logic.eq) (@mapi_context term term'). Proof. intros f g Hfg Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_proper | 63 |
{term} (f : nat -> term -> term) l : #|mapi_context f l| = #|l|. Proof. induction l; simpl; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_length | 64 |
(c : list (context_decl term)) : bool := match c with | d :: Γ => test_context Γ && test_decl f d | [] => true end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context | 65 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq) (@test_context term). Proof. intros f g Hfg Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_proper | 66 |
(c : list (context_decl term)) : bool := match c with | d :: Γ => test_context_k Γ && test_decl (f (#|Γ| + k)) d | [] => true end. | Fixpoint | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_k | 67 |
{term} : Proper (`=1` ==> Logic.eq ==> Logic.eq ==> Logic.eq) (@test_context_k term). Proof. intros f g Hfg k ? <- Γ ? <-. induction Γ as [|[na [b|] ty] Γ]; simpl; auto; f_equal; auto; now rewrite Hfg. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_context_k_proper | 68 |
(f g : term -> bool) x : (forall x, f x -> g x) -> test_decl f x -> test_decl g x. Proof using Type. intros Hf; rewrite /test_decl. move/andb_and=> [Hd Hb]. apply/andb_and; split; eauto. destruct (decl_body x); simpl in *; eauto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_impl | 69 |
(P : nat -> term -> Type) k (ctx : context term) := Alli (fun i d => ondecl (P (Nat.pred #|ctx| - i + k)) d) 0 ctx. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | onctx_k | 70 |
{P : term -> Type} {p : term -> bool} {d : context_decl term} : (forall x, reflectT (P x) (p x)) -> reflectT (ondecl P d) (test_decl p d). Proof using Type. intros hr. rewrite /ondecl /test_decl; destruct d as [decl_name decl_body decl_type]; cbn. destruct (hr decl_type) => //; destruct (reflect_option_default hr decl_body) => /= //; now constructor. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | ondeclP | 71 |
{p : term -> bool} {ctx : context term} : reflectT (onctx p ctx) (test_context p ctx). Proof using Type. eapply equiv_reflectT. - induction 1; simpl; auto. rewrite IHX /= //. now move/(ondeclP reflectT_pred): p0. - induction ctx. * constructor. * move => /= /andb_and [Hctx Hd]; constructor; eauto. now move/(ondeclP reflectT_pred): Hd. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | onctxP | 72 |
(f : term -> term') decl : f (decl_type decl) = decl_type (map_decl f decl). Proof using Type. destruct decl; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_type | 73 |
(f : term -> term') decl : option_map f (decl_body decl) = decl_body (map_decl f decl). Proof using Type. destruct decl; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_body | 74 |
@map_decl term term id =1 id. Proof using Type. intros d; now destruct d as [? [] ?]. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_decl_id | 75 |
(f : term -> term') x : option_map decl_body (option_map (map_decl f) x) = option_map (option_map f) (option_map decl_body x). Proof using Type. destruct x; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | option_map_decl_body_map_decl | 76 |
(f : term -> term') x : option_map decl_type (option_map (map_decl f) x) = option_map f (option_map decl_type x). Proof using Type. destruct x; reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | option_map_decl_type_map_decl | 77 |
(f : nat -> term -> term') Γ := List.rev (mapi (fun k' decl => map_decl (f k') decl) (List.rev Γ)). | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k | 78 |
f Γ : fold_context_k f Γ = mapi (fun k' d => map_decl (f (Nat.pred (length Γ) - k')) d) Γ. Proof using Type. unfold fold_context_k. rewrite rev_mapi. rewrite List.rev_involutive. apply mapi_ext. intros. f_equal. now rewrite List.length_rev. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_alt | 79 |
f Γ : mapi_context f Γ = fold_context_k f Γ. Proof using Type. setoid_replace f with (fun k => f (k - 0)) using relation (pointwise_relation nat (pointwise_relation term (@Logic.eq term')))%signature at 1. rewrite fold_context_k_alt. unfold mapi. generalize 0. induction Γ as [|d Γ]; intros n; simpl; auto. f_equal. rewrite IHΓ. rewrite mapi_rec_Sk. apply mapi_rec_ext => k x. intros. apply map_decl_ext => t. lia_f_equal. intros k. now rewrite Nat.sub_0_r. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_fold | 80 |
f d : fold_context_k f [d] = [map_decl (f 0) d]. Proof using Type. reflexivity. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_tip | 81 |
f Γ : length (fold_context_k f Γ) = length Γ. Proof using Type. unfold fold_context_k. now rewrite !List.length_rev mapi_length List.length_rev. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_length | 82 |
f Γ d : fold_context_k f (d :: Γ) = fold_context_k f Γ ,, map_decl (f (length Γ)) d. Proof using Type. unfold fold_context_k. rewrite !rev_mapi !rev_involutive. unfold mapi; rewrite mapi_rec_eqn. unfold snoc. f_equal. now rewrite Nat.sub_0_r List.length_rev. rewrite mapi_rec_Sk. simpl. apply mapi_rec_ext. intros. rewrite length_app !List.length_rev. simpl. f_equal. f_equal. lia. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_snoc0 | 83 |
