philipphager commited on
Commit
2610247
·
verified ·
1 Parent(s): fa52ae4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +102 -0
README.md CHANGED
@@ -1,3 +1,105 @@
1
  ---
2
  license: cc-by-nc-4.0
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-4.0
3
+ viewer: false
4
  ---
5
+ # Baidu ULTR Dataset - Tencent BERT-12l-12h
6
+ Query-document vectors and clicks for a subset of the [Baidu Unbiased Learning to Rank](https://arxiv.org/abs/2207.03051) dataset.
7
+ This dataset uses the pretrained [BERT cross-encoder (Bert_Layer12_Head12) from Tencent](https://github.com/lixsh6/Tencent_wsdm_cup2023/tree/main/pytorch_unbias) published as part of the WSDM cup 2023 to compute query-document vectors (768 dims).
8
+
9
+ ## Setup
10
+ 1. Install huggingface [datasets](https://huggingface.co/docs/datasets/installation)
11
+ 2. Install [pandas](https://github.com/pandas-dev/pandas) and [pyarrow](https://arrow.apache.org/docs/python/index.html): `pip install pandas pyarrow`
12
+ 3. Optionally, you might need to install a [pyarrow-hotfix](https://github.com/pitrou/pyarrow-hotfix) if you cannot install `pyarrow >= 14.0.1`
13
+ 4. You can now use the dataset as described below.
14
+
15
+ ## Load train / test click dataset:
16
+ ```Python
17
+ from datasets import load_dataset
18
+
19
+ dataset = load_dataset(
20
+ "philipphager/baidu-ultr_tencent-mlm-ctr",
21
+ name="clicks",
22
+ split="train", # ["train", "test"]
23
+ cache_dir="~/.cache/huggingface",
24
+ )
25
+
26
+ dataset.set_format("torch") # [None, "numpy", "torch", "tensorflow", "pandas", "arrow"]
27
+ ```
28
+
29
+ ## Load expert annotations:
30
+ ```Python
31
+ from datasets import load_dataset
32
+
33
+ dataset = load_dataset(
34
+ "philipphager/baidu-ultr_tencent-mlm-ctr",
35
+ name="annotations",
36
+ split="test",
37
+ cache_dir="~/.cache/huggingface",
38
+ )
39
+
40
+ dataset.set_format("torch") # [None, "numpy", "torch", "tensorflow", "pandas", "arrow"]
41
+ ```
42
+
43
+ ## Available features
44
+ Each row of the click / annotation dataset contains the following attributes. Use a custom `collate_fn` to select specific features (see below):
45
+
46
+ ### Click dataset
47
+ | name | dtype | description |
48
+ |------------------------------|----------------|-------------|
49
+ | query_id | string | Baidu query_id |
50
+ | query_md5 | string | MD5 hash of query text |
51
+ | url_md5 | List[string] | MD5 hash of document url, most reliable document identifier |
52
+ | text_md5 | List[string] | MD5 hash of document title and abstract |
53
+ | query_document_embedding | Tensor[float16]| BERT CLS token |
54
+ | click | Tensor[int32] | Click / no click on a document |
55
+ | n | int32 | Number of documents for current query, useful for padding |
56
+ | position | Tensor[int32] | Position in ranking (does not always match original item position) |
57
+ | media_type | Tensor[int32] | Document type (label encoding recommended as ids do not occupy a continous integer range) |
58
+ | displayed_time | Tensor[float32]| Seconds a document was displayed on screen |
59
+ | serp_height | Tensor[int32] | Pixel height of a document on screen |
60
+ | slipoff_count_after_click | Tensor[int32] | Number of times a document was scrolled off screen after previously clicking on it |
61
+
62
+
63
+ ### Expert annotation dataset
64
+ | name | dtype | description |
65
+ |------------------------------|----------------|-------------|
66
+ | query_id | string | Baidu query_id |
67
+ | query_md5 | string | MD5 hash of query text |
68
+ | text_md5 | List[string] | MD5 hash of document title and abstract |
69
+ | query_document_embedding | Tensor[float16]| BERT CLS token |
70
+ | label | Tensor[int32] | Relevance judgment on a scale from 0 (bad) to 4 (excellent) |
71
+ | n | int32 | Number of documents for current query, useful for padding |
72
+ | frequency_bucket | int32 | Monthly frequency of query (bucket) from 0 (high frequency) to 9 (low frequency) |
73
+
74
+ ## Example PyTorch collate function
75
+ Each sample in the dataset is a single query with multiple documents.
76
+ The following example demonstrates how to create a batch containing multiple queries with varying numbers of documents by applying padding:
77
+
78
+ ```Python
79
+ import torch
80
+ from typing import List
81
+ from collections import defaultdict
82
+ from torch.nn.utils.rnn import pad_sequence
83
+ from torch.utils.data import DataLoader
84
+
85
+
86
+ def collate_clicks(samples: List):
87
+ batch = defaultdict(lambda: [])
88
+
89
+ for sample in samples:
90
+ batch["query_document_embedding"].append(sample["query_document_embedding"])
91
+ batch["position"].append(sample["position"])
92
+ batch["click"].append(sample["click"])
93
+ batch["n"].append(sample["n"])
94
+
95
+ return {
96
+ "query_document_embedding": pad_sequence(
97
+ batch["query_document_embedding"], batch_first=True
98
+ ),
99
+ "position": pad_sequence(batch["position"], batch_first=True),
100
+ "click": pad_sequence(batch["click"], batch_first=True),
101
+ "n": torch.tensor(batch["n"]),
102
+ }
103
+
104
+ loader = DataLoader(dataset, collate_fn=collate_clicks, batch_size=16)
105
+ ```