|
import datasets |
|
import numpy as np |
|
import os |
|
import pickle |
|
import pyarrow.parquet as pq |
|
|
|
_DESCRIPTION = """\ |
|
In Situ Thermography During Laser Powder Bed Fusion of a Nickel Superalloy 625 |
|
Artifact with Various Overhangs and Supports |
|
""" |
|
|
|
LAYER_BASE_URLS = [] |
|
|
|
|
|
for layer_number in range(1, 100, 1): |
|
if layer_number != 22: |
|
LAYER_BASE_URLS.append(f"./layer/base/{layer_number}.pkl") |
|
|
|
LAYER_OVERHANG_WITH_SUPPORTS_URLS = [f"./layer/overhang_with_supports/{n}.pkl" for n in range(101, 281, 1)] |
|
LAYER_BLOCK_URLS = [f"./layer/block/{n}.pkl" for n in range(281, 381, 1)] |
|
LAYER_OVERHANG_NO_SUPPORTS_URLS = [f"./layer/overhang_no_supports/{n}.pkl" for n in range(381, 560, 1)] |
|
|
|
LAYER_TABLE_BASE_URLS = [] |
|
|
|
|
|
for layer_number in range(1, 100, 1): |
|
if layer_number != 22: |
|
LAYER_TABLE_BASE_URLS.append(f"./layer_table/base/{layer_number}.parquet") |
|
|
|
LAYER_TABLE_OVERHANG_WITH_SUPPORTS_URLS = [f"./layer_table/overhang_with_supports/{n}.parquet" for n in range(101, 281, 1)] |
|
LAYER_TABLE_BLOCK_URLS = [f"./layer_table/block/{n}.parquet" for n in range(281, 381, 1)] |
|
LAYER_TABLE_OVERHANG_NO_SUPPORTS_URLS = [f"./layer_table/overhang_no_supports/{n}.parquet" for n in range(381, 560, 1)] |
|
|
|
_URLS = { |
|
"part_section": { |
|
"base": "./part_section/BASE.pkl", |
|
"block": "./part_section/BLOCK.pkl", |
|
"overhang_no_supports": "./part_section/OVERHANG_noSup.pkl", |
|
"overhang_with_supports": "./part_section/OVERHANG_wSup.pkl", |
|
}, |
|
"layer": { |
|
"base": LAYER_BASE_URLS, |
|
"block": LAYER_BLOCK_URLS, |
|
"overhang_no_supports": LAYER_OVERHANG_NO_SUPPORTS_URLS, |
|
"overhang_with_supports": LAYER_OVERHANG_WITH_SUPPORTS_URLS, |
|
}, |
|
"layer_table": { |
|
"base": LAYER_TABLE_BASE_URLS, |
|
"block": LAYER_TABLE_BLOCK_URLS, |
|
"overhang_no_supports": LAYER_TABLE_OVERHANG_NO_SUPPORTS_URLS, |
|
"overhang_with_supports": LAYER_TABLE_OVERHANG_WITH_SUPPORTS_URLS, |
|
} |
|
} |
|
|
|
class NISTInSituIN625LPBFOverhangsDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="part_section", |
|
description="Original dataset files split by part section", |
|
version=VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="layer", |
|
description="Provides layer-wise attributes of entire dataset", |
|
version=VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="layer_table", |
|
description="Provides parquet layer-wise attributes of entire dataset", |
|
version=VERSION, |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "layer_table" |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
"folder_layer_range": datasets.Value("string"), |
|
"part": datasets.Value("string"), |
|
"part_section": datasets.Value("string"), |
|
"process": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"layer_number": datasets.Value("string"), |
|
"build_time": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"contact_email": datasets.Value("string"), |
|
"file_name": datasets.Value("string"), |
|
"hatch_spacing": datasets.Value("uint32"), |
|
"laser_power": datasets.Value("uint32"), |
|
"layer_thickness": datasets.Value("uint32"), |
|
"material": datasets.Value("string"), |
|
"radiant_temp": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("uint32")))), |
|
"build_time": datasets.Sequence(datasets.Sequence(datasets.Value("float32"))), |
|
"s_hvariable__a": datasets.Value("float32"), |
|
"s_hvariable__b": datasets.Value("float32"), |
|
"s_hvariable__c": datasets.Value("float32"), |
|
"scan_speed": datasets.Value("uint32"), |
|
"website": datasets.Value("string"), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
urls = _URLS[self.config.name] |
|
downloaded_files = dl_manager.download_and_extract(urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="base", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["base"], |
|
"split": "base", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="block", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["block"], |
|
"split": "block", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="overhang_no_supports", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["overhang_no_supports"], |
|
"split": "overhang_no_supports", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="overhang_with_supports", |
|
gen_kwargs={ |
|
"filepath": downloaded_files["overhang_with_supports"], |
|
"split": "overhang_with_supports", |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
if self.config.name == "part_section": |
|
with open(filepath, "rb") as f: |
|
layers = pickle.load(f) |
|
for index, layer in enumerate(layers): |
|
yield index, layer |
|
elif self.config.name == "layer": |
|
|
|
for index, path in enumerate(filepath): |
|
with open(path, "rb") as f: |
|
layer = pickle.load(f) |
|
yield index, layer |
|
elif self.config.name == "layer_table": |
|
|
|
for index, path in enumerate(filepath): |
|
with open(path, "rb") as f: |
|
table = pq.read_table(f) |
|
layer = table.to_pydict() |
|
non_array = [str, int, float] |
|
converted_layer = {} |
|
for key, value in layer.items(): |
|
layer_value = value[0] |
|
if (type(layer_value) in non_array): |
|
converted_layer[key] = layer_value |
|
elif(isinstance(value, list) and "shape" not in key): |
|
shape = layer[f"{key}_shape"][0] |
|
flattened_array = np.array(layer_value) |
|
array = flattened_array.reshape(shape) |
|
converted_layer[key] = array |
|
|
|
yield index, converted_layer |
|
|