File size: 5,771 Bytes
89bc030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import datasets
import pickle


_DESCRIPTION = """\
    Dataset for storing training metrics of pythia models 
"""

class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
    
    MODEL_SIZES = [ 
        "70m", 
        "160m", 
        "410m",
        "1b",
        "1.4b",
        "2.8b",
        "6.9b"
    ]

    _GRADIENTS_DESCRIPTION = """\
        Dataset for storing gradients of pythia models 
    """

    _WEIGHTS_DESCRIPTION = """\
        Dataset for storing weights of pythia models 
    """

    _WEIGHTS_MINI_DESCRIPTION = """\
        Dataset for storing weights of pythia models (minimizes the amount of gradients per 
        checkpoint to only 2)
    """

    _ACTIVATIONS_DESCRIPTION = """\
        Dataset for storing activations of pythia models 
    """
   
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="gradients",
            description=_WEIGHTS_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="gradients_mini",
            description=_WEIGHTS_MINI_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="activations ",
            description=_ACTIVATIONS_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="weights",
            description=_WEIGHTS_DESCRIPTION,
            version="1.0.0",
        ),
        datasets.BuilderConfig(
            name="all",
            description="All the metrics",
            version="1.0.0",
        )
   ]

    def _info(self):
        """
        TODO: Got to figure out how to represent the features etc. 

        how do we do this if each feature is dependent on the model size?
        """

        features_dict = { 
            "checkpoint_step": datasets.Value('int32'),
            "layer_name": datasets.Value('string'),
        }

        if self.config.name in ["activations", "weights"]:
            features_dict['data'] = datasets.Sequence(datasets.Value('float32'))
        elif self.config_name in ["gradients", "gradients_mini"]:
            features_dict['gradient_step'] = datasets.Value('int32')
            features_dict['gradient'] = datasets.Sequence(datasets.Value('float32'))
            
        features = datasets.Features(features_dict)

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,  
        )


    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """ 
        Returns data for different splits - we define a split as a model size. 
        """

        model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }

        checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
        checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])

        def get_gradient_step(step: int): 
            """
            Return a list of the gradient steps that are used at a given checkpoint step. 
            """
            return list(range(max(0, step-5), min(step+6, 143_000))) 

        for model_size in self.MODEL_SIZES:
            for checkpoint_step in checkpoint_steps:

                directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"

                if self.config.name == "activations": 
                    model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
                elif self.config_name == "weights":
                    model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
                elif self.config_name == "gradients":
                    for gradient_step in get_gradient_step(checkpoint_step):
                        model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
                elif self.config_name == "gradients_mini":
                    for gradient_step in get_gradient_step(checkpoint_step)[:2]:
                        model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")

        downloaded_files = dl_manager.download_and_extract(model_size_to_fp)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepaths": downloaded_fps
                }
            )  for downloaded_fps in downloaded_files.values()
        ]

    def _generate_examples(self, filepaths):

        # the filepaths should be a list of filepaths 
        if isinstance(filepaths, str):
            filepaths = [filepaths]
        
        global_idx = 0 # the unique identifier for the example 

        for filepath in filepaths:
            with open(filepath, encoding="utf-8") as f:
                data = pickle.load(f)

                # extract checkpoint step from the filepath
                checkpoint_step = int(filepath.split("/")[1].split("_")[-1])
                
                if self.config.name in ["activations", "weights"]:
                    for layer_name, layer_data in data.items():
                        for data in layer_data: 
                            yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "data": data}
                            global_idx += 1
                elif self.config.name in ["gradients", "gradients_mini"]:
                    for layer_name, layer_data in data.items():
                        for gradient_step, gradient in layer_data.items():
                            yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "gradient_step": gradient_step, "gradient": gradient}
                            global_idx += 1