argmicro / argmicro.py
ArneBinder's picture
https://github.com/ArneBinder/pie-datasets/pull/100
b703d7a verified
import copy
import dataclasses
import logging
from collections import defaultdict
from itertools import combinations
from typing import Any, Dict, List, Optional, Set, Tuple
import datasets
from pytorch_ie.annotations import BinaryRelation, Label, LabeledSpan, Span
from pytorch_ie.core import Annotation, AnnotationList, annotation_field
from pytorch_ie.documents import (
TextBasedDocument,
TextDocumentWithLabeledSpansAndBinaryRelations,
)
from pie_datasets import GeneratorBasedBuilder
log = logging.getLogger(__name__)
def dl2ld(dict_of_lists):
return [dict(zip(dict_of_lists, t)) for t in zip(*dict_of_lists.values())]
def ld2dl(list_of_dicts, keys: Optional[List[str]] = None):
return {k: [d[k] for d in list_of_dicts] for k in keys}
@dataclasses.dataclass(frozen=True)
class LabeledAnnotationCollection(Annotation):
annotations: Tuple[Annotation, ...]
label: str
@dataclasses.dataclass(frozen=True)
class MultiRelation(Annotation):
heads: Tuple[Annotation, ...] # sources == heads
tails: Tuple[Annotation, ...] # targets == tails
label: str
@dataclasses.dataclass
class ArgMicroDocument(TextBasedDocument):
topic_id: Optional[str] = None
stance: AnnotationList[Label] = annotation_field()
edus: AnnotationList[Span] = annotation_field(target="text")
adus: AnnotationList[LabeledAnnotationCollection] = annotation_field(target="edus")
relations: AnnotationList[MultiRelation] = annotation_field(target="adus")
def example_to_document(
example: Dict[str, Any],
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> ArgMicroDocument:
stance = stance_label.int2str(example["stance"])
document = ArgMicroDocument(
id=example["id"],
text=example["text"],
topic_id=example["topic_id"] if example["topic_id"] != "UNDEFINED" else None,
)
if stance != "UNDEFINED":
document.stance.append(Label(label=stance))
# build EDUs
edus_dict = {
edu["id"]: Span(start=edu["start"], end=edu["end"]) for edu in dl2ld(example["edus"])
}
# build ADUs
adu_id2edus = defaultdict(list)
edges_multi_source = defaultdict(dict)
for edge in dl2ld(example["edges"]):
edge_type = edge_type_label.int2str(edge["type"])
if edge_type == "seg":
adu_id2edus[edge["trg"]].append(edus_dict[edge["src"]])
elif edge_type == "add":
if "src" not in edges_multi_source[edge["trg"]]:
edges_multi_source[edge["trg"]]["src"] = []
edges_multi_source[edge["trg"]]["src"].append(edge["src"])
else:
edges_multi_source[edge["id"]]["type"] = edge_type
edges_multi_source[edge["id"]]["trg"] = edge["trg"]
if "src" not in edges_multi_source[edge["id"]]:
edges_multi_source[edge["id"]]["src"] = []
edges_multi_source[edge["id"]]["src"].append(edge["src"])
adus_dict = {}
for adu in dl2ld(example["adus"]):
adu_type = adu_type_label.int2str(adu["type"])
adu_edus = adu_id2edus[adu["id"]]
adus_dict[adu["id"]] = LabeledAnnotationCollection(
annotations=tuple(adu_edus), label=adu_type
)
# build relations
rels_dict = {}
for edge_id, edge in edges_multi_source.items():
edge_target = edge["trg"]
if edge_target in edges_multi_source:
targets = edges_multi_source[edge_target]["src"]
else:
targets = [edge_target]
if any(target in edges_multi_source for target in targets):
raise Exception("Multi-hop relations are not supported")
rel = MultiRelation(
heads=tuple(adus_dict[source] for source in edge["src"]),
tails=tuple(adus_dict[target] for target in targets),
label=edge["type"],
)
rels_dict[edge_id] = rel
document.edus.extend(edus_dict.values())
document.adus.extend(adus_dict.values())
document.relations.extend(rels_dict.values())
document.metadata["edu_ids"] = list(edus_dict.keys())
document.metadata["adu_ids"] = list(adus_dict.keys())
document.metadata["rel_ids"] = list(rels_dict.keys())
document.metadata["rel_seg_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "seg"
}
document.metadata["rel_add_ids"] = {
edge["src"]: edge["id"]
for edge in dl2ld(example["edges"])
if edge_type_label.int2str(edge["type"]) == "add"
}
return document
def document_to_example(
document: ArgMicroDocument,
adu_type_label: datasets.ClassLabel,
edge_type_label: datasets.ClassLabel,
stance_label: datasets.ClassLabel,
) -> Dict[str, Any]:
stance = document.stance[0].label if len(document.stance) else "UNDEFINED"
result = {
"id": document.id,
"text": document.text,
"topic_id": document.topic_id or "UNDEFINED",
