|
from dataclasses import dataclass |
|
|
|
import datasets |
|
import pytorch_ie.data.builder |
|
from pytorch_ie.annotations import LabeledSpan |
|
from pytorch_ie.core import AnnotationList, annotation_field |
|
from pytorch_ie.documents import TextDocument |
|
from pytorch_ie.utils.span import tokens_and_tags_to_text_and_labeled_spans |
|
|
|
|
|
class CoNLL2003Config(datasets.BuilderConfig): |
|
"""BuilderConfig for CoNLL2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for CoNLL2003. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(**kwargs) |
|
|
|
|
|
@dataclass |
|
class CoNLL2003Document(TextDocument): |
|
entities: AnnotationList[LabeledSpan] = annotation_field(target="text") |
|
|
|
|
|
class Conll2003(pytorch_ie.data.builder.GeneratorBasedBuilder): |
|
DOCUMENT_TYPE = CoNLL2003Document |
|
|
|
BASE_DATASET_PATH = "conll2003" |
|
|
|
BUILDER_CONFIGS = [ |
|
CoNLL2003Config( |
|
name="conll2003", version=datasets.Version("1.0.0"), description="CoNLL2003 dataset" |
|
), |
|
] |
|
|
|
def _generate_document_kwargs(self, dataset): |
|
return {"int_to_str": dataset.features["ner_tags"].feature.int2str} |
|
|
|
def _generate_document(self, example, int_to_str): |
|
doc_id = example["id"] |
|
tokens = example["tokens"] |
|
ner_tags = [int_to_str(tag) for tag in example["ner_tags"]] |
|
|
|
text, ner_spans = tokens_and_tags_to_text_and_labeled_spans(tokens=tokens, tags=ner_tags) |
|
|
|
document = CoNLL2003Document(text=text, id=doc_id) |
|
|
|
for span in sorted(ner_spans, key=lambda span: span.start): |
|
document.entities.append(span) |
|
|
|
return document |
|
|