pietrolesci commited on
Commit
f07459a
1 Parent(s): ecafb18

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Overview
2
+
3
+ Original dataset [here](https://github.com/aylai/MultiPremiseEntailment).
4
+
5
+
6
+ ## Dataset curation
7
+ Same data and splits as the original. The following columns have been added:
8
+
9
+ - `premise`: concatenation of `premise1`, `premise2`, `premise3`, and `premise4`
10
+ - `label`: encoded `gold_label` with the following mapping `{"entailment": 0, "neutral": 1, "contradiction": 2}`
11
+
12
+
13
+ ## Code to create the dataset
14
+
15
+ ```python
16
+ import pandas as pd
17
+ from datasets import Features, Value, ClassLabel, Dataset, DatasetDict
18
+ from pathlib import Path
19
+
20
+
21
+ # read data
22
+ path = Path(".")
23
+ datasets = {}
24
+ for dataset_path in path.rglob("*.txt"):
25
+ df = pd.read_csv(dataset_path, sep="\t")
26
+ datasets[dataset_path.name.split("_")[1].split(".")[0]] = df
27
+
28
+
29
+ ds = {}
30
+ for name, df_ in datasets.items():
31
+ df = df_.copy()
32
+
33
+ # fix parsing error for dev split
34
+ if name == "dev":
35
+ # fix parsing error
36
+ df.loc[df["contradiction_judgments"] == "3 contradiction", "contradiction_judgments"] = 3
37
+ df.loc[df["gold_label"].isna(), "gold_label"] = "contradiction"
38
+
39
+ # check no nan
40
+ assert df.isna().sum().sum() == 0
41
+
42
+ # fix dtypes
43
+ for col in ("entailment_judgments", "neutral_judgments", "contradiction_judgments"):
44
+ df[col] = df[col].astype(int)
45
+
46
+ # fix premise column
47
+ for i in range(1, 4 + 1):
48
+ df[f"premise{i}"] = df[f"premise{i}"].str.split("/", expand=True)[1]
49
+ df["premise"] = df[[f"premise{i}" for i in range(1, 4 + 1)]].agg(" ".join, axis=1)
50
+
51
+ # encode labels
52
+ df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2})
53
+
54
+ # cast to dataset
55
+ features = Features({
56
+ "premise1": Value(dtype="string", id=None),
57
+ "premise2": Value(dtype="string", id=None),
58
+ "premise3": Value(dtype="string", id=None),
59
+ "premise4": Value(dtype="string", id=None),
60
+ "premise": Value(dtype="string", id=None),
61
+ "hypothesis": Value(dtype="string", id=None),
62
+ "entailment_judgments": Value(dtype="int32"),
63
+ "neutral_judgments": Value(dtype="int32"),
64
+ "contradiction_judgments": Value(dtype="int32"),
65
+ "gold_label": Value(dtype="string"),
66
+ "label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]),
67
+ })
68
+
69
+ ds[name] = Dataset.from_pandas(df, features=features)
70
+
71
+ # push to hub
72
+ ds = DatasetDict(ds)
73
+ ds.push_to_hub("mpe", token="<token>")
74
+ ```