ArneBinder commited on
Commit
68770c9
·
verified ·
1 Parent(s): c8fcb51

https://github.com/ArneBinder/pie-datasets/pull/100

Browse files
README.md CHANGED
@@ -4,6 +4,37 @@ This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for t
4
 
5
  Therefore, the `sciarg` dataset as described here follows the data structure from the [PIE brat dataset card](https://huggingface.co/datasets/pie/brat).
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  ### Dataset Summary
8
 
9
  The SciArg dataset is an extension of the Dr. Inventor corpus (Fisas et al., [2015](https://aclanthology.org/W15-1605.pdf), [2016](https://aclanthology.org/L16-1492.pdf)) with an annotation layer containing
@@ -39,21 +70,25 @@ are connected via the `parts_of_same` relations are converted to `LabeledMultiSp
39
 
40
  See [PIE-Brat Data Schema](https://huggingface.co/datasets/pie/brat#data-schema).
41
 
42
- ### Usage
43
 
44
- ```python
45
- from pie_datasets import load_dataset, builders
46
 
47
- # load default version
48
- datasets = load_dataset("pie/sciarg")
49
- doc = datasets["train"][0]
50
- assert isinstance(doc, builders.brat.BratDocumentWithMergedSpans)
 
 
 
 
 
 
 
 
51
 
52
- # load version with resolved parts_of_same relations
53
- datasets = load_dataset("pie/sciarg", name='resolve_parts_of_same')
54
- doc = datasets["train"][0]
55
- assert isinstance(doc, builders.brat.BratDocument)
56
- ```
57
 
58
  ### Data Splits
59
 
@@ -133,6 +168,13 @@ possibly since [Lauscher et al., 2018](https://aclanthology.org/W18-5206/) prese
133
 
134
  (*Annotation Guidelines*, pp. 4-6)
135
 
 
 
 
 
 
 
 
136
  #### Examples
137
 
138
  ![sample1](img/leaannof3.png)
@@ -143,9 +185,14 @@ Below: Subset of relations in `A01`
143
 
144
  ![sample2](img/sciarg-sam.png)
145
 
146
- ### Document Converters
147
 
148
- The dataset provides document converters for the following target document types:
 
 
 
 
 
149
 
150
  From `default` version:
151
 
@@ -178,8 +225,111 @@ From `resolve_parts_of_same` version:
178
  - `labeled_partitions`, `LabeledSpan` annotations, created from splitting `BratDocument`'s `text` at new paragraph in `xml` format.
179
  - labels: `title`, `abstract`, `H1`
180
 
181
- See [here](https://github.com/ArneBinder/pie-modules/blob/main/src/pie_modules/documents.py) for the document type
182
- definitions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
 
184
  ## Dataset Creation
185
 
 
4
 
5
  Therefore, the `sciarg` dataset as described here follows the data structure from the [PIE brat dataset card](https://huggingface.co/datasets/pie/brat).
6
 
7
+ ### Usage
8
+
9
+ ```python
10
+ from pie_datasets import load_dataset
11
+ from pie_datasets.builders.brat import BratDocumentWithMergedSpans, BratDocument
12
+ from pytorch_ie.documents import TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions, TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions
13
+
14
+ # load default version
15
+ dataset = load_dataset("pie/sciarg")
16
+ assert isinstance(dataset["train"][0], BratDocumentWithMergedSpans)
17
+
18
+ # if required, normalize the document type (see section Document Converters below)
19
+ dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions)
20
+ assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions)
21
+
22
+ # load version with resolved parts_of_same relations
23
+ dataset = load_dataset("pie/sciarg", name='resolve_parts_of_same')
24
+ assert isinstance(dataset["train"][0], BratDocument)
25
+
26
+ # if required, normalize the document type (see section Document Converters below)
27
+ dataset_converted = dataset.to_document_type(TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions)
28
+ assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledMultiSpansBinaryRelationsAndLabeledPartitions)
29
+
30
+ # get first relation in the first document
31
+ doc = dataset_converted["train"][0]
32
+ print(doc.binary_relations[0])
33
+ # BinaryRelation(head=LabeledMultiSpan(slices=((15071, 15076),), label='data', score=1.0), tail=LabeledMultiSpan(slices=((14983, 15062),), label='background_claim', score=1.0), label='supports', score=1.0)
34
+ print(doc.binary_relations[0].resolve())
35
+ # ('supports', (('data', ('[ 3 ]',)), ('background_claim', ('PSD and improved example-based schemes have been discussed in many publications',))))
36
+ ```
37
+
38
  ### Dataset Summary
39
 
