rdiehlmartinez commited on
Commit
2b544b3
·
1 Parent(s): bc74a1c

bug fixing checkpoint and gradient step

Browse files
Files changed (1) hide show
  1. pythia-training-metrics.py +16 -9
pythia-training-metrics.py CHANGED
@@ -85,27 +85,31 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
85
  """
86
  return list(range(max(0, step-5), min(step+6, 143_000)))
87
 
88
- for model_size in self.MODEL_SIZES:
89
  for checkpoint_step in checkpoint_steps:
90
 
91
  directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
92
 
93
  if self.config.name == "activations":
94
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
95
- kwargs_checkpoint_steps.append(checkpoint_step)
 
96
  elif self.config.name == "weights":
97
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
98
- kwargs_checkpoint_steps.append(checkpoint_step)
 
99
  elif self.config.name == "gradients":
100
  for gradient_step in get_gradient_step(checkpoint_step):
101
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
102
- kwargs_checkpoint_steps.append(checkpoint_step)
103
- kwargs_gradient_steps.append(gradient_step)
 
104
  elif self.config.name == "gradients_mini":
105
  for gradient_step in get_gradient_step(checkpoint_step)[:2]:
106
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
107
- kwargs_checkpoint_steps.append(checkpoint_step)
108
- kwargs_gradient_steps.append(gradient_step)
 
109
  else:
110
  raise Exception("Invalid config name")
111
 
@@ -117,17 +121,20 @@ class PythiaTrainingMetrics(datasets.GeneratorBasedBuilder):
117
  gen_kwargs={
118
  "filepaths": downloaded_fps,
119
  "checkpoint_steps": kwargs_checkpoint_steps,
120
- "gradient_steps": kwargs_gradient_steps,
121
  }
122
  ) for model_size_name, downloaded_fps in downloaded_files.items()
123
  ]
124
 
125
- def _generate_examples(self, filepaths, checkpoint_steps, gradient_steps):
126
 
127
  # the filepaths should be a list of filepaths
128
  if isinstance(filepaths, str):
129
  filepaths = [filepaths]
130
 
 
 
 
131
  global_idx = 0 # the unique identifier for the example
132
 
133
  for idx, filepath in enumerate(filepaths):
 
85
  """
86
  return list(range(max(0, step-5), min(step+6, 143_000)))
87
 
88
+ for _idx, model_size in enumerate(self.MODEL_SIZES):
89
  for checkpoint_step in checkpoint_steps:
90
 
91
  directory_path = f"./models/{model_size}/checkpoint_{checkpoint_step}"
92
 
93
  if self.config.name == "activations":
94
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_activations.pickle")
95
+ if _idx == 0:
96
+ kwargs_checkpoint_steps.append(checkpoint_step)
97
  elif self.config.name == "weights":
98
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_weights.pickle")
99
+ if _idx == 0:
100
+ kwargs_checkpoint_steps.append(checkpoint_step)
101
  elif self.config.name == "gradients":
102
  for gradient_step in get_gradient_step(checkpoint_step):
103
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_{gradient_step}.pickle")
104
+ if _idx == 0:
105
+ kwargs_checkpoint_steps.append(checkpoint_step)
106
+ kwargs_gradient_steps.append(gradient_step)
107
  elif self.config.name == "gradients_mini":
108
  for gradient_step in get_gradient_step(checkpoint_step)[:2]:
109
  model_size_to_fp[model_size].append(f"{directory_path}/checkpoint_gradients_mini_{gradient_step}.pickle")
110
+ if _idx == 0:
111
+ kwargs_checkpoint_steps.append(checkpoint_step)
112
+ kwargs_gradient_steps.append(gradient_step)
113
  else:
114
  raise Exception("Invalid config name")
115
 
 
121
  gen_kwargs={
122
  "filepaths": downloaded_fps,
123
  "checkpoint_steps": kwargs_checkpoint_steps,
124
+ **({"gradient_steps": kwargs_gradient_steps} if self.config.name in ["gradients", "gradients_mini"] else {}),
125
  }
126
  ) for model_size_name, downloaded_fps in downloaded_files.items()
127
  ]
128
 
129
+ def _generate_examples(self, filepaths, checkpoint_steps, **kwargs):
130
 
131
  # the filepaths should be a list of filepaths
132
  if isinstance(filepaths, str):
133
  filepaths = [filepaths]
134
 
135
+ if self.config.name in ["gradients", "gradients_mini"]:
136
+ gradient_steps = kwargs["gradient_steps"]
137
+
138
  global_idx = 0 # the unique identifier for the example
139
 
140
  for idx, filepath in enumerate(filepaths):