|
import datasets |
|
import pickle |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset for storing training metrics of pythia models |
|
""" |
|
|
|
class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder): |
|
|
|
MODEL_SIZES = [ |
|
"70m", |
|
"160m", |
|
"410m", |
|
"1b", |
|
"1.4b", |
|
"2.8b", |
|
"6.9b" |
|
] |
|
|
|
_GRADIENTS_DESCRIPTION = """\ |
|
Dataset for storing gradients of pythia models |
|
""" |
|
|
|
_WEIGHTS_DESCRIPTION = """\ |
|
Dataset for storing weights of pythia models |
|
""" |
|
|
|
_WEIGHTS_MINI_DESCRIPTION = """\ |
|
Dataset for storing weights of pythia models (minimizes the amount of gradients per |
|
checkpoint to only 2) |
|
""" |
|
|
|
_ACTIVATIONS_DESCRIPTION = """\ |
|
Dataset for storing activations of pythia models |
|
""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="gradients", |
|
description=_WEIGHTS_DESCRIPTION, |
|
version="1.0.0", |
|
), |
|
datasets.BuilderConfig( |
|
name="gradients_mini", |
|
description=_WEIGHTS_MINI_DESCRIPTION, |
|
version="1.0.0", |
|
), |
|
datasets.BuilderConfig( |
|
name="activations ", |
|
description=_ACTIVATIONS_DESCRIPTION, |
|
version="1.0.0", |
|
), |
|
datasets.BuilderConfig( |
|
name="weights", |
|
description=_WEIGHTS_DESCRIPTION, |
|
version="1.0.0", |
|
), |
|
datasets.BuilderConfig( |
|
name="all", |
|
description="All the metrics", |
|
version="1.0.0", |
|
) |
|
] |
|
|
|
def _info(self): |
|
""" |
|
TODO: Got to figure out how to represent the features etc. |
|
|
|
how do we do this if each feature is dependent on the model size? |
|
""" |
|
|
|
features_dict = { |
|
"checkpoint_step": datasets.Value('int32'), |
|
"layer_name": datasets.Value('string'), |
|
} |
|
|
|
if self.config.name in ["activations", "weights"]: |
|
features_dict['data'] = datasets.Sequence(datasets.Value('float32')) |
|
elif self.config_name in ["gradients", "gradients_mini"]: |
|
features_dict['gradient_step'] = datasets.Value('int32') |
|
features_dict['gradient'] = datasets.Sequence(datasets.Value('float32')) |
|
|
|
features = datasets.Features(features_dict) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager): |
|
""" |
|
Returns data for different splits - we define a split as a model size. |
|
""" |
|
|
|
model_size_to_fp = { model_size: [] for model_size in self.MODEL_SIZES } |
|
|
|
checkpoint_steps = [0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1000, ] |
|
checkpoint_steps.extend([3000 + (i * 10000) for i in range(0, 15)]) |
|
|
|
def get_gradient_step(step: int): |
|
""" |
|
Return a list of the gradient steps that are used at a given checkpoint step. |
|
""" |
|
return list(range(max(0, step-5), min(step+6, 143_000))) |
|
|
|
for model_size in self.MODEL_SIZES: |
|
for checkpoint_step in checkpoint_steps: |
|
|
|
directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}" |
|
|
|
if self.config.name == "activations": |
|
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle") |
|
elif self.config_name == "weights": |
|
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle") |
|
elif self.config_name == "gradients": |
|
for gradient_step in get_gradient_step(checkpoint_step): |
|
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle") |
|
elif self.config_name == "gradients_mini": |
|
for gradient_step in get_gradient_step(checkpoint_step)[:2]: |
|
model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle") |
|
|
|
downloaded_files = dl_manager.download_and_extract(model_size_to_fp) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepaths": downloaded_fps |
|
} |
|
) for downloaded_fps in downloaded_files.values() |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
|
|
|
|
if isinstance(filepaths, str): |
|
filepaths = [filepaths] |
|
|
|
global_idx = 0 |
|
|
|
for filepath in filepaths: |
|
with open(filepath, encoding="utf-8") as f: |
|
data = pickle.load(f) |
|
|
|
|
|
checkpoint_step = int(filepath.split("/")[1].split("_")[-1]) |
|
|
|
if self.config.name in ["activations", "weights"]: |
|
for layer_name, layer_data in data.items(): |
|
for data in layer_data: |
|
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "data": data} |
|
global_idx += 1 |
|
elif self.config.name in ["gradients", "gradients_mini"]: |
|
for layer_name, layer_data in data.items(): |
|
for gradient_step, gradient in layer_data.items(): |
|
yield global_idx, {"checkpoint_step": checkpoint_step, "layer_name": layer_name, "gradient_step": gradient_step, "gradient": gradient} |
|
global_idx += 1 |
|
|