f Γ Δ : fold_context_k f (Δ ++ Γ) = fold_context_k (fun k => f (length Γ + k)) Δ ++ fold_context_k f Γ. Proof using Type. unfold fold_context_k. rewrite List.rev_app_distr. rewrite mapi_app. rewrite <- List.rev_app_distr. f_equal. f_equal. apply mapi_ext. intros. f_equal. rewrite List.length_rev. f_equal. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_app | 84 |
(f : nat -> term -> term) (ctx : context term) : mapi_context_In ctx (fun n (x : context_decl term) (_ : In x ctx) => map_decl (f n) x) = mapi_context f ctx. Proof using Type. remember (fun n (x : context_decl term) (_ : In x ctx) => map_decl (f n) x) as g. funelim (mapi_context_In ctx g) => //=; rewrite (H f0) ; trivial. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_In_spec | 85 |
f Γ : #|fold_context f Γ| = #|Γ|. Proof using Type. now apply_funelim (fold_context f Γ); intros; simpl; auto; f_equal. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_length | 86 |
(f : context term -> context_decl term -> context_decl term) (ctx : context term) : fold_context_In ctx (fun n (x : context_decl term) (_ : In x ctx) => f n x) = fold_context f ctx. Proof using Type. remember (fun n (x : context_decl term) (_ : In x ctx) => f n x) as g. funelim (fold_context_In ctx g) => //=; rewrite (H f0); trivial. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_In_spec | 87 |
Proper (`=2` ==> `=1`) fold_context. Proof using Type. intros f f' Hff' x. funelim (fold_context f x); simpl; auto. simp fold_context. now rewrite (H f' Hff'). Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_Proper | 88 |
(c : list (BasicAst.context_decl term)) : list aname := map decl_name c. | Definition | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | forget_types | 89 |
(x : context term) : fold_context_k (fun i x => x) x = x. Proof using Type. rewrite fold_context_k_alt. rewrite /mapi. generalize 0. induction x; simpl; auto. intros n. f_equal; auto. now rewrite map_decl_id. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_id | 90 |
(f : nat -> term' -> term) (g : nat -> term'' -> term') Γ : fold_context_k f (fold_context_k g Γ) = fold_context_k (fun i => f i ∘ g i) Γ. Proof using Type. rewrite !fold_context_k_alt mapi_mapi. apply mapi_ext => i d. rewrite compose_map_decl. apply map_decl_ext => t. now len. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_compose | 91 |
(f g : nat -> term' -> term) Γ : f =2 g -> fold_context_k f Γ = fold_context_k g Γ. Proof using Type. intros hfg. induction Γ; simpl; auto; rewrite !fold_context_k_snoc0. simpl. rewrite IHΓ. f_equal. apply map_decl_ext. intros. now apply hfg. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_ext | 92 |
Proper (pointwise_relation nat (pointwise_relation _ Logic.eq) ==> Logic.eq ==> Logic.eq) (@fold_context_k term' term). Proof using Type. intros f g Hfg x y <-. now apply fold_context_k_ext. Qed. | Instance | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | fold_context_k_proper | 93 |
(f : nat -> context_decl term -> bool) (g : nat -> term' -> term) ctx : alli f 0 (fold_context_k g ctx) = alli (fun i x => f i (map_decl (g (Nat.pred #|ctx| - i)) x)) 0 ctx. Proof using Type. now rewrite fold_context_k_alt /mapi alli_mapi. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | alli_fold_context_k_prop | 94 |
f g x : (@test_decl term) f (map_decl g x) = @test_decl term (f ∘ g) x. Proof using Type. rewrite /test_decl /map_decl /=. f_equal. rewrite /option_default. destruct (decl_body x) => //. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | test_decl_map_decl | 95 |
(f : term' -> term) (g : nat -> term'' -> term') ctx : map (map_decl f) (fold_context_k g ctx) = fold_context_k (fun i => f ∘ g i) ctx. Proof using Type. rewrite !fold_context_k_alt map_mapi. apply mapi_ext => i d. now rewrite compose_map_decl. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_fold_context_k | 96 |
(f : term' -> term) (g : nat -> term'' -> term') (ctx : list (BasicAst.context_decl term'')) : map_context f (mapi_context g ctx) = mapi_context (fun i => f ∘ g i) ctx. Proof using Type. rewrite !mapi_context_fold. now unfold map_context; rewrite map_fold_context_k. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_mapi_context | 97 |
(f : nat -> term' -> term) (g : context_decl term'' -> context_decl term') ctx : mapi_context f (map g ctx) = mapi (fun i => map_decl (f (Nat.pred #|ctx| - i)) ∘ g) ctx. Proof using Type. rewrite mapi_context_fold fold_context_k_alt mapi_map. now len. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | mapi_context_map | 98 |
(f : term' -> term) (g : context_decl term'' -> context_decl term') ctx : map_context f (map g ctx) = map (map_decl f ∘ g) ctx. Proof using Type. induction ctx; simpl; f_equal; auto. Qed. | Lemma | common | From Coq Require Import ssreflect Morphisms Orders Setoid. From MetaCoq.Utils Require Import utils. From MetaCoq.Common Require Export Kernames. From Coq Require Floats.SpecFloat. From Equations Require Import Equations. | common\theories\BasicAst.v | map_context_map | 99 |