pythia-training-metrics / pythia_training_metrics.py
rdiehlmartinez's picture
adding first pass dataset loading script
89bc030
raw
history blame
5.77 kB
import datasets
import pickle
_DESCRIPTION = """\
Dataset for storing training metrics of pythia models
"""
class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
MODEL_SIZES = [
"70m",
"160m",
"410m",
"1b",
"1.4b",
"2.8b",
"6.9b"
]
_GRADIENTS_DESCRIPTION = """\
Dataset for storing gradients of pythia models
"""
_WEIGHTS_DESCRIPTION = """\
Dataset for storing weights of pythia models
"""
_WEIGHTS_MINI_DESCRIPTION = """\
Dataset for storing weights of pythia models (minimizes the amount of gradients per
checkpoint to only 2)
"""
_ACTIVATIONS_DESCRIPTION = """\
Dataset for storing activations of pythia models
"""
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="gradients",
description=_WEIGHTS_DESCRIPTION,
version="1.0.0",
),
datasets.BuilderConfig(
name="gradients_mini",
description=_WEIGHTS_MINI_DESCRIPTION,
version="1.0.0",
),
datasets.BuilderConfig(
name="activations ",
description=_ACTIVATIONS_DESCRIPTION,
version="1.0.0",
),
datasets.BuilderConfig(
name="weights",
description=_WEIGHTS_DESCRIPTION,
version="1.0.0",
),
datasets.BuilderConfig(
name="all",
description="All the metrics",
version="1.0.0",
)
]
def _info(self):
"""
TODO: Got to figure out how to represent the features etc.
how do we do this if each feature is dependent on the model size?
"""
features_dict = {
"checkpoint_step": datasets.Value('int32'),
"layer_name": datasets.Value('string'),
}
if self.config.name in ["activations", "weights"]:
features_dict['data'] = datasets.Sequence(datasets.Value('float32'))
elif self.config_name in ["gradients", "gradients_mini"]:
features_dict['gradient_step'] = datasets.Value('int32')
features_dict['gradient'] = datasets.Sequence(datasets.Value('float32'))
features = datasets.Features(features_dict)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""
Returns data for different splits - we define a split as a model size.
"""
model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES }
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ]
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)])
def get_gradient_step(step: int):
"""
Return a list of the gradient steps that are used at a given checkpoint step.
"""
return list(range(max(0, step-5), min(step+6, 143_000)))
for model_size in self.MODEL_SIZES:
for checkpoint_step in checkpoint_steps:
directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
if self.config.name == "activations":
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
elif self.config_name == "weights":
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
elif self.config_name == "gradients":
for gradient_step in get_gradient_step(checkpoint_step):
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
elif self.config_name == "gradients_mini":
for gradient_step in get_gradient_step(checkpoint_step)[:2]:
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
downloaded_files = dl_manager.download_and_extract(model_size_to_fp)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepaths": downloaded_fps
}
) for downloaded_fps in downloaded_files.values()
]
def _generate_examples(self, filepaths):
# the filepaths should be a list of filepaths
if isinstance(filepaths, str):
filepaths = [filepaths]
global_idx = 0 # the unique identifier for the example
for filepath in filepaths:
with open(filepath, encoding="utf-8") as f:
data = pickle.load(f)
# extract checkpoint step from the filepath
checkpoint_step = int(filepath.split("/")[1].split("_")[-1])
if self.config.name in ["activations", "weights"]:
for layer_name, layer_data in data.items():
for data in layer_data:
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "data": data}
global_idx += 1
elif self.config.name in ["gradients", "gradients_mini"]:
for layer_name, layer_data in data.items():
for gradient_step, gradient in layer_data.items():
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "gradient_step": gradient_step, "gradient": gradient}
global_idx += 1