40
  The SciArg dataset is an extension of the Dr. Inventor corpus (Fisas et al., [2015](https://aclanthology.org/W15-1605.pdf), [2016](https://aclanthology.org/L16-1492.pdf)) with an annotation layer containing
 
70
 
71
  See [PIE-Brat Data Schema](https://huggingface.co/datasets/pie/brat#data-schema).
72
 
73
+ ### Document Converters
74
 
75
+ The dataset provides document converters for the following target document types:
 
76
 
77
+ - `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
78
+ - `LabeledSpans`, converted from `BratDocument`'s `spans`
79
+ - labels: `background_claim`, `own_claim`, `data`
80
+ - if `spans` contain whitespace at the beginning and/or the end, the whitespace are trimmed out.
81
+ - `BinraryRelations`, converted from `BratDocument`'s `relations`
82
+ - labels: `supports`, `contradicts`, `semantically_same`, `parts_of_same`
83
+ - if the `relations` label is `semantically_same` or `parts_of_same`, they are merged if they are the same arguments after sorting.
84
+ - `pytorch_ie.documents.TextDocumentWithLabeledSpansBinaryRelationsAndLabeledPartitions`
85
+ - `LabeledSpans`, as above
86
+ - `BinaryRelations`, as above
87
+ - `LabeledPartitions`, partitioned `BratDocument`'s `text`, according to the paragraph, using regex.
88
+ - labels: `title`, `abstract`, `H1`
89
 
90
+ See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
91
+ definitions.
 
 
 
92
 
93
  ### Data Splits
94
 
 
168
 
169
  (*Annotation Guidelines*, pp. 4-6)
170
 
171
+ There are currently discrepancies in label counts between
172
+
173
+ - previous report in [Lauscher et al., 2018](https://aclanthology.org/W18-5206/), p. 43),
174
+ - current report above here (labels counted in `BratDocument`'s);
175
+
176
+ possibly since [Lauscher et al., 2018](https://aclanthology.org/W18-5206/) presents the numbers of the real argumentative components, whereas here discontinuous components are still split (marked with the `parts_of_same` helper relation) and, thus, count per fragment.
177
+
178
  #### Examples
179
 
180
  ![sample1](img/leaannof3.png)
 
185
 
186
  ![sample2](img/sciarg-sam.png)
187
 
188
+ ### Collected Statistics after Document Conversion
189
 
190
+ We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics.
191
+ After checking out that code, the statistics and plots can be generated by the command:
192
+
193
+ ```commandline
194
+ python src/evaluate_documents.py dataset=sciarg_base metric=METRIC
195
+ ```
196
 
197
  From `default` version:
198
 
 
225
  - `labeled_partitions`, `LabeledSpan` annotations, created from splitting `BratDocument`'s `text` at new paragraph in `xml` format.
226
  - labels: `title`, `abstract`, `H1`
227
 
