|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Open Threat dataset""" |
|
|
|
|
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
TBD |
|
""" |
|
|
|
_CITATION = """\ |
|
TBD |
|
""" |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/priamai/openthreatner/raw/main/conll/" |
|
_TRAINING_FILE = "text_32.conll" |
|
_DEV_FILE = "text_23.conll" |
|
_TEST_FILE = "text_56.conll" |
|
|
|
class OurDatasetConfig(datasets.BuilderConfig): |
|
"""The Open NER dataset.""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Open Threat dataset. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(OurDatasetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class OurDataset(datasets.GeneratorBasedBuilder): |
|
"""The Open NER dataset Entities Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
OurDatasetConfig( |
|
name="Open Threat", version=datasets.Version("1.0.0"), description="The Open Cyber Threat Entities Dataset" |
|
), |
|
] |
|
|
|
def _info(self): |
|
|
|
our_names = [ |
|
"O", |
|
"B-date", |
|
"I-date", |
|
"B-time", |
|
"I-time", |
|
"B-geo_location", |
|
"I-geo_location", |
|
"B-organization", |
|
"I-organization", |
|
"B-sector", |
|
"I-sector", |
|
"B-threat_actor", |
|
"I-threat_actor", |
|
"B-exploit_name", |
|
"I-exploit_name", |
|
"B-malware", |
|
"I-malware", |
|
"B-os", |
|
"I-os", |
|
"B-software", |
|
"I-software", |
|
"B-hardware", |
|
"I-hardware", |
|
"B-username", |
|
"I-username", |
|
"B-ttp", |
|
"I-ttp", |
|
"B-code_cmd", |
|
"I-code_cmd", |
|
"B-classification", |
|
"I-classification", |
|
] |
|
|
|
logger.info("Total names = %d" % len(our_names)) |
|
|
|
dinfo = datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names= list(map(str.upper,our_names)) |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://test.cti.tools/", |
|
citation=_CITATION, |
|
) |
|
|
|
logger.info(dinfo) |
|
|
|
return dinfo |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("β³ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
current_tokens = [] |
|
current_labels = [] |
|
sentence_counter = 0 |
|
for row in f: |
|
row = row.rstrip() |
|
if row: |
|
token, label = row.split("\t") |
|
current_tokens.append(token) |
|
current_labels.append(label) |
|
else: |
|
|
|
if not current_tokens: |
|
|
|
continue |
|
assert len(current_tokens) == len(current_labels), "π between len of tokens & labels" |
|
sentence = ( |
|
sentence_counter, |
|
{ |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_labels, |
|
}, |
|
) |
|
sentence_counter += 1 |
|
current_tokens = [] |
|
current_labels = [] |
|
yield sentence |
|
|
|
if current_tokens: |
|
yield sentence_counter, { |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_labels, |
|
} |