jamescalam commited on
Commit
57f8196
·
1 Parent(s): 9233340

Create new file

Browse files
Files changed (1) hide show
  1. movielens-recent-ratings.py +110 -0
movielens-recent-ratings.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import datasets
2
+ import pandas as pd
3
+ import re
4
+ import json
5
+
6
+ _CITATION = """\
7
+ @InProceedings{huggingface:dataset,
8
+ title = {MovieLens Ratings},
9
+ author={Ismail Ashraq, James Briggs},
10
+ year={2022}
11
+ }
12
+ """
13
+
14
+ _DESCRIPTION = """\
15
+ This is a dataset that streams user ratings from the MovieLens 25M dataset from the MovieLens servers.
16
+ """
17
+ _HOMEPAGE = "https://grouplens.org/datasets/movielens/"
18
+
19
+ _LICENSE = ""
20
+
21
+ _URL = "https://files.grouplens.org/datasets/movielens/ml-25m.zip"
22
+
23
+ class MovieLens(datasets.GeneratorBasedBuilder):
24
+ """The MovieLens 25M dataset for ratings"""
25
+
26
+ def _info(self):
27
+ return datasets.DatasetInfo(
28
+ description=_DESCRIPTION,
29
+ features=datasets.Features(
30
+ {
31
+ "imdb_id": datasets.Value("string"),
32
+ "movie_id": datasets.Value("int32"),
33
+ "user_id": datasets.Value("int32"),
34
+ "rating": datasets.Value("float32"),
35
+ "title": datasets.Value("string"),
36
+ "year": datasets.Value("int32"),
37
+ }
38
+ ),
39
+ supervised_keys=None,
40
+ homepage="https://grouplens.org/datasets/movielens/",
41
+ citation=_CITATION,
42
+ )
43
+
44
+ def _split_generators(self, dl_manager):
45
+ new_url = dl_manager.download_and_extract(_URL)
46
+ # PREPROCESS
47
+ # load all files
48
+ movie_ids = pd.read_csv(new_url+"/ml-25m/links.csv")
49
+ movie_meta = pd.read_csv(new_url+"/ml-25m/movies.csv")
50
+ movie_ratings = pd.read_csv(new_url+"/ml-25m/ratings.csv")
51
+ # merge to create movies dataframe
52
+ movies = movie_meta.merge(movie_ids, on="movieId")
53
+ # keep only subset of recent movies
54
+ recent_movies = movies[movies["imdbId"].astype(int) >= 2000000].fillna("None")
55
+ # mask movie ratings for movies that exist in movies
56
+ mask = movie_ratings['movieId'].isin(recent_movies["movieId"])
57
+ filtered_movie_ratings = movie_ratings[mask]
58
+ # merge with movies
59
+ df = filtered_movie_ratings.merge(
60
+ recent_movies, on="movieId"
61
+ ).astype(
62
+ {"movieId": int, "userId": int, "rating": float}
63
+ )
64
+ # remove user and movies which occurs only once in the dataset
65
+ df = df.groupby("movieId").filter(lambda x: len(x) > 2)
66
+ df = df.groupby("userId").filter(lambda x: len(x) > 2)
67
+ # convert unique movie IDs to sequential index values
68
+ unique_movieids = sorted(df["movieId"].unique())
69
+ mapping = {unique_movieids[i]: i for i in range(len(unique_movieids))}
70
+ df["movie_id"] = df["movieId"].map(lambda x: mapping[x])
71
+ # get unique user sequential index values
72
+ unique_userids = sorted(df["userId"].unique())
73
+ mapping = {unique_userids[i]: i for i in range(len(unique_userids))}
74
+ df["user_id"] = df["userId"].map(lambda x: mapping[x])
75
+ # add "tt" prefix to align with IMDB URL IDs
76
+ df["imdb_id"] = df["imdbId"].apply(lambda x: "tt" + str(x))
77
+ # extract year from title where possible
78
+ year_list = []
79
+ find_year = re.compile(r"(?<=\()\d{4}(?=\))")
80
+ for title in df['title']:
81
+ match = find_year.search(title)
82
+ if match:
83
+ year_list.append(int(match[0]))
84
+ else:
85
+ year_list.append(None)
86
+ # add year to df
87
+ df['year'] = year_list
88
+ # drop rows where no year is found
89
+ df = df[~df["year"].isna()]
90
+ # we also don't need all columns
91
+ df = df[
92
+ ["imdb_id", "movie_id", "user_id", "rating", "title", "year"]
93
+ ]
94
+ # save
95
+ df.to_json(new_url+"/ratings.jsonl", orient="records", lines=True)
96
+
97
+ return [
98
+ datasets.SplitGenerator(
99
+ name=datasets.Split.TRAIN,
100
+ gen_kwargs={"filepath": new_url+"/ratings.jsonl"}
101
+ ),
102
+ ]
103
+
104
+ def _generate_examples(self, filepath):
105
+ """This function returns the examples in the raw (text) form."""
106
+ with open(filepath, "r") as f:
107
+ id_ = 0
108
+ for line in f:
109
+ yield id_, json.loads(line)
110
+ id_ += 1