"stance": stance_label.str2int(stance),
}
# construct EDUs
edus = {
edu: {"id": edu_id, "start": edu.start, "end": edu.end}
for edu_id, edu in zip(document.metadata["edu_ids"], document.edus)
}
result["edus"] = ld2dl(
sorted(edus.values(), key=lambda x: x["id"]), keys=["id", "start", "end"]
)
# construct ADUs
adus = {
adu: {"id": adu_id, "type": adu_type_label.str2int(adu.label)}
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus)
}
result["adus"] = ld2dl(sorted(adus.values(), key=lambda x: x["id"]), keys=["id", "type"])
# construct edges
rels_dict: Dict[str, MultiRelation] = {
rel_id: rel for rel_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
heads2rel_id = {
rel.heads: red_id for red_id, rel in zip(document.metadata["rel_ids"], document.relations)
}
edges = []
for rel_id, rel in rels_dict.items():
# if it is an undercut attack, we need to change the target to the relation that connects the target
if rel.label == "und":
target_id = heads2rel_id[rel.tails]
else:
if len(rel.tails) > 1:
raise Exception("Multi-target relations are not supported")
target_id = adus[rel.tails[0]]["id"]
source_id = adus[rel.heads[0]]["id"]
edge = {
"id": rel_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int(rel.label),
}
edges.append(edge)
# if it is an additional support, we need to change the source to the relation that connects the source
for head in rel.heads[1:]:
source_id = adus[head]["id"]
edge_id = document.metadata["rel_add_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": rel_id,
"type": edge_type_label.str2int("add"),
}
edges.append(edge)
for adu_id, adu in zip(document.metadata["adu_ids"], document.adus):
for edu in adu.annotations:
source_id = edus[edu]["id"]
target_id = adus[adu]["id"]
edge_id = document.metadata["rel_seg_ids"][source_id]
edge = {
"id": edge_id,
"src": source_id,
"trg": target_id,
"type": edge_type_label.str2int("seg"),
}
edges.append(edge)
result["edges"] = ld2dl(
sorted(edges, key=lambda x: x["id"]), keys=["id", "src", "trg", "type"]
)
return result
def convert_to_text_document_with_labeled_spans_and_binary_relations(
doc: ArgMicroDocument,
) -> TextDocumentWithLabeledSpansAndBinaryRelations:
# convert adus to entities
entities = []
adu2entity: Dict[LabeledAnnotationCollection, Span] = {}
for adu in doc.adus:
edus: Set[Span] = set(adu.annotations)
start = min(edu.start for edu in edus)
end = max(edu.end for edu in edus)
# assert there are no edus overlapping with the adu, but not part of it
for edu in doc.edus:
if (start <= edu.start < end or start < edu.end <= end) and edu not in edus:
raise Exception(f"edu {edu} is overlapping with adu {adu}, but is not part of it")
entity = LabeledSpan(start=start, end=end, label=adu.label)
entities.append(entity)
adu2entity[adu] = entity
relations = []
for relation in doc.relations:
# add all possible combinations of heads and tails
for head in relation.heads:
for tail in relation.tails:
rel = BinaryRelation(
label=relation.label, head=adu2entity[head], tail=adu2entity[tail]
)
relations.append(rel)
# also add the relations between the heads themselves
for head1, head2 in combinations(relation.heads, 2):
rel = BinaryRelation(label="joint", head=adu2entity[head1], tail=adu2entity[head2])
relations.append(rel)
# also add the reverse relation
rel = BinaryRelation(label="joint", head=adu2entity[head2], tail=adu2entity[head1])
relations.append(rel)
metadata = copy.deepcopy(doc.metadata)
if len(doc.stance) > 0:
metadata["stance"] = doc.stance[0].label
metadata["topic"] = doc.topic_id
result = TextDocumentWithLabeledSpansAndBinaryRelations(
text=doc.text, id=doc.id, metadata=doc.metadata
)
result.labeled_spans.extend(entities)
result.binary_relations.extend(relations)
return result
class ArgMicro(GeneratorBasedBuilder):
DOCUMENT_TYPE = ArgMicroDocument
DOCUMENT_CONVERTERS = {
TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
}
BASE_DATASET_PATH = "DFKI-SLT/argmicro"
BASE_DATASET_REVISION = "282733d6d57243f2a202d81143c4e31bb250e663"
BUILDER_CONFIGS = [datasets.BuilderConfig(name="en"), datasets.BuilderConfig(name="de")]
def _generate_document_kwargs(self, dataset):
return {
"adu_type_label": dataset.features["adus"].feature["type"],
"edge_type_label": dataset.features["edges"].feature["type"],
"stance_label": dataset.features["stance"],
}
def _generate_document(self, example, **kwargs):
return example_to_document(example, **kwargs)