import os from typing import Dict import pandas as pd from pie_modules.document.processing import RegexPartitioner from pytorch_ie.annotations import BinaryRelation from pytorch_ie.documents import ( TextDocumentWithLabeledSpansAndBinaryRelations, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions, ) from pie_datasets.builders import BratBuilder from pie_datasets.builders.brat import BratConfig, BratDocumentWithMergedSpans from pie_datasets.core.dataset import DocumentConvertersType from pie_datasets.document.processing import Caster, Converter, Pipeline def get_split_paths(url_split_ids: str, subdirectory: str) -> Dict[str, str]: df_splits = pd.read_csv(url_split_ids, sep=";") splits2ids = df_splits.groupby(df_splits["SET"]).agg(list).to_dict()["ID"] return { split.lower(): [os.path.join(subdirectory, split_id) for split_id in split_ids] for split, split_ids in splits2ids.items() } URL = "https://github.com/ArneBinder/pie-datasets/raw/83fb46f904b13f335b6da3cce2fc7004d802ce4e/data/datasets/ArgumentAnnotatedEssays-2.0/brat-project-final.zip" URL_SPLIT_IDS = "https://raw.githubusercontent.com/ArneBinder/pie-datasets/83fb46f904b13f335b6da3cce2fc7004d802ce4e/data/datasets/ArgumentAnnotatedEssays-2.0/train-test-split.csv" SPLIT_PATHS = get_split_paths(URL_SPLIT_IDS, subdirectory="brat-project-final") DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT = {"For": "supports", "Against": "attacks"} def convert_aae2_claim_attributions_to_relations( document: BratDocumentWithMergedSpans, method: str, attributions_to_relations_mapping: Dict[str, str] = DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT, major_claim_label: str = "MajorClaim", claim_label: str = "Claim", semantically_same_label: str = "semantically_same", ) -> TextDocumentWithLabeledSpansAndBinaryRelations: """This function collects the attributions of Claims from BratDocumentWithMergedSpans, and build new relations between MajorClaims and Claims based on these attributions in the following way: 1) "connect_first": Each Claim points to the first MajorClaim, and the other MajorClaim(s) is labeled as semantically same as the first MajorClaim. The number of new relations created are: NoOfMajorClaim - 1 + NoOfClaim. 2) "connect_all": Each Claim points to every MajorClaim; creating many-to-many relations. The number of new relations created are: NoOfMajorClaim x NoOfClaim. The attributions are transformed into the relation labels as listed in DEFAULT_ATTRIBUTIONS_TO_RELATIONS_DICT dictionary. """ document = document.copy() new_document = TextDocumentWithLabeledSpansAndBinaryRelations( text=document.text, id=document.id, metadata=document.metadata ) # import from document spans = document.spans.clear() new_document.labeled_spans.extend(spans) relations = document.relations.clear() new_document.binary_relations.extend(relations) claim_attributes = [ attribute for attribute in document.span_attributes if attribute.annotation.label == claim_label ] # get all MajorClaims # sorted by start position to ensure the first MajorClaim is really the first one that occurs in the text major_claims = sorted( [mc for mc in new_document.labeled_spans if mc.label == major_claim_label], key=lambda span: span.start, ) if method == "connect_first": if len(major_claims) > 0: first_major_claim = major_claims.pop(0) # Add relation between Claims and first MajorClaim for claim_attribute in claim_attributes: new_relation = BinaryRelation( head=claim_attribute.annotation, tail=first_major_claim, label=attributions_to_relations_mapping[claim_attribute.value], ) new_document.binary_relations.append(new_relation) # Add relations between MajorClaims for majorclaim in major_claims: new_relation = BinaryRelation( head=majorclaim, tail=first_major_claim, label=semantically_same_label, ) new_document.binary_relations.append(new_relation) elif method == "connect_all": for major_claim in major_claims: for claim_attribute in claim_attributes: new_relation = BinaryRelation( head=claim_attribute.annotation, tail=major_claim, label=attributions_to_relations_mapping[claim_attribute.value], ) new_document.binary_relations.append(new_relation) else: raise ValueError(f"unknown method: {method}") return new_document def get_common_pipeline_steps(conversion_method: str) -> dict: return dict( convert=Converter( function=convert_aae2_claim_attributions_to_relations, method=conversion_method, ), ) class ArgumentAnnotatedEssaysV2Config(BratConfig): def __init__(self, conversion_method: str, **kwargs): """BuilderConfig for ArgumentAnnotatedEssaysV2. Args: conversion_method: either "connect_first" or "connect_all", see convert_aae2_claim_attributions_to_relations **kwargs: keyword arguments forwarded to super. """ super().__init__(**kwargs) self.conversion_method = conversion_method class ArgumentAnnotatedEssaysV2(BratBuilder): BASE_DATASET_PATH = "DFKI-SLT/brat" BASE_DATASET_REVISION = "bb8c37d84ddf2da1e691d226c55fef48fd8149b5" # we need to add None to the list of dataset variants to support the default dataset variant BASE_BUILDER_KWARGS_DICT = { dataset_variant: {"url": URL, "split_paths": SPLIT_PATHS} for dataset_variant in [BratBuilder.DEFAULT_CONFIG_NAME, None] } BUILDER_CONFIGS = [ ArgumentAnnotatedEssaysV2Config( name=BratBuilder.DEFAULT_CONFIG_NAME, merge_fragmented_spans=True, conversion_method="connect_first", ), ] DOCUMENT_TYPES = { BratBuilder.DEFAULT_CONFIG_NAME: BratDocumentWithMergedSpans, } @property def document_converters(self) -> DocumentConvertersType: if self.config.name == "default" or None: return { TextDocumentWithLabeledSpansAndBinaryRelations: Pipeline( **get_common_pipeline_steps(conversion_method=self.config.conversion_method) ), TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions: Pipeline( **get_common_pipeline_steps(conversion_method=self.config.conversion_method), cast=Caster( document_type=TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions ), add_partitions=RegexPartitioner( partition_layer_name="labeled_partitions", default_partition_label="paragraph", pattern="\n", strip_whitespace=True, verbose=False, ), ), } else: raise ValueError(f"Unknown dataset variant: {self.config.name}")