openthreatner / openthreatner.py
priamai's picture
Update openthreatner.py
e56487b verified
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""The Open Threat dataset"""
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
TBD
"""
_CITATION = """\
TBD
"""
_URL = "https://huggingface.co/datasets/priamai/openthreatner/raw/main/conll/"
_TRAINING_FILE = "text_32.conll"
_DEV_FILE = "text_23.conll"
_TEST_FILE = "text_56.conll"
class OurDatasetConfig(datasets.BuilderConfig):
"""The Open NER dataset."""
def __init__(self, **kwargs):
"""BuilderConfig for Open Threat dataset.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(OurDatasetConfig, self).__init__(**kwargs)
class OurDataset(datasets.GeneratorBasedBuilder):
"""The Open NER dataset Entities Dataset."""
BUILDER_CONFIGS = [
OurDatasetConfig(
name="Open Threat", version=datasets.Version("1.0.0"), description="The Open Cyber Threat Entities Dataset"
),
]
def _info(self):
our_names = [
"O",
"B-date",
"I-date",
"B-time",
"I-time",
"B-geo_location",
"I-geo_location",
"B-organization",
"I-organization",
"B-sector",
"I-sector",
"B-threat_actor",
"I-threat_actor",
"B-exploit_name",
"I-exploit_name",
"B-malware",
"I-malware",
"B-os",
"I-os",
"B-software",
"I-software",
"B-hardware",
"I-hardware",
"B-username",
"I-username",
"B-ttp",
"I-ttp",
"B-code_cmd",
"I-code_cmd",
"B-classification",
"I-classification",
]
logger.info("Total names = %d" % len(our_names))
dinfo = datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names= list(map(str.upper,our_names))
)
),
}
),
supervised_keys=None,
homepage="https://test.cti.tools/",
citation=_CITATION,
)
logger.info(dinfo)
return dinfo
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE}",
"dev": f"{_URL}{_DEV_FILE}",
"test": f"{_URL}{_TEST_FILE}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
current_tokens = []
current_labels = []
sentence_counter = 0
for row in f:
row = row.rstrip()
if row:
token, label = row.split("\t")
current_tokens.append(token)
current_labels.append(label)
else:
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_labels), "πŸ’” between len of tokens & labels"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_tokens = []
current_labels = []
yield sentence
# Don't forget last sentence in dataset 🧐
if current_tokens:
yield sentence_counter, {
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
}