228
+ This also requires to have the following dataset config in `configs/dataset/sciarg_base.yaml` of this dataset within the repo directory:
229
+
230
+ ```commandline
231
+ _target_: src.utils.execute_pipeline
232
+ input:
233
+ _target_: pie_datasets.DatasetDict.load_dataset
234
+ path: pie/sciarg
235
+ revision: 982d5682ba414ee13cf92cb93ec18fc8e78e2b81
236
+ ```
237
+
238
+ For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co/docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co/bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ArneBinder/pie-modules/blob/main/src/pie_modules/documents.py)).
239
+
240
+ #### Relation argument (outer) token distance per label
241
+
242
+ The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance.
243
+
244
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*).
245
+ We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly.
246
+
247
+ <details>
248
+ <summary>Command</summary>
249
+
250
+ ```
251
+ python src/evaluate_documents.py dataset=sciarg_base metric=relation_argument_token_distances
252
+ ```
253
+
254
+ </details>
255
+
256
+ | | len | max | mean | min | std |
257
+ | :---------------- | ----: | ---: | ------: | --: | ------: |
258
+ | ALL | 15640 | 2864 | 30.524 | 3 | 45.351 |
259
+ | contradicts | 1392 | 238 | 32.565 | 6 | 19.771 |
260
+ | parts_of_same | 2594 | 374 | 28.18 | 3 | 26.845 |
261
+ | semantically_same | 84 | 2864 | 206.333 | 11 | 492.268 |
262
+ | supports | 11570 | 407 | 29.527 | 4 | 24.189 |
263
+
264
+ <details>
265
+ <summary>Histogram (split: train, 40 documents)</summary>
266
+
267
+ ![rtd-label_sciarg.png](img%2Frtd-label_sciarg.png)
268
+
269
+ </details>
270
+
271
+ #### Span lengths (tokens)
272
+
273
+ The span length is measured from the first token of the first argumentative unit to the last token of the particular unit.
274
+
275
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*).
276
+ We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly.
277
+
278
+ <details>
279
+ <summary>Command</summary>
280
+
281
+ ```
282
+ python src/evaluate_documents.py dataset=sciarg_base metric=span_lengths_tokens
283
+ ```
284
+
285
+ </details>
286
+
287
+ | statistics | train |
288
+ | :--------- | -----: |
289
+ | no. doc | 40 |
290
+ | len | 13586 |
291
+ | mean | 11.677 |
292
+ | std | 8.731 |
293
+ | min | 1 |
294
+ | max | 138 |
295
+
296
+ <details>
297
+ <summary>Histogram (split: train, 40 documents)</summary>
298
+
299
+ ![slt_sciarg.png](img%2Fslt_sciarg.png)
300
+
301
+ </details>
302
+
303
+ #### Token length (tokens)
304
+
305
+ The token length is measured from the first token of the document to the last one.
306
+
307
+ We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*).
308
+ We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly.
309
+
310
+ <details>
311
+ <summary>Command</summary>
312
+
313
+ ```
314
+ python src/evaluate_documents.py dataset=sciarg_base metric=count_text_tokens
315
+ ```
316
+
317
+ </details>
318
+
319
+ | statistics | train |
320
+ | :--------- | ------: |
321
+ | no. doc | 40 |
322
+ | mean | 10521.1 |
323
+ | std | 2472.2 |
324
+ | min | 6452 |
325
+ | max | 16421 |
326
+
327
+ <details>
328
+ <summary>Histogram (split: train, 40 documents)</summary>
329
+
330
+ ![tl_sciarg.png](img%2Ftl_sciarg.png)
331
+
332
+ </details>
333
 
334
  ## Dataset Creation
335
 
img/rtd-label_sciarg.png ADDED

Git LFS Details

  • SHA256: b83561c87cd578855247e24983133cfe78a23fedb0e830f029976c9e142dde03
  • Pointer size: 130 Bytes
  • Size of remote file: 17.3 kB
img/slt_sciarg.png ADDED

Git LFS Details

  • SHA256: 548dc2f2a0d9003f682b8588e9232f9cb360b9799e69c1686da3abf320f47a4f
  • Pointer size: 130 Bytes
  • Size of remote file: 13.3 kB
img/tl_sciarg.png ADDED

Git LFS Details

  • SHA256: b933cd4f42edfe0248e1ae3d3c06a982c6543399d70f1115eadc285066188e8f
  • Pointer size: 130 Bytes
  • Size of remote file: 11.6 kB
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
- pie-datasets>=0.6.0,<0.9.0
2
- pie-modules>=0.10.8,<0.11.0
3
  networkx>=3.0.0,<4.0.0
 
1
+ pie-datasets>=0.6.0,<0.11.0
2
+ pie-modules>=0.10.8,<0.12.0
3
  networkx>=3.0.0,<4.0.0